
Metabolic Oligosaccharide Engineering with Alkyne Sialic Acids
Confers Neuraminidase Resistance and Inhibits Influenza
Reproduction
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ABSTRACT: Metabolic incorporation of azide- or alkyne-
modified sialic acids into the cellular glycosylation pathway
enables the study of sialoglycan expression, localization, and
trafficking via bioorthogonal chemistry. Herein, we report that
such modifications of the sialic acid sugar can have a profound
influence on their hydrolysis by neuraminidases (sialidase).
Azidoacetyl (Az)-modified sialic acids were prone to
neuraminidase cleavage, whereas propargyloxycarbonyl
(Poc)-modified sialic acids were largely resistant to cleavage.
Because the influenza virus infection cycle depends on the
hydrolysis of host-cell-surface sialic acids, influenza cell-to-cell
transmission was strongly reduced in Poc sialic acid
glycoengineered host cells. The use of Poc sialic acids may disturb biological processes involving neuraminidase cleavage but
also provides perspective for use in applications in which sialic acid hydrolysis is not desired, such as antibody modification, viral
infection, etc.

Sialic acids (also known as neuraminic acids) are nine-
carbon sugars abundantly expressed at the termini of cell

surface glycoconjugates.1 Sialylated glycans are recognized by
endogenous and exogenous receptors and play an important
role in physiology and pathology, respectively.2 An important
tool for the study of the function and localization of glycans in
living cells and organisms is metabolic oligosaccharide
engineering (MOE).3 In this process, monosaccharides carrying
an unnatural modification are supplied to cells and incorpo-
rated into glycans at the cell surface. In a second step, the
unnatural modification, also called a chemical reporter, can be
visualized using bioorthogonal reactions with, for instance,
fluorescent molecules.4 This powerful technique can be used to
study and to manipulate glycans at the cell surface in various
cells and living organisms. Studying biological processes
without disturbing them is a major challenge, and hence, the
chemical reporter carried by the monosaccharides must
preferably be small and biologically inert. This approach is
based on earlier work showing that small modifications on the
N-acyl chain of N-acetylmannosamines were well-tolerated by
the glycosylation machinery and ultimately expressed at the cell

surface in the form of modified sialic acids.5 However, these
modifications were intended to actively perturb biological
processes involving sialic acids, such as pathogenic infection,
immune-cell dampening, and neurite outgrowth.6,7 The acyl
chain of sialic acid is also a site of natural modifications, which
has probably arisen to avoid pathogen recognition.8 Chemical
modifications at this site may therefore affect the biological
function of sialic acids. Here, we report that azidoacetyl (Az)
sialic acids are sensitive to bacterial and viral neuraminidases
(also called sialidases), whereas propargyloxycarbonyl (Poc)
sialic acids are resistant. Subsequently, incorporation of a
propargyloxycarbonyl (Ac5SiaNPoc) into host cells, but not an
azidoacetyl (Ac5SiaNAz), markedly reduced neuraminidase-
dependent influenza cell-to-cell transmission.
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■ RESULTS AND DISCUSSION

We have previously shown that sialic acids modified at the C-5
position with Ac5SiaNAz or Ac5SiaNPoc are utilized by the
cellular sialylation pathway with high selectivity resulting in
their incorporation into cell surface sialoglycans (Figure 1).9,10

Both sialic acid analogues are well-tolerated by the cellular
sialylation pathway, and these small modifications to the C-5
position are generally thought to be nonintrusive. There is
evidence, however, that the modification of sialic acids at the C-
5 position affects their recognition and cleavage by bacterial
neuraminidases.11 Therefore, we assessed whether cell surface
Az and Poc sialic acids can be cleaved by bacterial
neuraminidase. Human monocytic THP-1 cells were cultured

for 3 days with Ac5SiaNAz or Ac5SiaNPoc and reacted to
biotin−alkyne or biotin−azide, respectively, using copper-
catalyzed alkyne azide cycloaddition (CuAAc).12−14 The
biotin-tagged surface sialoglycans were visualized with
fluorescent streptavidin. Confocal images show the dense
expression of Az and Poc sialic acids at the cell surface of THP-
1 cells (Figure 2a). Quantification of the fluorescence with flow
cytometry showed that both sialic acid analogues were
incorporated into surface glycans with high efficiency.
Ac5SiaNAz (MFI 7979) showed slightly lower incorporation
compared to Ac5SiaNPoc (MFI 9345) (Figure 2b).
The difference in labeling intensity between Ac5SiaNAz and

Ac5SiaNPoc is linked to their different incorporation efficiency

Figure 1. Schematic presentation of metabolic labeling with Ac5SiaNAz or Ac5SiaNPoc and the resistance of Ac5SiaNPoc against influenza
neuraminidase.

Figure 2. Metabolic labeling of THP-1 cells. (a) The cells were incubated for 3 days with PBS, 100 μM Ac5SiaNAz, or 100 μM Ac5SiaNPoc and
reacted to biotin−alkyne or biotin−azide, respectively, using CuAAC. Biotin-containing sialoglycans were stained with PE−streptavidin and
visualized by confocal microscopy. (b) Fluorescence was quantified by flow cytometry, and the mean fluorescence intensity ± SEM is shown (n = 3).
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and not the labeling step because the CuAAc reaction is faster
for Ac5SiaNAz compared to Ac5SiaNPoc.

15a Next, it was
determined whether surface SiaNAz and SiaNPoc containing
glycans can be cleaved by bacterial neuramindase (Figure 3).

THP-1 cells cultured for 3 days with Ac5SiaNAz and
Ac5SiaNPoc were treated with Clostridium perf ringens neu-
raminidase and then reacted with biotin−alkyne and biotin−
azide, respectively, followed by staining with streptavidin−
phycoerythrin (PE).16 Flow cytometry analysis revealed that
SiaNAz was cleaved from the cells (>64% removal), whereas
SiaNPoc could not be removed from the cell surface (<8%
removal) (Figure 3a). To evaluate the cleavage selectivity with
respect to the linkage type (α-2,3 or α-2,6), the cells were
analyzed with the lectins Maackia amurensis lectin (MALII,
binding to α-2,3-sialoglycans), Sambucus nigra lectin (SNA-I,
binding to α-2,6-sialoglycans), and peanut agglutinin lectin
(PNA, binding to terminal β-galactose).

Cells incubated with Ac5SiaNAz showed also a strong
reduction in sialic acid expression following treatment with
neuraminidase (MALII, ↓93%; SNA-I, ↓72%). In contrast, the
sialylation of THP-1 cells cultured with Ac5SiaNPoc was barely
altered following neuraminidase treatment (MALII, ↓18%;
SNA-I, ↓13%). The low sensitivity of Poc sialic acids toward
neuraminidase activity was also confirmed by the minor change
in PNA binding. Similar findings were obtained when THP-1
cells were treated with neuraminidase derived from Vibrio
cholerae or Arthrobacter ureafaciens (Figure S1). Together, these
data show that sialic acids modified with an Az group at the C-5
position are substrates for neuraminidases, whereas Poc-
modified sialic acids are not. Whether this effect is due to
inhibited recognition or hydrolysis of sialic acids by
neuraminidases remains to be investigated.
Several pathogens make use of neuraminidases to infect host

cells or release host cell sialic acids for their own
metabolism.17,18 In particular, influenza virus makes use of
the host cell sialic acids to enter and leave the cell. Influenza
virus has two major glycoproteins on the outside of the viral
particle, hemagglutinin (HA) and neuraminidase (NA).19

Hemagglutinin is a lectin that mediates binding to sialic acids
on host cells, whereas neuraminidase is involved in the release
of progeny virus from infected cells by cleaving the sialic acid
that binds the mature viral particle to the cell surface.
Neuraminidase inhibitors including Oseltamivir (Tamiflu) and
Zanamivir (Relenza) block neuraminidase enzyme activity and
prevent influenza virus reproduction.20−22 Therefore, we
assessed whether neuraminidase resistant Poc sialic acid alters
influenza reproduction in an A549 cell infection model. In this
model, a GFP-reporter influenza virus strain A/PR8-GFP/8/34
was used that expresses GFP in infected cells.23 A549 cells were
cultured for 3 days with Ac5SiaNAz or Ac5SiaNPoc, and
incorporation of Az and Poc sialic acids as well as cleavage-
resistance of Poc sialic acid was confirmed (Figure S2). Next,
confluent A549 cells were infected with different dilutions of
influenza virus strain A/PR8-GFP/8/34 (IVA) for 1 h and the
percentage of GFP-positive A549 cells was determined by flow
cytometry 6 and 24 h post-infection, representing the initial
infection and the infection of viral progeny, respectively. The
initial infection after 6 h did not show a significant difference in
the percentage of GFP-positive A549 cells between cells
cultured with Ac5SiaNAz, Ac5SiaNPoc, or a solvent control
(333× dilution Figure 4a; 1000× dilution, Figure S3).
In contrast, after 24 h, the cells incubated with Ac5SiaNPoc

showed a significant reduction in GFP-positive A549 cells
compared with solvent control or cells incubated with
Ac5SiaNAz, indicating that Ac5SiaNPoc, which is resistant to
bacterial neuraminidase activity, has a profound effect on virus
reproduction (333× dilution, Figure 4a; 1000× dilution, Figure
S3). Earlier research has shown that modifications of the N-acyl
chain could inhibit influenza infections and led to the
hypothesis that longer site chains would sterically hinder
binding of hemagglutinin.24 Our experimental data with
Ac5SiaNAz or Ac5SiaNPoc after 24 h are indeed in line with
earlier observations that sialic acid C-5 modifications can lead
to viral resistance. However, the initial infection after 6 h shows
no resistance, therefore suggesting a different mechanism. In
contrast to the current hypothesis, we found that initial
infection (and, therefore, hemagglutinin recognition) is not
significantly hindered by longer C-5 modifications such as Az or
Poc. Instead, the gain in resistance in the case of Ac5SiaNPoc is
probably caused by neuraminidase resistance, thereby inhibiting

Figure 3. Enzymatic removal of Az and Poc sialic acids from the cell
surface of THP-1 cells. Cells incubated for 3 days with PBS, 100 μM
Ac5SiaNAz, or 100 μM Ac5SiaNPoc were treated for 1 h with 250mU/
mL Clostridium perf ringens neuraminidase. Az and Poc sialoglycans
were reacted to fluorescent biotin using CuAAC (a), α2,3-sialoglycans
were detected with MALII lectin (b), α2,6-sialoglycans were detected
with SNA-I lectin (c), and terminal β-galactose was detected with PNA
lectin (d). Bar diagrams show mean fluorescence intensity or mean
lectin binding normalized to control ± SEM of three independent
experiments. MALII: Maackia amurensis lectin; PE: phycoerythrin,
PNA: Peanut agglutinin lectin; SEM: standard error of the mean;
SNA-I: Sambucus nigra lectin.
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the release of the viral progeny. This was further confirmed by
labeling the Ac5SiaNAz- and Ac5SiaNPoc- treated cells after 24
h of IVA infection (Figure 4b). The Ac5SiaNAz-treated cells
showed a significant reduction in labeling signal, indicating the
release of SiaNAz after infection. In contrast, Ac5SiaNPoc-
treated cells showed very similar labeling levels 24 h post-
infection compared to an untreated control. This clearly
indicates that SiaNPoc is stable under IVA infection and resists
neuraminidase cleavage.

■ CONCLUSIONS

In conclusion, we demonstrate that metabolic engineering with
Poc-modified sialic acids confers resistance toward neuramini-
dases. Consequently, the incorporation of Poc sialic acids into
host cells reduced neuraminidase-dependent influenza cell-to-
cell transmission. Furthermore, these findings indicate that,
depending on the chemical reporter used, metabolic
oligosaccharide engineering may not be biologically inert.
The neuraminidase resistance conferred by Poc sialic acids may
disturb biological processes involving neuraminidase cleavage
but could be applied in situations in which sialic acid hydrolysis
is not desired, such as therapeutic protein modification, viral
infection, etc.
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■ ADDITIONAL NOTE
aThe difference in incorporation may be higher than the minor
difference in fluorescence seen as the upper detection limit was
reached for Ac5SiaNPoc. In contrast to our previously
published comparison of Ac5SiaNAz and Ac5SiaNPoc (see ref
9), the click reaction was now done at 37 °C instead of at room
temperature, which greatly increased the fluorescence signal
and gave usual click efficiencies of 80% or higher (see ref 10).
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