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Background: Asthma is a heterogeneous disease with different subtypes including
eosinophilic asthma (EA) and neutrophilic asthma (NA). However, the mechanisms
underlying the difference between the two subtypes are not fully understood.

Methods: Microarray datasets (GSE45111 and GSE137268) were acquired from Gene
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in induced
sputum between EA (n = 24) and NA (n = 15) were identified by “Limma” package. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses and Gene set enrichment analysis (GSEA) were used to explore
potential signaling pathways. Weighted gene co-expression network analysis (WGCNA)
were performed to identify the key genes that were strongly associated with EA and NA.

Results: A total of 282 DEGs were identified in induced sputum of NA patients compared
with EA patients. In GO and KEGG pathway analyses, DEGs were enriched in positive
regulation of cytokine production, and cytokine-cytokine receptor interaction. The results
of GSEA showed that ribosome, Parkinson’s disease, and oxidative phosphorylation were
positively correlated with EA while toll-like receptor signaling pathway, primary
immunodeficiency, and NOD-like receptor signaling pathway were positively correlated
with NA. Using WGCNA analysis, we identified a set of genes significantly associated NA
including IRFG, IRF1, STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.

Conclusion: We identified potential signaling pathways and key genes involved in the
pathogenesis of the asthma subsets, especially in neutrophilic asthma.
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INTRODUCTION

Asthma is a chronic airway inflammatory disease characterized
by airway hyperresponsiveness, reversible airflow limitation,
mucus overproduction and airway wall remodeling (King-
Biggs, 2019; Gao et al., 2020). Asthma affects more than 300
million people worldwide with approximately 250,000 deaths per
year (Scherzer and Grayson, 2018; Ijaz et al., 2019).

According to the differential counts of sputum inflammatory
cells, asthma can be divided into four subtypes: eosinophilic asthma
(EA), neutrophilic asthma (NA), mixed granulocytic asthma, and
paucigranulocytic asthma (Tliba and Panettieri, 2019). EA and NA
have attracted our attention on account of their differences in clinical
features and therapeutic effects. EA is defined by having more than
3% of eosinophils in the sputum and with a variable severity (Erle
and Sheppard, 2014; Schleich et al., 2016). Type 2 immune response
plays an important role in EA. NA is defined by having more than
61% of sputum neutrophils and mostly occurs in more severe
asthma (Pelaia et al., 2015; Taylor et al., 2018). Inhaled
corticosteroids (ICS) is effective with airway eosinophilic
inflammation, whereas neutrophilic asthma has poor response for
ICS (Green et al., 2002; Jayaram et al., 2006). Although Th2 and
Th17 signaling pathways are implicated in EA and NA, respectively,
the underlying mechanism distinguishes these two subtypes remains
unclear (Boonpiyathad et al., 2019).

Recently, bioinformatic methods have been widely applied to
identify the robust differentially expressed genes (DEGs) and
signaling pathways in a variety of diseases (Zeng et al., 2019).
Weighted gene co-expression network analysis (WGCNA) is a
widely used method in building co-expression pairwise correlation
matrices (Xu et al., 2020). There are several studies on EA and NA
which focus on DEGs screening, while the interconnection between
the involved genes and different subtypes of asthma has not been
investigated (Baines et al., 2014; Sánchez-Ovando et al., 2021).

In this study, we integrated two microarray datasets including
EA and NA patients from gene expression omnibus (GEO)

database. Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses, and Gene set
enrichment analysis (GSEA) were used to identify the
potential mechanisms that distinguish between EA and NA. In
order to explore the relation between gene modules and asthma
subtypes, WGCNA was performed and two modules were
recognized to be positively related to EA and NA groups.
Finally, we sorted out a series of genes based on gene
significance (GS), module membership (MM) and the protein-
protein interaction (PPI) network, which might play major roles
in the pathogenesis in EA and NA.

MATERIALS AND METHODS

Microarray Datasets Acquisition
We obtained microarray datasets from GEO (http://www.
ncbi.nlm.nih.gov/geo) utilizing the getGEO function of the
GEOquery package (version 2.58.0) in R software (version 4.
0.4). We adopted (eosinophilic asthma) AND (neutrophilic
asthma) as the search strategy and five microarray data were
obtained. The following eligibility criteria were used to
include or exclude datasets and samples: 1) Expression
type is expression profiling by array; 2) Sample type is
induced sputum; 3) Subjects are non-severe and steroid-
naïve. GSE4511 (Baines et al., 2014) and GSE137368 were
extracted from the GEO database. Both platforms were
GPL6104. We obtained 15 EA samples and 11 NA samples
in GSE45111 and 9 EA samples and 4 NA samples in
GSE137268.

Data Processing and Differentially
Expressed Genes Identification
We considered consolidating two datasets since both used the
same platforms. Data processing included data consolidation,

FIGURE 1 | Identification of differentially expressed genes (DEGs) in induced sputum from eosinophilic asthma (EA) compared to those from neutrophilic asthma
(NA). (A) Volcano plots showed the DEGs by the criteria of |logFC| > 0.5 and p < 0.05. The up-regulated genes were marked in red, while the down-regulated genes were
marked in blue. (B) The top 50 DEGs with the largest logFC are shown in the heatmap.
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batch normalization and ID conversion. The merged data were
processed via ComBat normalization in sva package (version
3.38.0) in R software based on the classical Bayesian analysis to
remove batch effects (Leek et al., 2012). We next identified DEGs
between EA and NA group by an empirical Bayes method based
on limma package (version 3.46.0) in R software (p < 0.05, |logFC|
>0.5) (Ritchie et al., 2015). Volcano plot and heatmap were
plotted by ggplot2 (version 3.3.3) and pheatmap (version
1.0.12) package, respectively.

Functional and Pathway Enrichment
Analyses
The GO and KEGG pathway enrichment analyses of DEGs were
analyzed and visualized in clusterProfiler package (version 3.18.1) in
R software (Yu et al., 2012). TheMetascapewebsite (http://metascape.
org), which is an online analysis tool integrated with multiple
ontology sources, was implemented to conduct GO and KEGG
analyses of gene modules selected by WGCNA (Zhou et al., 2019).

Gene Set Enrichment Analysis
GSEA analysis was performed using GSEA software (version
4.1.0) (Subramanian et al., 2005). KEGG was selected as the gene

sets database. The gene set was deemed to significantly enriched
with alpha or p values < 5% and false discovery rate (FDR) < 25%
for each analysis, which was performed 1,000 times for each
analysis. The parameter of GSEA are as following: The parameter
“Collapse data set to gene symbols” is set to “false”. The
parameter “Permutation type” is set to “phenotype”. The
parameter “Enrichment statistic” is set to “weighted”, while
the parameter “Metric for ranking genes” is set to “Singal2Noise”.

Weighted Gene Co-Expression Network
Analysis
We implemented WGCNA by the WGCNA package in the R
software (Langfelder and Horvath, 2008). We selected top 5,000
median absolute deviation (MAD) genes to construct the
representation matrix and the appropriate power parameter
was decided by pickSoftThreshold function. We used
hierarchical clustering to identify modules of highly
interconnected genes on the basis of their connectivity and
covariance coefficients. The heatmap was plotted to reflect the
relationships between each module and subtypes of asthma. The
modules were constructed with the threshold value of the module
dendrogram of 0.25, and a minimum module size of 30 genes.

FIGURE 2 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)enrichment annotations of the DEGs. (A) The results of GO enrichment
categories included biological process (BP), cellular component (CC), and molecular function (MF). (B) The results of KEGG pathway enrichment analyses of the DEGs.
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Hub Genes and Key Genes Validation
Hub gene is defined as having high connectivity in a module and
playing an important role in related clinical traits (Bai et al.,
2021). Gene significance (GS) is defined as mediated p-value of
each gene (GS = lgP) in the linear regression between gene
expression and the clinical traits. Module membership (MM)
is defined as the correlation between a given gene expression
profile and a given model eigengene to represent intra
connectivity. To identify hub genes in WGCNA, the threshold
value of MM and GS was set to 0.8 and 0.2, respectively.

Hub genes in DEGs were constructed as the PPI network with
the cut-off standard of interaction score >0.4 by the STRING
database (http://www.string-db.org/) (Szklarczyk et al., 2021).
Then, we visualized the PPI network by the Cytoscape
software (version 3.6.1) (Le and Pham, 2017). In addition, we
used the maximal clique centrality (MCC) computing method
with the Cytohubba plugin to confirm the top 30 hub genes in the
PPI network (Chin et al., 2014). Key genes were obtained by the
intersection of hub genes in DEG-PPI network and selected
modules eventually.

RESULTS

Identification of Differentially Expressed
Genes
To identify DEGs in induced sputum samples from EA patients
compared to those from NA patients, expression profiles of
GSE45111 and GSE137268 were downloaded from the GEO
database. After data consolidation and removing the batch effects
of the two microarray datasets, 282 DEGs (110 up-regulated and
172 down-regulated in EA patients) were screened out using the
Limma package (p < 0.05, |logFC| > 0.5) (Supplementary Table S1).
The result was shown with the volcano plot in Figure 1A. In
addition, the logarithmic fold changes of the top 50 DEGs were
showed in heatmap (Figure 1B).

Functional and Pathway Enrichment
Analyses for Differentially Expressed Genes
The enriched GO and KEGG analyses of the 282 DEGs
were performed and visualized with the clusterProfiler

FIGURE 3 |Gene set enrichment analysis (GSEA) plots of the most enriched gene sets in the EA and NA group. (A–C) The top 3most enriched pathways in the EA
group: ribosome (A); Parkinson’s disease (B); oxidative phosphorylation (C). (D–F) The top 3 most enriched pathways in the NA group: toll-like receptor significant
pathway (D); primary immunodeficiency (E); NOD-like receptor signaling pathway (F).
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package in R software. The biological process (BP) of GO
enrichment analysis included response to interferon-γ
(INFγ), response to virus and cellular response to INFγ.
For the cellular component (CC), DEGs were enriched in
tertiary granule, external side of plasma membrane, and
specific granule. For the molecular function (MF), DEGs
were significantly enriched in cytokine activity, chemokine
activity, and cytokine receptor binding (Figure 2A). The
result of GO enrichment of ascending and descending DEGs
were shown in Supplementary Figures S1A,B, respectively.
In addition, integrated DEGs were strongly involved in
cytokine-cytokine receptor interaction, viral protein
interaction with cytokine and cytokine receptor, and

NOD-like receptor signaling pathway in KEGG pathway
analysis (Figure 2B). The outcomes of KEGG pathway
enrichment of ascending and descending DEGs were
shown in Supplementary Figures S1C,D, respectively.

Gene set enrichment analysi
The GSEA analysis was performed to identify unique pathways
involved in the pathogenesis of EA or NA. The pathways related
to ribosome, Parkinson’s disease, and oxidative phosphorylation
were most significantly enriched in EA group. Toll-like receptor
signaling pathway, primary immunodeficiency, and NOD-like
receptor signaling pathways were most strongly enriched in NA
group (Figures 3A–E).

FIGURE 4 | Identification of the gene modules related to EA and NA by weighted gene co-expression network analysis (WGCNA). (A) T scale-free fit index of soft-
thresholding power. (B)Mean connectivity of various soft-thresholding powers. (C)Hierarchical clustering dendrograms of identified co-expressed genes were classified
into different gene modules. Diverse colors reflected corresponding modules, and the grey module represented genes were not assigned to each network. (D) The
heatmap of the relationship between each gene module and each subtype of asthma. The red represents positive correlation, while the green represents negative
correlation.
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Weighted Gene Co-Expression Network
Analysis
WGCNA was performed to get a deeper insight into the
association between the key modules and different asthma
subtypes. As was shown in Figures 4A,B, the optimal soft-
thresholding power was 12 if the correlational coefficient was
>0.85. Eleven modules were generated via the average-linkage
hierarchical clustering method (Figure 4C). The heatmap
exhibited the correlation between different modules and
subtypes of asthma. The magenta module was strongly
positively correlated with EA group, so was the pink module
with NA group (Figure 4D).

Enrichment Analyses of Module Genes
Identified byWeighted Gene Co-Expression
Network Analysis
To further analyze the feature of the module genes, GO
annotation and KEGG pathway enrichment analyses were
performed using Metascape. As was shown in the bar graph
and network plot (Figures 5A,C), genes in the magenta module
were mainly involved in translational initiation,
ribonucleoprotein complex biogenesis, mitochondrial protein
complex, cytoplasmic translational initiation, and regulation of
translation. The significantly enriched entries for pink module
were defense response to virus, regulation of innate response,
response to INFγ, and so on (Figures 5B,D).

The Identification of Hub Genes and Key
Genes
In the magenta and pink modules, there was positive correlation
between MM and GS (Supplementary Figures S2A,B). Under
the criterial of MM ≥ 0.8 and GS ≥ 0.2, 139 and 45 hub genes were
recognized in magenta and pink genes, respectively
(Supplementary Table S2).

To identify the hub genes in DEGs, the PPI network, which was
constructed by STRING database, was visualized by the Cytoscape
software. The network of DEGs included 129 nodes and 1,054 edges
(Figure 6A). The top 30 hub genes in DEGs were confirmed by the
MCC method with the Cytohubba plugin. To further filtrate the
significant genes, we selected the overlapped genes that were identified
by hub genes in DEG-PPI network and WGCNA as key genes
(Figures 6B,C). The detailed information of 10 key genes (IRFG,
IRF1, STAT1, IFIH1, IFIT3,GBP1,GBP5, IFIT2,CXCL9, andCXCL11)
were presented in Table 1, including 10 genes in pink module.

DISCUSSION

Airway neutrophilia is associated with asthma severity and poor
responsiveness to steroid treatment (Ray and Kolls, 2017). In the
present study, 282 DEGs in induced sputum samples were
identified between patients with EA and NA, including
110 up-regulated genes and 172 down-regulated genes. Next,
enrichment analyses, including GO, KEGG, and GSEA, were

FIGURE 5 | GO and KEGG enrichment analyses of module genes recognized by the WGCNA analysis. Bar plots of the GO and KEGG enriched terms colored by
p-values in magenta module (A) and pink module (B). Network of GO and KEGG enriched terms colored by genes in magenta module (C) and pink module (D).
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performed to explore the functions and signaling pathways
related to the DEGs. After the construction of PPI network,
the top 30 hub genes of DEGs were selected according to the
Cytohubba algorithm. Using WGCNA analysis, pink and

magenta modules were found to be strongly positively
correlated with the EA and NA subsets, respectively. Finally,
we defined 10 key genes according to intersection of the hub
genes in DEGs and modules.

FIGURE 6 | Identification of the hub genes and the key genes. The PPI network of the DEGs. (A) Top 30 hub genes in DEGs were confirmed with the Cytohubba
plugin. The colors of the nodes reflect the degree of connectivity. The key genes are defined as the hub genes identified by both of DEG-PPI network and WGCNA
method. (B) The hub genes in DEGs and in magenta module were shown using Venn diagram. No key genes were identified. (C) The hub genes in DEGs and in pink
module were shown using Venn diagram. Ten key genes were identified.

TABLE 1 | The information of 10 key genes.

Symbols Full name logFC P. Value Change MM GS Module

IFNG Interferon Gamma −0.50256 0.000762 Down 0.805183 0.50692 Pink
IRF1 Interferon regulatory factor 1 −0.94617 0.0001660 Down 0.807654 0.55646 Pink
IFIH1 Interferon induced with helicase C domain 1 −0.71293 0.000234 Down 0.904381 0.54597 Pink
GBP1 Guanylate binding protein 1 −1.36625 1.06E-05 Down 0.947779 0.63034 Pink
GBP5 Guanylate binding protein 5 −1.06032 9.18E-05 Down 0.923995 0.57398 Pink
CXCL9 C-X-C motif chemokine ligand 9 −1.74202 1.80E-05 Down 0.815577 0.61743 Pink
CXCL11 C-X-C motif chemokine ligand 11 −1.21216 5.82E-05 Down 0.837962 0.58677 Pink
STAT1 Signal transducer and activator of transcription 1 −0.86358 0.000366 Down 0.837908 0.53135 Pink
IFIT3 Interferon induced protein with tetratricopeptide repeats 3 −0.51193 0.010624 Down 0.884857 0.39619 Pink
IFIT2 Interferon induced protein with tetratricopeptide repeats 2 −0.96638 0.001695 Down 0.868548 0.47634 Pink

10 key genes were obtained from intersection of hubs genes in DEGs, and hub genes in magenta and pink module, which included 10 down-regulated genes in EA, group.
DEGs, differentially expressed genes; EA, eosinophilic asthma; NA, neutrophilic asthma.
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We performed enrichment analyses to explore the role of the
DEGs. The significantly enriched entries for GO annotation
demonstrated that DEGs were enriched in response to INFγ and
cellular response to INFγ. INFγ is a Th1 cytokine that inhibits or
reverses the allergic inflammation and therefore antagonizes the
activating effects of Th2 cytokines including IL-4 and IL-13 in a
variety of cell types (Davoodi et al., 2012). EA is orchestrated by Th2
cytokines, whereas NA is triggered by Th1 and Th17 cytokines (Erle
and Sheppard, 2014; Trejo Bittar et al., 2015). This may explain the
enrichment of DEGs in INFγ signaling pathway.

The GSEA data suggested that ribosome, Parkinson’s disease,
and oxidative phosphorylation were mainly enriched in EA
patients. Several epidemiological studies have implied that
ribosome-inactivating stress are related to human mucosal
epithelial illnesses (Moon, 2014). Moreover, it has been reported
that intranasal neutrophilic rhinitis can be triggered by some of
ribosome-inactivating trichothecenes (Islam et al., 2007; Corps
et al., 2010; Carey et al., 2012). Both NA and neutrophilic rhinitis
are characterized by neutrophilic inflammation. Therefore, NA
subset may develop ribosomal inactivation leading to ribosome
pathway enriched in EA group. Cheng’s study suggested that
patients with asthma had a higher risk of developing
Parkinson’s disease in their later life (Bower et al., 2006; Cheng
et al., 2015). The relation between the pathogenesis of Parkinson’s
disease and asthma requires further study. Toll-like receptor
signaling pathway, primary immunodeficiency, and NOD-like
receptor signaling pathway were mainly enriched in NA subset.
Toll-like receptors (TLRs) belong to pattern recognition receptors,
which play an important role in the recognition of pathogens (Xiao
et al., 2012). TLRs can affect epithelial and immune cell function in
asthma (Mishra et al., 2018). Of note, TLR4 is essential for Th17-
driven neutrophilic airway inflammation and neutrophil
recruitment (McAlees et al., 2015; Wan et al., 2020). NOD-like
receptors (NLRs) are a relatively new member of the pattern
recognition receptor superfamily (Song and Li, 2018). They are
the key players in the innate immune responses of inflammatory
lung diseases (Chaput et al., 2013). Several studies have
demonstrated that NLRP3 plays an important role in asthma
(Birrell and Eltom, 2011; Simpson et al., 2014; Kim et al., 2017;
Chen et al., 2019). Chen and colleagues reported that blockade of
the NLRP3/caspase-1 axis prevented the progression of TDI-
induced NA (Chen et al., 2019).

To further investigate the relationship between co-
expression genes and different asthma subtypes, we
performed WGCNA. Eleven modules were defined and
magenta and pink modules were most significantly
positively correlated with EA and NA group, respectively.
The result of the enrichment for the magenta module
included translational initiation, ribonucleoprotein complex
biogenesis, mitochondrial protein complex, cytoplasmic
translational initiation, and regulation of translation. The
result of the enrichment for the magenta module included
defense response to virus, regulation of innate response,
response to IFNγ, and so on. Viral infection is a common
trigger for the exacerbation of asthma (Mikhail and Grayson,
2019). Neutrophils are considered to play a pivotal role in the
interplay between viral infection and asthma exacerbation

(Holtzman, 2012). Our data support the connection among
viral infections, asthma exacerbation and NA.

After taking intersection of the hub genes in DEGs and the
modules, 10 keys genes were identified, including IRFG, IRF1,
STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.
IFNγ (IRFG) is a member of type II interferon involved in the
chemotaxis of human neutrophils by up-regulating the
expression of neutrophils chemokine receptors CCR1 and
CCR3 (Bonecchi et al., 1999). Recent studies have revealed
that IFNγ could up-regulate and down-regulate the expression
of CXCL10 and SLPI, respectively, which further resulted in
increased AHR and steroid resistance in severe asthma
(Raundhal et al., 2015; Oriss et al., 2017). Interferon regulatory
factor 1 (IRF1) is involved in a series of pathophysiological
processes in viral infection, tumor immune surveillance, and
proinflammatory injury (Wang et al., 2020). Increased IRF1
expression is implicated in reduced responsiveness to
glucocorticoids (Tliba et al., 2008; Chapin et al., 2015).
Glucocorticoids induce DUSP1 expression and downregulates
MAPK activity, thereby inhibiting inflammatory response
(Newton et al., 2017). However, increased DUSP1 expression
also increases the activity of IRF1 and IRF1-dependent genes,
including CXCL10 (Shah et al., 2016). CXCL10 can promote
airway inflammation and hyperresponsiveness, and virus-
induced exacerbation of asthma, resulting in poor response to
glucocorticoids (Medoff et al., 2002; Wark et al., 2007). In
conclusion, IRF1 could be a key gene for glucocorticoids
resistance of NA. Signal transducer and activator of
transcription 1 (STAT1) regulates production of Th1 cell-
specific cytokine to alter inflammatory response and it is a key
mediator in IFNγ signaling (Chen et al., 2017; Zhang et al., 2018).
Several studies have shown that STAT1 participants in the
differentiation of Th17 cells and it may become a key gene in
the development of NA (Villarino et al., 2010; Kimura et al., 2008;
Nielsen et al., 2015). Interferon induced with helicase C domain 1
(IFIH1) encodes MDA5, which is an intracellular sensor of viral
RNA that triggers an innate immune response and is associated
with the production of type I interferon and proinflammatory
cytokines (Zhang et al., 2011; Mibayashi et al., 2007; Pichlmair
et al., 2009). Guanylate binding protein 1 (GBP1) and guanylate
binding protein 5 (GBP5) are two member of the GBP family and
mediate cellular response to IFNγ in infection and inflammation
(Tripal et al., 2007; Britzen-Laurent et al., 2010; Li et al., 2020).
Interferon induced protein with tetratricopeptide repeats 3
(IFIT3) and interferon induced protein with tetratricopeptide
repeats 2 (IFIT2) are both members of IFITs and are highly
expressed in the innate immune response of cells to viral infection
(Fleith et al., 2018). C-X-C motif chemokine ligand 9 (CXCL9)
and C-X-C motif chemokine ligand 11 (CXCL11), ligands of
chemokine receptor CXCR3, are induced by IFNγ (Proost et al.,
2004; Tworek et al., 2013). These are especially involved in Th1-
type response and correlates with the tissue infiltration of T cells
(Koper et al., 2018). Southworth found that higher expression of
CXCL11 appeared in moderate asthma after rhinovirus infection
(Southworth et al., 2020). Ghebre reported that sputum CXCL9
level and serum CXCL11 level increased during asthma
exacerbation (Ghebre et al., 2019).
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It is intriguing to notice that IFN-stimulated genes were highly
enriched in the pink module, which indicated the significant role
of interferon in the pathogenesis of NA. A recent study
demonstrated that IFN-stimulated genes expression is
increased in severe asthma (Bhakta et al., 2018). In addition,
Silva’s study revealed the overexpression of ISGs in sputum from
NA (da Silva et al., 2017). The interferon family consists of three
kinds of interferons, namely type I interferon, type II interferon,
and type III interferon (Negishi et al., 2018). Type II interferon
(IFNγ) has been discussed above. Type I interferon (interferon-
alpha/beta) and Type III interferon (interferon-lambda) play
crucial roles in host defense against infectious agents (Hansel
et al., 2013), thus inhibiting the exacerbation of asthma.
Nevertheless, the role of type I interferon and type III
interferon in NA has not been reported yet (da Silva et al.,
2017; Rich et al., 2020).

There are several limitations in this work. First, we have not
obtained valuable clinical data, especially induced sputum cell
counts. Second, cut-off standard of logFC was not high enough
so that some of the expression difference of key genes between
EA and NA group was subtle. Third, this work had the low
number of samples and lack of the validation.

In conclusion, we have identified several enriched pathways in
the EA compared to the NA. By intersection of hub genes in
DEGs and modules, 10 key genes were defined. These key genes
may provide new insights into the pathogenesis of NA, and
become potential therapeutic targets of NA.
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