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Abstract

Murine c-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of c-herpesvirus
infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding
properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate
that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse
(Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible
bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both
predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the
spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected
laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of
M3’s influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known
chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68
biology.
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Introduction

The human c-herpesviruses - Epstein-Barr virus (EBV) and

Kaposi’s sarcoma-associated herpesvirus (KSHV; alternatively

human herpesvirus 8 [HHV-8]) - possess significant oncogenic

potential, particularly in the setting of immune deficiency. Both

establish lifelong latent infections, primarily within B lymphocytes,

through the actions of a limited repertoire of their approximately

90 genes. While the majority of these have a role in virus

production, it is principally the actions of the latency-associated

genes of these viruses that contribute to their oncogenic potential.

Strict host preferences of EBV and KSHV, unfortunately, severely

limit assessment of the mechanisms that contribute to their

persistence and pathogenesis. Consequently, there has been

considerable effort to develop experimental infection of laboratory

mice (Mus musculus) with the murine c-herpesvirus 68 (MHV-68 or

cHV68; officially murid herpesvirus 4 [MuHV-4]) as a model of c-

herpesvirus infection [1,2,3,4,5,6,7].

As a member of the c2 subfamily of herpesviruses, MHV-68 is

closer genetically to KSHV/HHV-8 than to EBV, a c1

herpesvirus [8,9]. Regardless, each c-herpesvirus contains a

unique set of genes that contributes to its distinct biology and

pathogenic properties. For MHV-68, this is primarily a cluster of

latent- and lytic-infection-associated genes at the extreme left end

of the viral genome that encodes for four novel proteins, M1–M4,

and interspersed among these are eight RNA polymerase III-

transcribed genes that encode abundant viral tRNA-like (vtRNA)

transcripts [8,10]. Much of the effort to define the biology of

MHV-68 infection and its applicability as a model of human c-

herpesvirus infections, has therefore focused on the roles of these

genes in the context of infection within inbred strains of laboratory

mice. Of the proteins encoded by this locus, the biochemical

function of M3 is the best understood.

A secreted 44-kDa protein, M3 is highly expressed during lytic

infection, and probably to a lesser extent during latency

[11,12,13,14]. In vitro, M3 selectively binds chemokines associated

with the antiviral inflammatory response [15,16]. Surprisingly,

inactivation of M3 expression (by insertion of a translational stop

codon) has no apparent consequence on MHV-68 infection

following intranasal inoculation of C57BL/6 mice [17]. By

contrast, intracerebral injection of the same M3 mutant virus

does lead to an altered inflammatory response, with higher

numbers of infiltrating lymphocytes and macrophages than

observed following inoculation with wild-type virus [17]. Thus,
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M3 does appear capable of functioning as a chemokine-binding

protein in vivo, though it is perplexing why ablation of M3

expression has no apparent impact on pathogenesis or on virus

replication and the establishment of latency following intranasal

inoculation, clearly more representative of a natural route of

infection. One possible explanation for this may relate to the

experimental host.

MHV-68 was originally isolated from a bank vole (Myodes

glareolus) [18] although this appears to be only an occasional host

[19]. In spite of what has been suggested recently [20], we have

shown conclusively using sequence analysis that the natural hosts

of MHV-68, at least in continental Europe, are in fact members of

the genus Apodemus [21]. Specifically, Apodemus flavicollis, Apodemus

agrarius, and Apodemus sylvaticus (wood mice) [21]. Significantly, our

recent comparative analysis of experimental MHV-68 infection of

BALB/c (M. musculus) and laboratory-bred wood mice revealed

markedly different findings [22]. In wood mice, virus replication in

the lung was substantially muted, and latency within the spleen

was established without the dramatic leukocytosis and splenomeg-

aly that are the hallmark pathogenic properties of MHV-68

latency within inbred laboratory strains of mice. In addition, the

associated histological changes were significantly different. Nota-

bly, in wood mice, viral replication was restricted to scattered

alveolar epithelial cells and macrophages within focal granuloma-

tous infiltrations. Latently-infected lymphocytes were also abun-

dant in focal perivascular/peribronchiolar infiltrations and in

inducible bronchus-associated lymphoid tissue (iBALT). In

addition, while well-delineated secondary follicles with classical

germinal center formation were seen in the wood mouse spleens,

only poorly-delineated follicles without distinct germinal centers

were seen in BALB/c mice.

Given the unlikelihood of an insignificant role for M3, we asked

whether M3 might contribute to the vastly different response of

wood mice to MHV-68 infection. Here we demonstrate that upon

intranasal inoculation of wood mice, M3 does indeed modulate the

host inflammatory response in a manner consistent with its

chemokine-binding properties, and that it is responsible for the

MHV-68-dependent iBALT observed in this species. Additionally,

we show that M3 is critical for the organization of splenic follicles,

and that in the absence of M3, latent MHV-68 infection is

significantly attenuated in both lung and spleen. These results

highlight the importance of utilizing a natural host in this small-

animal model of c-herpesvirus infection, and provide substantial

new insight into the biology of MHV-68 that should contribute to

future use of this model and its applicability to understanding

human c-herpesvirus infections and pathogenesis.

Results

Expression of M3 during acute infection of wood mice
Following intranasal inoculation of mice, e.g., BALB/c and

C57BL/6, a burst of MHV-68 replication occurs within lung

epithelial cells [23] prior to the establishment of latent infection

within lung epithelium [24] and ultimately the hematopoetic

system [25,26]. This replication peaks at approximately 7 days p.i.

and is largely resolved by day 10 p.i.. The titer of virus produced in

the lungs of wood mice, however, is substantially lower (by ,3

log10 plaque forming units), though the long-term viral DNA loads

established within the lung of wood and BALB/c mice are

equivalent [22]. In contrast to BALB/c mice, virus productive

replication in the lungs of wood mice appears confined within

granulomatous infiltrates, and in separate lesions, numerous

lymphocytes within perivascular and peribronchial accumulations

harbor latent virus (primarily within B cells). We reasoned,

therefore, that the immune-modulatory function of M3 might be

particularly critical during acute infection within the lungs of wood

mice. To address this, we first examined M3 expression in lung by

quantitative reverse transcription PCR (qRT-PCR). To put our

results in a more meaningful perspective, we determined M3

mRNA levels relative to those for the other 3 genes in this locus

(M1, M2 and M4), as well as to the early lytic-cycle gene ORF50,

which served as a general indicator of lytic infection. This

experiment was performed twice with comparable results.

As illustrated in Fig. 1A, M3 expression was detected at all four

time points evaluated (7, 10, 12, and 14 days p.i.). There were,

however, two unexpected findings with respect to M3. First,

whereas M3 encodes one of the most highly expressed MHV-68

mRNAs during lytic infection in vitro, especially relative to the

other lytic-cycle mRNAs encoded by this locus (M1 and M4) [27],

this was clearly not the case in vivo here. Second, there was an

obvious spike in M3 expression between 12 and 14 days p.i.

(Fig. 1A), a time when virus replication is believed to have

subsided. Clearly, the level of M3 expression at 14 days p.i. was

significantly higher than that for M1, M2 and M4 (P,0.01).

Although this may be indicative of the onset of latency-associated

M3 expression, detection of a parallel spike in ORF50 expression

suggests that this is lytic cycle-associated expression. However, we

cannot exclude the possibility that at this point in infection, M3

transcripts originate from latently infected cells, whereas ORF50

expression is occurring in separate cells still supporting full or an

abortive virus replication, probably within granulomatous infil-

trates that support productive infection in wood mice lungs [22].

There were several additional observations of note with respect

to this gene locus. Whereas M1 mRNAs are relatively low in

abundance during MHV-68 replication in vitro and in BALB/c

mice spleens [28], M1 expression was significantly higher (P,0.05)

at 7 days p.i. than the other genes within the locus, and still one of

the most highly expressed genes tested at 10 days p.i. (Fig. 1A). By

contrast, M4 transcript levels were nominal, suggesting that M4

either performs a function at times or anatomical sites other than

Author Summary

Infection of inbred strains of laboratory mice (Mus
musculus) with the rodent c-herpesvirus MHV-68 continues
to be developed as an attractive experimental model of c-
herpesvirus infection. In this regard, the MHV-68 protein
M3 has been shown to selectively bind and inhibit
chemokines involved in the antiviral immune response, a
property expected to contribute significantly to virus
infection and host colonization. However, inactivation of
the M3 gene has no discernable consequence on infection
in this animal host. Prompted by recent evidence that
natural hosts of MHV-68 are members of the genus
Apodemus, and that MHV-68 infection in laboratory-bred
wood mice (Apodemus sylvaticus) differs significantly from
that which has been described in standard strains of
laboratory mice, we addressed whether M3 functions in a
host-specific manner. Indeed, we find that M3 is respon-
sible for host-specific differences observed for MHV-68
infection, that its influence on infection within wood mice
is consistent with its chemokine-binding properties, and
that in its absence, persistent latent infection - a hallmark
of herpesvirus infections - is attenuated. This highlights the
importance of host selection when investigating specific
roles of pathogenesis-related viral genes, and advances
our understanding of this model and its potential
application to human c-herpesvirus infections.
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those analyzed here, or that a comparatively lower level of M4

transcript is required for M4 expression. Finally, it was somewhat

surprising that expression of M2, believed to be a strict latency-

associated gene [29], was readily detectable early in the infection,

peaked at 10 days p.i. and decreased through day 14 p.i. where

numerous latently-infected B cells are known to be present [22].

MHV-68 latency has been detected as early as 3 days p.i. [30] and B

cell infiltrations containing MHV-68 are present as early as day 7 p.i.

in the wood mouse (Fig. 2), [22]. Further, it has been shown that the

pattern of MHV-68 latent gene expression is differentially regulated

in B cells depending on cellular differentiation state [31] and thus the

observed pattern of M2 expression is likely a reflection of this.

Figure 1. Comparative analysis of M3 RNA expression in lungs of infected wood mice. Quantification by qRT-PCR of RNA expressed from
the MHV-68 genome within lungs; ORF50 RNA levels were assessed as a general reference for lytic-cycle gene expression. The copy numbers of
individual viral-gene RNAs (as cDNAs) were normalized to those for cellular RPL8. Error bars represent the standard error of the mean from three
wood mice per time point. (A) analysis of expression from the M1-M4 locus of infected wood mice lungs. (B) analysis of M3 expression from the lungs
of BALB/c and wood mice. Note that, although M3 expression is similar for both species at 7 days p.i., after 14 days p.i., M3 expression in BALB/c
mouse lungs is drastically reduced compared to wood mice.
doi:10.1371/journal.ppat.1001321.g001
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To assess the relative level and timing of M3 expression

between wood and BALB/c mice we determined M3 and ORF50

mRNA levels in the lungs of infected wood and BALB/c mice at

7 and 14 days p.i. by qRT-PCR as above. The results (Fig. 1B)

showed that M3 expression in BALB/c mice was similar to wood

mice at day 7, but significantly lower (P,0.01) at day 14, showing

that the timing of M3 expression differs between the two species

of host.

We next sought to localize the site of M3 transcription within

lung and spleen by RNA in situ hybridization. Within lung, at 7

days p.i. M3-positive lymphocytes were detected in B cell-

dominated perivascular/peribronchial infiltrates and, together

Figure 2. Localization of M3 expression in lung, spleen, and lymph node. Detection of M3 RNA in lung and spleen by in situ hybridization in
MHV-68 infected wood mice. A, B: Lung, day 7 p.i.: (A) M3 transcripts detected within lymphocytes in perivascular infiltrates (white arrows) and
lymphocytes attached to the endothelial wall (black arrow). A: artery; (B) No signal detected with sense-strand probe (negative control). C, D: Lung,
day 12 p.i.: (C) Perivascular and peribronchial lymphocyte infiltrations containing numerous M3-positive lymphocytes. A, artery; B, bronchioles; (D)
Peribronchial, focal follicle-like lymphocyte accumulation with numerous M3-positive lymphocytes. B, bronchiolus. (E) Bronchial lymph node, day 7
p.i.; lymphocytes showing M3 transcripts are present in lymphatic follicles (within germinal center cells). F, follicle. (F) Spleen, day 14 p.i.; follicle with
numerous M3 RNA-positive lymphocytes in the germinal center. Results are representative of numerous tissue sections analyzed from three infected
wood mice.
doi:10.1371/journal.ppat.1001321.g002

MHV-68 M3 Protein Modulates Host Response
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with positive macrophages, within granulomatous infiltrates and

occasionally within blood vessels, rolling along/attached to

vascular endothelial cells (Fig. 2A). This M3 RNA expression

pattern was seen also on days 10, 12 and 14. On days 12 and 14

p.i., there were many M3 positive lymphocytes in the progressively

prominent perivascular/peribronchial lymphocyte accumulations

(Fig. 2C), and some were also seen disseminated in the

parenchyma. They were also present in the follicle-like B-cell

accumulations that were first seen on day 12 (Fig. 2D) and which

had developed germinal centers by day 14 (data not shown).

Previous work has shown that these follicle-like infiltrations with

germinal centers are inducible bronchus-associated lymphoid

tissue (iBALT). Consistent with a trafficking of latently infected

cells from the site of primary replication within the respiratory

tract to spleen, we observed variable numbers of M3-positive

lymphocytes mainly in follicles within bronchial and mandibular

lymph nodes on day 7 p.i. (Fig. 2E). Within spleen, in which

latently infected cells peak approximately 12–16 days p.i., M3

expression was prominent within follicle centers from 10 days p.i.

onward (Fig. 2F). No hybridization was detected in any tissue with

sense-strand probes (e.g., Fig. 2B).

Thus, a high level of M3 expression was observed at d14 p.i. in

lymphocytes within iBALT and splenic follicles.

Loss of M3 alters the host response to MHV-68 infection
in lung

We next asked if the development of B cell-dominated, M3 RNA-

positive perivascular/peribronchial infiltrates (Fig. 2A) and iBALT,

which are not features of the lungs of BALB/c mice infected with

MHV-68, was a result of M3 expression. To address this question,

we infected cohorts of wood mice with a previously characterized

recombinant MHV-68 that has a targeted disruption of the M3 gene

(M3.stop, gift of S.H. Speck and H.W. Virgin) [17]. The M3 gene in

this virus contains three translational stop codons inserted into the

59 end of the M3 ORF. The marker-rescue version of this virus,

M3.MR, containing a fully restored M3 gene [17], was used as wild-

type virus for comparison. The histopathological analyses are shown

in Fig. 3 and the quantification of these in Fig. 4). As expected, the

histological changes in the lung tissue from wood mice infected with

M3.MR on day 7 and 12 p.i. were similar to those observed with

MHV-68 infection as follows [22]. There was a marked increase in

the amount of interstitial lymphocytes based on the significant

(P,0.01), ca 3 fold increase in T cells as compared with uninfected

animals (Fig. 4A, B). There was also a moderate perivascular and

peribronchial infiltration which contained a higher proportion of B

cells (B:T ratio of 1.77:1, P,0.001; Fig. 4C, D) with B cell rolling

and emigration (data not shown). Multifocal granulomatous

infiltrates containing viral antigen were also observed. By 14 days

p.i., two types of lymphocyte-dominated perivascular and peribron-

chial infiltrations had developed multifocally in association with

larger arteries and bronchi. One type contained T and B cells in

approximately equal proportions (Fig. 4C, D), and the other was B-

cell dominated and follicle-like with germinal center formation, i.e.,

iBALT (Fig. 3A, C; 4E). B lymphocytes made up ca 75% of the cells

in iBALT (P,0.001), whereas T cells were present in much smaller

numbers (Fig. 3C,E; 4E). While evidence of iBALT formation was

already seen on day 12 p.i., the perivascular/peribronchial

infiltrates that contained approximately equal proportions of T

and B cells were only seen after 14 days p.i. and the latter perhaps

represent the physiologic immune response as the acute phase of

MHV-68 infection in lung dwindles. Lymphocytes that expressed

vtRNA, indicative of a latent infection, were found within iBALT,

and very occasionally intravascularly (Fig. 3G).

By contrast, infection with M3.stop virus led to markedly different

histological findings. At 7 days p.i., a statistically-significant (P,0.01)

increase in interstitial lymphocytes that consisted of predominantly T

cells was observed (Fig. 4A, B). Multifocal granulomatous infiltrates

containing viral antigen were also observed. Mild perivascular/

peribronchial lymphocyte accumulations were obvious, and immu-

nohistological staining showed that this was B-cell dominated (B:T

ratio of 1.5:1, P,0.001; Fig. 4C, D). T cells were also seen rolling

along and emigrating from blood vessels, an observation not seen

when M3 was expressed. After 14 days, the perivascular and

peribronchial lymphocyte infiltrations were still evident (Fig. 3B).

However, these were far less intense than in the lungs of the M3.MR-

infected wood mice (compare to Fig. 3A) and consisted of both B cells

(Fig. 3D) and T cells (Fig. 3F) in a ratio of 1.3:1 (Fig. 4C, D). T cells

(but not B cells) were also found rolling along arterial walls and

emigrating from vessels of M3.stop-infected animals (Fig. 3F, inset).

vtRNA-positive lymphocytes were observed in perivascular infiltrates

of M3.stop-infected wood mice, but there were fewer of these,

possibly due to the lower proportion of B cells and the smaller size of

the infiltrates (Fig. 3H) than seen for infection with M3.MR virus

(compare to Fig. 3G). Notably, while granulomatous infiltrates were

seen in both groups of mice, iBALT was absent in M3.stop-infected

mice. Thus, while M3 is not essential for infection, the host response

to infection is clearly altered in its absence.

Lack of M3 alters the germinal center reaction in spleen
A major organ of MHV-68 persistence is the spleen, in which

the number of latently infected cells - primarily B cells but also

dendritic cells and macrophages - peaks approximately 2 weeks p.i.

[5,32]. As M3 is expressed within spleen (Fig. 2F), we examined

the effect that M3 loss has on MHV-68 infection there. As shown

in Fig. 5A, at 14 days p.i. the spleens of wood mice infected with

M3.MR virus contained moderately sized follicles with distinct

germinal centers. By contrast, the spleens of M3.stop-infected

animals displayed expanded follicles without distinct germinal

centers, and a slight increase in cellularity of the red pulp (Fig. 5B).

Interestingly, splenic architecture observed in mice infected with

M3-stop virus was very similar to that observed in the spleens of

BALB/c mice infected with MHV-68, but without the marked

increase in the number of leukocytes within the red pulp [22].

Further, identification of vtRNA-positive cells by in situ hybridiza-

tion indicated that the well-delineated splenic follicles of M3.MR-

infected mice were heavily populated with latently infected cells,

and that these cells were rare outside follicles (Fig. 5C),

comparable to what we had observed upon infection with wild-

type MHV-68 [22]. Although vtRNA-positive cells were detected

within the poorly-defined follicles of M3.stop-infected mice, the

number of these cells was notably lower, and they were

occasionally present as well within the red pulp (Fig. 5D).

However, consistent with the inability of MHV-68 to induce

significant leukocytosis and splenomegaly in wood mice (unlike in

BALB/c and C57BL/6 mice), we noted no significant change in

total spleen cell numbers after infection with either M3.MR or

M3.stop (data not shown). Thus, the M3 gene clearly influences

MHV-68 infection within the spleen of wood mice and upon its

inactivation, splenic architecture resembles that in BALB/c mice

infected with wild-type MHV-68.

M3 is required for efficient establishment of latency
Given the dramatic histological differences that we observed in

the lung and spleen as a consequence of disrupting M3 expression,

we next asked how inactivation of M3 expression affected MHV-

68 infection itself within these organs. Because MHV-68 replication

within the lungs of wood mice does not yield the high titers of virus

MHV-68 M3 Protein Modulates Host Response
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Figure 3. Influence of M3 in lung of acutely infected wood mice. All data were from lungs of mice infected with either M3.MR (left panels) or
M3.stop virus (right panels) at 14 days p.i. (A) M3.MR (i.e., pseudo wild-type MHV-68) infected wood mouse lung tissue (HE stain) showing large
perivascular lymphocyte infiltrations; arrows indicate iBALT. (B) M3.stop infected wood mouse lung showing much smaller perivascular lymphocyte
infiltration (arrow). Panels (C) and (D): Immunohistological staining showing B-cell (CD45R+) dominance in the peribronchial infiltrations (iBALT) of
mice infected with M3.MR (C; arrows), and the reduced proportion of B cells in the equivalent infiltrates in mice infected with M3.stop virus (D; arrow).
Panels (E) and (F): Immunohistological staining for T cells (CD3+) indicating that they are a minority cell type in iBALT within M3.MR-infected mice (E;
arrows), whereas T cells are more prevalent in the infiltrates within M3.stop-infected mice (F; arrow); T cells were also seen rolling along endothelial

MHV-68 M3 Protein Modulates Host Response
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seen in BALB/c mice that can be readily quantified by plaque assay

[22], we chose to indirectly measure levels of virus by qPCR. At 7

days p.i., the level of viral DNA detected within the lungs of mice

infected with M3.MR was not significantly higher than that within

the lungs of mice infected with M3.stop (Fig. 6A). At day 14,

however, significantly reduced levels of viral DNA (P,0.05) were

detected in the lungs of M3.stop-infected wood mice (Fig. 6A). A

similar result was seen at day 40 p.i. when MHV-68 DNA was

detected at low levels in M3.MR-infected mice, but at a significantly

lower level in those infected with M3.stop (P,0.05).

To assess the effect of M3 loss in the spleen, infective center assays

were performed at 14 days p.i. to measure the number of latently

walls (F; inset and arrows). Panels (G) and (H): Detection by in situ hybridization of vtRNA expression (indicative of latent infection). In mice infected
with M3.MR, positive cells are numerous in the perivascular infiltrates (G; arrows) and are seen attached to the endothelial wall (G; inset and arrows).
They are present but less numerous in mice infected with M3.stop (H; arrow). All images are representative of numerous tissue sections analyzed from
3 wood mice per infection. Labels: A, artery; V, vein; B, bronchiole.
doi:10.1371/journal.ppat.1001321.g003

Figure 4. Influence of M3 on T and B cell numbers in the lungs of acutely infected wood mice. All data were from mice infected with
either M3.MR or M3.stop virus at either 7 or 14 days p.i. as indicated. Quantification of B and T cell infiltrates was performed by counting the number
of cells in corresponding sequential sections from the same histopathological sections as in Fig. 3. The number of cells per unit area (138138 mm2) was
then calculated for the interstitial infiltrate (Panels A and B) and the proportion of B and T cells for each area of perivascular/peribronchiolar (PV/PB)
infiltration (Panels C, D) and iBALT (Panel E). Data are shown as the mean values 6 SEM and compared between groups using a two sample t-test.
doi:10.1371/journal.ppat.1001321.g004

MHV-68 M3 Protein Modulates Host Response
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infected cells, which are normally at their peak level at this time.

Similar to our observation in the lungs, the number of spleen cells

that harbored reactivatable virus was significantly lower (P,0.005),

though still detectable, in wood mice that had been infected with

M3.stop (Fig. 6B). A parallel effect was seen when viral DNA was

measured by qPCR (Fig. 6C), confirming that the disparity in

infective centers was not due to an inability of M3.stop virus to

reactivate ex vivo. Viral DNA was still detectable in both groups of

wood mice at day 40 p.i., but at a significantly reduced level in the

animals infected with M3.stop (Fig. 6C). Hence, in both lung and

spleen, the lack of M3 significantly reduced the ability of M3.stop to

establish a normal level of infection that, at least in spleen, reflected

a nearly ten-fold lower number of latently infected cells.

M3 modulates the pulmonary chemokine and cytokine
response

Because M3 is not required for replication of MHV-68 in vitro

[17,33], we reasoned that deficiencies of the M3.stop virus

apparent in wood mice were more likely due to a loss of the

chemokine-binding properties of M3, rather than to a direct defect

in virus replication per se. To determine if loss of M3 expression

results in a change in the chemokine profile, we measured the

relative levels of a panel of chemokines and cytokines within the

lungs of mice at 14 days p.i. (the peak of M3 expression during

acute infection; Fig. 1A) with either M3.MR or M3.stop virus. To

accomplish this we performed cytokine antibody array analyses

(RayBio Mouse Cytokine Antibody Array 3.1), a proven method

of comparing cytokine/chemokine levels in tissues [34]. The

results (Fig. 7) showed that in a number of cases, the amount of

these molecules was notably higher (.2 fold positive fold change)

in the lungs of mice infected with M3.stop relative to M3.MR

virus. Specifically, we observed relative increases in RANTES/

CCL5 (2.5-fold), MIP-1a/CCL3 (2.2-fold), fractalkine/

CX3CL1(3-fold) KC/CXCL1 (12.9-fold), MIP-2/CXCL2 (3.1-

fold) and MIG/CXCL9 (2.0-fold) in the absence of M3. By

contrast, we observed relative decreases in the B-cell associated

chemokines BLC/CXCL13 (2.2-fold) and SDF-1a/CXCL12 (2.3-

fold), as well as CD30L (2.7-fold), in infections lacking M3 (Fig. 7).

Figure 5. Influence of M3 in spleen of acutely infected wood mice. All data were from mice infected with either M3.MR or M3.stop virus at 14
days p.i. (A) In M3.MR infected mice, the white pulp is composed of secondary follicles with distinct germinal centers, exhibiting obvious light and
dark zones. HE stain. (B) In M3.stop-infected mice, follicles are larger and exhibit large, poorly delineated germinal centers. HE stain. (C) Localization,
by in situ hybridization to vtRNAs, of latently infected splenocytes within spleen of M3.MR-infected mice. Latently infected cells are primarily
contained within the light zone of germinal centers. (D) vtRNA detection within latently infected splenocytes in M3.stop-infected mice. Note that
positive cells are found scattered throughout the follicle, as well as in the red pulp. Labels: F, follicle; GC, germinal center; RP, red pulp.
doi:10.1371/journal.ppat.1001321.g005
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To confirm the above array results, the concentrations of

selected chemokines were measured in the lungs of infected mice

at 7 and 14 days p.i. by ELISA. The results (Fig. 8) showed that, in

agreement with the array results, at day 14 p.i. the concentrations

of RANTES/CCL5 and fractalkine/CX3CL1 were significantly

higher and the concentrations of SDF-1a/CXCL12 and CD30L/

CD153 were significantly lower in M3.stop-infected mice. At day 7

p.i., the only significant difference in the concentrations of

chemokines between the groups was a lower level of CD30L/

CD153 in M3.stop-infected mice. Of note, also, the levels of KC/

CXCL1 and BLC/CXCL13 did not vary significantly between

M3.stop and M3.MR-infected mice. Thus, the difference in levels

of these chemokines that was seen between the groups in the array

experiment above was not substantiated.

Thus, our results are consistent with the notion that M3

functions primarily through its direct interactions with cellular

Figure 6. Contribution of M3 to MHV-68 infection in wood
mice. (A) Loss of M3 is associated with reduction of viral DNA in lung at
7, 14 and 40 days p.i. Quantitative PCR analysis of viral genome copies
per 200 ng lung DNA. (B) Reduction in latently infected cells in the
spleen at 14 days p.i. as a consequence of M3 loss, as determined by
infective center assay. (C) Reduction in viral DNA in spleen at 14 and 40
days p.i. parallels the loss of latently infected splenocytes in (B).
Quantitative PCR analysis of viral genome copies per 200 ng spleen

DNA. Data in (A) and (C) represent the mean value determined from
three individual wood mice per infection, normalized to copies of
cellular rpl8 per DNA sample; error bars depict the standard error of the
means. Statistical analysis was performed using Student’s t-test and
where significance was found this is indicated above the bars.
doi:10.1371/journal.ppat.1001321.g006

Figure 7. Array analysis of changes in pulmonary chemokine
and cytokine levels within infected wood mice as a conse-
quence of M3 loss. Equal amounts of protein from lung lysates of
wood mice infected with M3.stop or M3.MR MHV-68 were incubated
with RayBiotech 3.1 membrane arrays capable of detecting 61 different
chemokines and cytokines. Shown are the relative abundance of
cytokines and chemokines (minus background) whose expression
consistently showed more than a two-fold difference in M3.stop-
versus M3.MR-infected mouse lung lysate (two independent exper-
iments). Asterisks denote chemokines that have been tested in vitro and
found to be bound by M3; # denotes chemokines tested and not
bound by M3, according to van Berkel et al. [16] and Parry et al. [15]; +
denotes that MIP-3/CCL19-dependent chemotaxis is inhibited by M3
according to Jensen et al. [46]; #* denotes that in the case of BLC/
CXCL13, while Parry et al. [15] and Martin at al. [62] found that M3
bound weakly and inhibited factor-dependent chemotaxis, van Berkel
et al. [16] did not observe any binding to M3.
doi:10.1371/journal.ppat.1001321.g007
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chemokines, and that these interactions are critical for the efficient

establishment of persistent infection in the wood mouse.

Discussion

Here we have shown that the MHV-68 M3 gene, which

encodes a highly expressed chemokine-binding protein [15,16],

contributes substantially to infection in the lung and spleen of

wood mice (Apodemus sylvaticus), which we have conclusively shown

to be a natural host of MHV-68 [21]. This work was prompted by

our finding that experimental MHV-68 infection of wood mice

differs in several key respects from infection of BALB/c mice (Mus

musculus) [22], and an earlier demonstration that, surprisingly,

inactivation of the M3 gene has little consequence in the context of

comparable (intra-nasal) MHV-68 infection of inbred strains of

laboratory mice [17], a now widely utilized small-animal model of

c-herpesvirus infection. Specifically, M3 contributes to the

formation of iBALT, and the spike in latently infected cells within

Figure 8. Influence of M3 on the changes in chemokine levels in the lungs of infected wood mice. Protein from lung lysates of wood
mice infected with M3.stop or M3.MR MHV-68 were analysed for the concentration of specific chemokines by ELISA. Data were normalized relative to
total protein concentration as determined by a modified Bradford assay. Error bars depict the standard error of the means for 4 individual wood mice.
Statistical analysis was performed using Student’s t-test and where significance was found this is indicated above the bars.
doi:10.1371/journal.ppat.1001321.g008
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spleen that occurs at approximately 2 weeks p.i. and the level of

long-term latency. While iBALT is not evident in the lungs of

infected BALB/c mice [22], inactivation of M3 expression from

the same mutant virus (M3.stop) did not have a comparable effect

in CD1 and C57BL/6 mice on this transient rise in latently

infected splenocytes [17], a feature common to infection in both

strains. Thus, the contributions of M3 to MHV-68 infection are

largely species specific, though an attenuation of MHV-68

infection in brain as a result of an altered inflammatory

(predominantly neutrophilic) response has been observed in CD1

mice injected intracerebrally with M3.stop relative to M3.MR

virus [17], suggesting that M3 is not fully inactive in Mus musculus.

In contrast to the lack of an attenuation of either lytic or latent

MHV-68 infection previously observed in CD1 and C57BL/6

mice following intranasal inoculation with M3.stop virus [17], in

an earlier report BALB/c mice infected via the same route with a

virus in which the M3 gene had been replaced with a LacZ

expression cassette exhibited a reduced viral latent load in the

spleen [33]. Further, depletion of CD8+ T cells partially precluded

this effect, suggesting a role for M3 in the inactivation of

chemokines involved in the T-cell response [33], which peaks

between 10 and 20 days p.i. [6], i.e., the point at which the

consequences of ablation of M3 expression were most evident in

spleen. This phenotype, however, is similar to that observed in

BALB/c and C57BL/6 mice in three independent reports of

infection with MHV-68 M2 mutants [35,36,37]. Because of this,

and that the 59 regulatory region of the M2 gene extends into the

adjacent M3 ORF [29,38], we believe it is very likely that the

apparent effects of disrupting M3 expression by insertion of a

CMV promoter-LacZ cassette in this earlier study may have been

due instead to a combination of removing the M3 ORF and/or an

unintended disruption of M2 expression or an immune response to

LacZ [39]. Since we also observed a reduction in latent virus load

in the spleens of infected wood mice here as a consequence of

specifically targeting M3 expression (Fig. 6), it will be interesting to

determine if loss of M2 contributes also to this phenomenon within

this host, as it does in Mus musculus.

In addition to species-associated differences seen within lungs

upon MHV-68 infection, the spleens of infected wood mice exhibit

clearly defined secondary follicles with highly organized germinal

centers, whereas the follicles in BALB/c mice are notably larger

and poorly organized [22]. Interestingly, follicles containing

infected splenocytes in wood mice that had been inoculated with

M3.stop virus (Fig. 5) appeared very similar morphologically to

those that we observed in the spleens of BALB/c mice infected

with MHV-68[22], indicating that this additional difference

between mouse species may also be due to the presence or not

of M3.

It was surprising, given that M3 modulates the action of a

number of macrophage-specific chemokines that granulomatous

infiltrations were present in similar number and size in both

M3.stop and M3.MR-infected wood mice. These are most

prominent at day 7 p.i., are macrophage rich and are the focus

of MHV-68 replication in the lung [22]. This is perhaps due to the

location of M3 expression, which is in B cells in perivascular/

peribronchiolar infiltrates and iBALT but conspicuously not in

granulomatous infiltrates. This suggests that the effect of M3 on

chemokines is localized predominantly to areas where M3 is

expressed.

Perhaps the most significant observation is that iBALT in the

lungs of acutely infected wood mice is dependent on M3. iBALT is

an example of tertiary or ectopic lymphoid tissue that develops at

any sub-epithelial site in response to inflammation or infection.

The organization of tertiary lymphoid tissue is remarkably similar

to that of secondary lymphoid tissues with separate B and T cell

areas, a network of specialized dendritic cells, and the presence of

high endothelial venules [reviewed in [40]]. Additionally, their

organization is dependent on the same chemokines that are

required in lymph nodes [41]. Although the purpose of iBALT is

not completely understood, it has been proposed that it

participates in generation of protective immune responses along

with secondary lymphoid tissue. For instance, in the absence of

secondary lymphatic tissues (using Lta2/2 mice), iBALT has been

shown to provide protective immunity to influenza virus infection,

as it is able to generate isotype-switched B cells via germinal center

reactions and specific CD8+ T cells [42]. In contrast, in MHV-68

infection iBALT does not appear to play a protective role as in its

absence productive infection is not greater, and in fact latency is

attenuated. Instead, we hypothesize that MHV-68, via M3

functions, utilizes iBALT as a means to augment virus persistence

by promoting B cell proliferation, as numerous latently infected

cells can be found in these B cell-dominated accumulations (Fig. 3)

that we have shown are devoid of viral structural antigens, and

thus presumably virus replication, which occurs primarily within

pulmonary granulomatous infiltrates in wood mice [22]. At the

present time, the phenotype of the T cells (CD3+) present in the

iBALT is not known, but it is plausible that these are either CD4+

T cells that would promote the activation of B cells by providing

the necessary CD40, or a subset of CD8+ T cells (IFN-c-secreting,

CD40L+, perforin negative) that are necessary for ectopic

lymphoid follicle formation [43].

Generation of iBALT and highly organized germinal centers

are events that rely heavily on coordinated cell migration and

organization, for which chemokines are critical. Given the

chemokine-binding properties of M3 that have been demon-

strated in vitro [15,16], and the altered inflammatory response to

MHV-68 infection in brain as a consequence of eliminating M3

expression [17], we asked whether these events associated with

MHV-68 infection in wood mice reflect an M3-dependent

change in the pulmonary chemokine/cytokine profile (Figs. 7, 8).

Our array-based analysis of chemokine and cytokine levels

revealed that numerous T cell, monocyte/macrophage, and

neutrophil associated chemokines were present in higher levels

within the lungs of wood mice infected with M3.stop relative to

M3.MR. For example, levels of the chemokines RANTES/

CCL5, MIP-1a/CCL3, MIP-1c/CCL9, MIG/CXCL9, MIP-2/

CXCL2, MIP-3b/CCL19 and fractalkine/CX3CL1 were lower

in the wood mice infected with wild-type virus. In contrast,

analysis revealed that the levels of two factors, SDF-1a/CXCL12

and CD30L/CD153 were higher after infection with M3.MR in

both the array and ELISA assays (Figs. 7, 8). With respect

specifically to iBALT formation, stromal chemokines such as

SDF-1a/CXCL12 (levels enhanced by M3) have been implicated

in the cellular recruitment required for iBALT formation [44].

Additionally, CD30L has a role in the segregation of B and T

cells within the murine spleen [45] and so may have an as yet

uncharacterized role in iBALT formation. MIP-3b/CCL19 is

involved in lymphocyte recruitment, and inhibition by M3 has

been proposed as a survival advantage for MHV-68 [46]. Our

observations are in agreement with this hypothesis. Moreover,

BALT is spontaneously-produced in mice that are deficient in

the receptor for CCL19 (CCR72/2), a phenomenon that is

related to a defect in homing of regulatory T cells [47]. In

contrast, MIP-3b/CCL19 has been implicated in iBALT

formation in lymph-node and spleen-deficient laboratory mice

[41], which is at odds with our results. Thus, iBALT formation is

complex and modulation in the levels of factors such as SDF-1a/

CXCL12, CD30L/CD153 and MIP-3b/CCL19 by M3 may
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contribute to the formation of iBALT in context of MHV-68

infection in wood mice.

As noted above, a number of T cell, monocyte/macrophage,

and neutrophil associated chemokines were present in higher levels

within the lungs of wood mice infected with M3.stop relative to

M3.MR. RANTES/CCL5 is an important proinflammatory

chemokine that induces the recruitment of T cells (including

CTLs), monocytes and eosinophils to the sites of virus infection.

Other studies have shown that blocking RANTES/CCL5 in vivo

significantly increases the titers of respiratory syncytial virus in the

lungs of infected mice, and this is associated with reduced T cell

recruitment [48] and heightened lung disease. Additionally,

influenza virus infection of MIP-1a/CCL32/2 mice leads to a

reduced inflammatory response and increased virus titers [49].

MIP-2/CXCL2 induces neutrophil recruitment [50]. Hence,

inhibition of such chemokines by M3 conceivably favors MHV-

68, not necessarily to increase virus replication, but to promote

establishment of latent infection and virus persistence, a hallmark

property of all herpesviruses.

Leptin receptor and its ligand (an IL-6 family member) were

expressed at elevated levels in the lungs of M3.stop infected wood

mice (22-fold and 10-fold respectively). Leptin is an adipocyte-

derived cytokine that regulates energy intake and expenditure.

However, leptin promotes Th1 immune responses as well as

inducing cytokine secretion and increasing phagocytosis by

macrophages (reviewed in [51]). Deficiency in leptin production

has also been associated with susceptibility to pulmonary disease

in a mouse model [52]. Thus, modulation of leptin by the

indirect action of M3 may confer a survival advantage for MHV-

68.

The cellular and biochemical consequences of M3 expression

are clearly complex. M3 is a chemokine-binding protein, and as

such is thought to disrupt chemokine gradients, modulating the

response of cells in vivo. Thus, a lack of M3 should increase

recruitment of cells that respond to the chemokines bound by M3.

Thus, the changes in cytokine and chemokine profiles that we

observe may be due to modulation of the composition of

infiltrating cell types and the activation status of these cells.

Nonetheless, levels of the chemokines RANTES/CCL5, MIP-1a/

CCL3, MIP-3b/CCL19 and fractalkine/CX3CL1 that are known

to be bound or functionally impaired by M3 [15,16,46] were lower

in the wood mice infected with wild-type virus, and thus a direct

effect of M3 on chemokine levels could also play a role.

At this juncture, it is unclear what the basis is for the lack of an

apparent influence of M3 in the context of MHV-68 intra-nasal

infection in laboratory strains of mice [17]. Given the relatively

close genetic relationship between M. musculus and A. sylvaticus, that

there is such a notable difference in the role of M3 is surprising,

particularly since there is a change in the inflammatory response

(predominantly neutrophilic) within brain to MHV-68 infection

following intracerebral inoculation of CD1 mice with M3.stop

virus [17]. This response is distinct from that seen after intranasal

infection of wood mice where few neutrophils are present, but

suggests that M3 is indeed capable of functioning within M.

musculus, and that the absence of an apparent influence of M3 in

the lung and spleen in this host, therefore, may be due to relatively

subtle differences between this species and the natural host. One

possibility is that M3 expression in the lung and spleen of a M.

musculus host is below a critical threshold. However, comparative

analyses of MHV-68 mRNA expression in M. musculus-derived

cells, albeit within infected cells in vitro, have revealed that M3 is

one of the most highly expressed MHV-68 genes during the virus

lytic cycle [27]. When we assessed M3 mRNA levels in the lung of

infected wood mice and BALB/c mice at 7 and 14 days p.i., M3

expression in BALB/c mice was similar to wood mice at day 7, but

significantly lower at day 14 (Fig. 1B). Our observed kinetics of M3

expression in BALB/c mice fits with a previous study [53].

Additionally, high levels of M3 mRNA were detected much later

(14 days p.i.) in wood mouse lungs than mRNAs from the other

genes in this locus (Fig. 1A), suggesting that the timing of M3

expression may be important, and that in M. musculus the lower

level (approx. 10 fold) of M3 at day 14 p.i. may be critical. In this

context, previous work has shown that the peak of chemokine

expression in MHV-68–infected BALB/c mice occurs after the

peak of M3 expression [53,54] and that deletion of the M3 locus

does not affect chemokine levels [53]. Alternatively, the cellular

source and location of M3 may play a role. While this may reflect

latency-associated M3 expression, at this time we also detected

equivalent levels of mRNA from ORF50, a key gene of the lytic

cycle. Finally, a possibility worthy of consideration is that minor

species differences in cytokine(s) protein structure have combined

with coding changes in M3 that have occurred during passage of

MHV-68 in vitro to render M3 less effective within M. musculus.

Such changes in M3 would be possible due to a reduction in

selective pressure to retain M3 integrity in vitro, where it neither

contributes directly to nor is it essential for MHV-68 replication

[17,33].

In summary, the results from this study demonstrate that M3 is

important for MHV-68 infection by facilitating an environment in

which proliferating B cells would accumulate, both during iBALT

formation in the lungs and the germinal center reaction in the

spleen. These responses ultimately lead to efficient establishment

and augmentation of MHV-68 latency, in both the lungs and

spleens of its natural host. Significantly, this work also highlights

the importance of using the natural host for studying the role of

virus genes, particularly those involved in modulating the innate

and adaptive host antiviral response, whose functions have no

doubt intricately evolved within the context of a specific host.

Materials and Methods

Ethics statement
All animal work was performed under strict accordance with

UK Home Office guidelines and approved by the UK Home

Office under Project Licence numbers 40/2483 and 40/3403 and

Personal Licence number 60/6501.

Mice
Wood mice (Apodemus sylvaticus) were obtained from an out-bred

colony established at the University of Liverpool, Faculty of

Veterinary Science [55,56]. This colony was obtained from Dr. J.

Clarke in 1995, and derived from captive-bred colonies main-

tained for several decades in the Department of Zoology,

University of Oxford, UK with only occasional introductions of

new stock from the wild. Their general housing and maintenance

has been described elsewhere [57], and at Liverpool they are

maintained under semi-barrier conditions. The Liverpool colony

has suffered no clinical disease, and, although not specified

pathogen free (SPF) in the sense used for most laboratory rodents,

samples are tested routinely on a monthly basis for the major

infections of laboratory rodents have so far been negative. Of

particular relevance to this study, no evidence of MHV-68

infection has been found in the colony by serology and PCR

analysis [19]. Animals were anesthetized with isoflurane and

inoculated with 46105 plaque forming units (PFU) in 40 ml of

sterile phosphate buffered saline (PBS). At various times between

day 3 and 40 p.i., animals were euthanized and tissues were

harvested.
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Cell culture and virus
Stocks of MHV-68, clone g2.4 [58], and previously published

mutant MHV-68 viruses M3.stop and M3.MR [16] were grown

and titrated by infection of baby hamster kidney cells (BHK-21),

as previously described [23]. BHK-21 cells were maintained in

Glasgow’s Modified Minimal Essential Medium with 10%

newborn calf serum and 10% tryptose-phosphate broth, 2 mM

L-glutamine, 70 mg/ml penicillin and 10 mg/ml streptomycin.

NIH3T3 cells were maintained in Dulbecco’s Modified

Eagles Medium (DMEM) supplemented with 10% fetal bovine

serum, 2 mM L-glutamine, 70 mg/ml penicillin and 10 mg/ml

streptomycin.

Quantitative Reverse Transcription PCR (qRT-PCR)
Total RNA was purified from lung tissue using the RNeasy Mini

Kit (Qiagen) and DNA contamination removed by treating RNA

with amplification grade DNase I (Invitrogen) according to the

manufacturers’ recommendations. Reverse transcription was

performed at 50 uC for 30 min with 2 mg RNA in a 20-ml

reaction containing 200 U Superscript III reverse transcriptase

(Invitrogen), 500 ng oligo(dT)15 primer (Roche), 0.5 mM dNTP

mix (Promega), 5 mM DTT, 40 U RNase inhibitor (RNaseOUT;

Invitrogen), and First-Strand buffer (50 mM Tris-HCl [pH 8.3],

75 mM KCl, 3 mM MgCl2; Invitrogen). Afterwards, 2 ml was used

as template for qRT-PCR in 20-ml reaction volumes. Quantifica-

tion of cDNA was done using an Opticon Monitor 2 real-time

PCR machine (MJ Research) with DyNamo SYBR Green kit

(Finnzymes) and 0.5 mM of each oligodeoxynucleotide primer (the

oligodeoxynucleotide primers used for PCR and qRT- PCR are

provided in Table 1). The cycling parameters were initially 95 uC
for 10 min, and then for each cycle: 94 uC for 10 s, 60 uC for 20 s,

and 72 uC for 15 s. Melting curve analysis was carried out between

65–95 uC with 0.2 uC increments to confirm product specificity.

For each individual experiment, amplification of cDNA from the

murine ribosomal protein L8 mRNA (RPL8; accession #

AF091511) was used to normalize for input cDNA between

samples using exon-spanning primers to control for contaminating

cellular DNA. Each sample was amplified in triplicate, and mean

cDNA copy numbers were determined from three individual mice

and expressed relative to the copy number of RPL8 cDNA.

Virological analyses
Quantification of viral DNA copy number (per 200 ng DNA)

was determined as previously described [59] using PCR primers

specific for the MHV-68 gp150 gene. The RPL8 gene was used to

normalize for input DNA between samples. Mean viral genome

copy numbers were determined from three or four individual

infected animals. Splenocytes isolated from intact spleens were

examined for latent virus by an infective center assay using

NIH3T3 cells, as previously described [23].

Histology, immunohistology and in situ hybridization
Lung, spleen, and lymph node tissue were fixed in 4% buffered

paraformaldehyde and routinely embedded into paraffin wax.

Sections (3–5 mm) were either stained with haematoxylin and

eosin, or used for immunohistology or RNA in situ hybridization.

Immunohistology was performed using the peroxidase anti-

peroxidase and the avidin biotin peroxidase complex method as

previously described [60]. T cells were detected using rabbit anti-

human CD3 antibody (DAKO Cytomation). B cells were

identified using rat anti-mouse CD45R (clone RA3-6B2; South-

ernBiotech). Quantification of B and T cells was performed by

counting the number of cells in corresponding sequential sections

identified by the above antibodies. Five randomised areas of

interstitial and perivascular/peribronchiolar infiltration and all

areas of iBALT in the lung sections were analysed, using images

captured with Nikon NIS-Elements Basic Research v3.0 software

at 206magnification. The proportion of B and T cells was then

calculated for each area of peribronchiolar/perivascular infiltra-

tion and iBALT, and the number of cells per unit area for the

Table 1. Oligodeoxynucleotide primers used.

Target Primer Sequence (59-39) Product length Notes

MHV-68 M1 GACTGCCCTTGTCACTTTTC 126 bp qRT-PCR

CCAGGTAAGAGATCCTGTGT

MHV-68 M2 GACAGTCCAGAAAATCTAGGC 110 bp qRT-PCR

ATGACATTTGGATGGTGGAATA

MHV-68 M3 CCCCATCATGACTTGTCATC 205 bp qRT-PCR

AAAACTTGCCCATGCTACT

MHV-68 M4 TTTTCGATCAGCCACGGTTG 139 bp qRT-PCR

CATCGACACAACGGATTTGATA

MHV-68 ACCAGAAGGTGAGGTTTAATGC 175 bp qRT-PCR

ORF50 GAAGTGCGAGCTGTGGGTT

Mouse CAGTGAATATCGGCAATGTTTTG 163 bp Normalize vDNA copies

Genomic RPL8 TTCACTCGAGTCTTCTTGGTCTC

MHV-68 M3 CTCTGGGAGAGCGTCAG 1248 bp Product ligated into pCRII

GTTACTGAGTATCAATGATCC to generate RNA-ISH probes

Mouse RPL8 ACAGAGCCGTTGTTGGTGTTGT 100 bp RPL8 (exon spanning)

mRNA CAGTTCCTCTTTGCCTTGTACT used to normalize cDNA copies

MHV-68 CTACTTCTTCATCGGACGCT 159 bp MHV-68 gp150

gp150 CGGGATCTGTCGGACTGT quantification of MHV-68 vDNA

doi:10.1371/journal.ppat.1001321.t001
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interstitial infiltrate. These data are shown as the mean

values6SEM and compared between groups using a two sample

t-test. Detection of MHV-68 M3 RNA and vtRNAs by RNA in situ

hybridization followed a previously described protocol [61].

Briefly, digoxigenin (DIG)-labeled sense and antisense probes

were generated by in vitro transcription, using the DIG RNA

labeling kit (Roche), of either the entire M3 ORF that was

amplified from MHV-68 DNA (see Table I for primers used)

and cloned into pCRII (Invitrogen) or transcripts to the MHV-68

tRNA genes 1-4 within plasmid pEH1.4 as described previously

[10]. Briefly, sections were treated with proteinase K (1 mg/ml;

Roche) at 37 uC for 15 min, and hybridization performed

overnight at 52 uC. Hybridized probe was detected with alkaline

phosphatase-conjugated anti-DIG Fab fragments (Roche) and

BCIP/NBT (Sigma). Slides were counterstained with Papanico-

laoùs hematoxylin.

Chemokine/cytokine array analysis
Lungs were screened for expression of 61 cytokines/chemokines

using a RayBio Mouse Cytokine Antibody Array Kit (Array 3.1.;

Ray Biotech Inc., Norcross, GA), performed according to the

manufacturer’s instructions. Lung tissue (20–30 mg) taken from

wood mice 14 days p.i. with either M3.stop or M3.MR was

homogenized in 500 ml lysis buffer (RayBiotech) containing 1%

(w/v) sodium deoxycholate, 2% (v/v) NP-40, 0.2% (w/v) SDS, 1

mg/ml each of aprotinin, leupeptin, pepstatin, and 1 mM

phenylmethylsulfonyl fluride (PMSF) on ice. Protein concentra-

tions were determined using a BioRad DC-Protein Assay Kit

according to the manufacturer’s instructions. As an extra control,

25 mg protein from each sample was analyzed by western blot to

detect actin to ensure analysis of equal starting material (data not

shown). Cell lysates were sent to RayBiotech (RayBiotech, Inc.

3607 Parkway Lane, Suite 200, Norcross GA 30092, U.S.A.) for

analysis of chemokine and cytokine levels using the RayBio Mouse

Cytokine Antibody Array 3.1 kit (RayBiotech), using 500 mg

protein per membrane. Signals were detected and quantified by

chemiluminescence.

Chemokine concentration analysis
Lungs were screened for expression of specific chemokines by

ELISA. Lung tissue (20–30 mg) taken from mice was homoge-

nized in 1 ml of ice-cold T-PER Tissue Protein Extraction

Reagent (Pierce) in the presence of protease inhibitor cocktail

(Sigma-Aldrich) before being clarified by centrifugation (10,000 g

for 5 minutes at 4 uC). Total protein concentrations were

determined by using DC-Protein Assay Kit (BioRad) according

to the manufacturer’s instructions. Chemokine concentrations

were measured using DuoSet ELISA Development systems for

RANTES/CCL5 (DY478), KC/CXCL1 (DY453), fractalkine/

CX3CL1 (DY472), SDF-1a/CXCL12 (DY460), BLC/CXCL13

(DY470) and CD30 Ligand (CD153) (DY732) in accordance with

manufacturer’s instructions (R&D Systems Europe Ltd., Abing-

don, UK). Lung tissues lysates were investigated in duplicate and

diluted as appropriate to ensure protein concentrations were

within the linear range of the standard curve. Optical densities

were determined at 450 nm using a Thermo Labsystems Opsys

MR ELISA plate reader (Thermo Life Sciences, Basingstoke, UK).
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