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INTRODUCTION

5´-AMP-activated protein kinase (AMPK), a key regulator of 
cellular energy homeostasis, is activated in response to various 
metabolic stresses including starvation, hypoxia, and ischemia. 
AMPK is a heterotrimeric enzyme, which is activated by phos-
phorylation of Thr172 on its α subunit. Several upstream kinas-
es can modify Thr172, including liver kinase B1 (LKB1), calci-

um/calmodulin-dependent protein kinase kinase 2 (CaMKK2), 
and transforming growth factor β activated kinase-1 (Fig. 1). 
AMPK is considered to be a metabolic “master switch” that 
regulates intracellular processes such as the cellular uptake of 
glucose, β-oxidation of fatty acids, biogenesis of glucose trans-
porter 4, and mitochondrial biogenesis [1-4]. 
  Upon activation, AMPK increases cellular energy levels by 
inhibiting anabolic energy-consuming pathways (including fat-
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The 5´-AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and energy homeostasis in mammali-
an tissues. Metabolic adaptation is a critical step in ensuring cell survival during metabolic stress. Because of its critical role in 
the regulation of glucose homeostasis and carbohydrate, lipid, and protein metabolism, AMPK is involved in many human 
diseases, including cancers. Although AMPK signaling was originally characterized as a tumor-suppressive signaling pathway, 
several lines of evidence suggest that AMPK plays a much broader role and cannot simply be defined as either an oncogenic 
regulator or tumor suppressor. Notably, several recent studies demonstrated that the antitumorigenic effects of many indirect 
AMPK activators, such as metformin, do not depend on AMPK. Conversely, activation of AMPK induces the progression of 
cancers, emphasizing its oncogenic effect. Bladder cancer can be divided into two groups: non–muscle-invasive bladder can-
cer (NMIBC) and muscle-invasive bladder cancer (MIBC). The molecular mechanisms underlying these two types of cancer 
are distinct: NMIBC is associated with activation of the Ras pathway, whereas MIBC is characterized by loss of major tumor 
suppressors. Importantly, both pathways are connected to the mammalian target of rapamycin (mTOR) pathway. In addition, 
our recent metabolomic findings suggest that β-oxidation of fatty acids is an important factor in the development of bladder 
cancer. Both mTOR and β-oxidation are tightly associated with the AMPK pathway. Here, I summarize and discuss the recent 
findings on the two distinct roles of AMPK in cancer, as well as the relationship between bladder cancer and AMPK. 
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ty acid synthesis and protein synthesis) and stimulating energy-
producing catabolic pathways (including fatty acid oxidation 
and glucose transport) (Fig. 2). Because it is a major regulator 
of both lipid and glucose metabolism, AMPK has been consid-
ered as a potential therapeutic target for the treatment of diabe-
tes, obesity, and cancer. Recently, however, many reports show 
that AMPK actually plays a critical role in tumor survival and 
growth [5-8]. The metabolism reprogramming triggered by the 
activation of AMPK is important for the survival of cells in the 
tumor microenvironment. Thus, it would not be surprising if, 
in some cases, AMPK acts as a tumor promoter. 

AMPK AND THE WARBURG EFFECT

In contrast to normal cells, which produce energy through a rel-
atively low rate of glycolysis and oxidation of pyruvate in the 
mitochondria, the energy production of most cancer cells relies 
on a high rate of glycolysis followed by lactic acid fermentation 
in the cytosol; this phenomenon is known as the Warburg effect 
[9-11]. Rapidly growing cancer cells achieve glycolytic rates that 
are up to 200 folds higher than those of normal cells, even when 
oxygen is plentiful. The Warburg effect may reflect adaptation to 
low-oxygen environments within tumors, mitochondrial dam-

Fig. 1. Activation and inactivation of AMPK. AMPK is a heterotrimeric enzyme activated by phosphorylation of Thr172 on its α sub-
unit. Several upstream kinases can modify Thr172, including LKB1, CaMKK2, and TAK1. The activity of AMPK can be reduced by 
PP2A and PP2C, which mediate the dephosphorylation of phospho-Thr172. PKC and Akt also phosphorylate Ser485/491 of the α 
chain, which in turn decreases AMPK activity. Additionally, PKA-dependent modification of Ser173 diminishes AMPK activity. 
AMPK, 5´-AMP-activated protein kinase; LKB1, liver kinase B1; CaMKK2, calcium/calmodulin-dependent protein kinase kinase 2; 
TAK1, transforming growth factor β activated kinase-1; PP2C/A, protein phosphatase 2C/A; PKA/C, protein kinase A/C.
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Fig. 2. Function of AMPK. Arrows denote activation, and horizontal bars indicate inhibition. AMPK, 5´-AMP-activated protein ki-
nase; eNOS, endothelial nitric oxide synthase 3.
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age, or oncogene-mediated shutdown of mitochondria, which 
would otherwise induce apoptosis in cancerous cells. On the 
other hand, the effect might also be associated with rapid cell 
proliferation. Because glycolysis provides most of the building 
blocks required for cell proliferation, cancer cells may need to 
activate glycolysis despite the availability of oxygen [12] (Fig. 3).
  In several types of cancer, genetic defects in the enzymes of 
the tricarboxylic acid cycle are involved in tumorigenesis, 
whereas oncogenic H-Ras transformation damages mitochon-
drial function [13,14]. Upon initiation of the Warburg effect, 
cells depend on aerobic glycolysis with lactate production, rath-
er than oxidative phosphorylation, to maintain adenosine tri-
phosphate (ATP) levels. AMPK regulates glycolysis by phos-
phorylating and activating 6-phosphofructo-2-kinase/fruc-
tose-2,6-bisphosphatases (PFKFBs). PFKFB3 is overexpressed 
and its phosphorylation is elevated in several types of cancer 
(including colon and breast cancers) as a consequence of 
AMPK activation [15]. Various stress signals, such as hypoxia 
and nutrient depletion, can drive PFKFB3 expression, and 
AMPK contributes to the elevation of PFKFB3 levels and glyco-
lytic flux in response to reduced pH [16]. In addition, expres-
sion of PFKFB2, a phosphorylation target of both Akt and 
AMPK, is elevated in human cancers. Thus, depending on the 
cellular environment, Akt and AMPK may promote glycolysis.
  AMPK can act as a negative regulator of the Warburg effect 

under nutrient- and growth factor-rich conditions. AMPK de-
pletion further increases mammalian target of rapamycin com-
plex 1 (mTORC1) activation, hypoxia-inducible factor 1 (HIF1) 
levels, and aerobic glycolysis in Myc over-expressing cells [17]. 
Depletion of AMPK leads to increased lactate production [17], 
promoting the use of nonglucose carbon sources for anabolism, 
maintenance of bioenergetics, and lactate production. The role 
of lactate production in proliferating tumor cells, the primary 
characteristic of the Warburg effect, remains poorly under-
stood. The key glycolysis enzyme phosphofructokinase-1 is in-
hibited by O-GlcNAcylation, which is necessary for optimum 
tumor growth [18], suggesting that suppression of lactate-pro-
ducing glycolysis can also confer survival and growth advan-
tages on cancer cells, depending on the genetic background and 
cellular context.

AMPK: AN ONCOGENIC REGULATOR?

Although the AMPK signaling pathway was originally charac-
terized as a tumor-suppressive pathway, recent studies have 
demonstrated that many factors in the tumor microenviron-
ment, as well as some oncogenic signals, are AMPK activators. 
The oncogene Src (proto-oncogene tyrosine-protein kinase), 
which is overexpressed and activated in many cancers, activates 
AMPK through the activation of the protein kinase C α-LKB1 

Fig. 3. The differences between oxidative phosphorylation, anaerobic glycolysis, and aerobic glycolysis. TCA, tricarboxylic acid.
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pathway in OVCAR3 and A431 cells [19]. Similarly, the expres-
sion of MYC and H-RasV12 activates AMPK in some cancers 
[20,21]. Moreover, androgen receptor (AR) signaling activates 
AMPK through the transactivation of CaMKK2 in prostate 
cancer [22-24]. In addition to the activation of oncogenes, the 
loss of tumor suppressor gene folliculin (FLCN), which is asso-
ciated with Birt-Hogg-Dubé syndrome, also activates AMPK 
[25,26].
  Initially, two groups reported that LKB1 and AMPK play 
protumorigenic roles in the context of oncogene-induced trans-
formation of mouse embryonic fibroblasts (MEFs). They 
showed that both LKB1-null MEFs and AMPKα1/α2-null 
(AMPKα knockout) MEFs are resistant to oncogenic effects 
such as H-RasV12/SV40T-induced anchorage-independent 
growth and solid tumor growth in vivo [27,28]. Remarkably, 
several studies demonstrated that AMPK is also essential for 
other types of oncogene-induced tumorigenesis, such as Myc-
induced development of hepatocellular carcinoma (HCC), 
H-RasV12 ±PTEN deletioninduced astrocytic tumor cell prolif-
eration, and kinase suppressor of Ras 2-induced anoikis resis-
tance in MEFs [20,21,29]. Several recent reports show that 
AMPK plays a key role in various cancers. Depletion of AMPK 
activity in breast and pancreatic cancer cells hampers anchor-
age-independent growth and tumor formation in vivo [30-32]. 
The LKB1-AMPK signaling pathway is also essential for glioma 
cell survival under low-glucose conditions [21,33]. Two recent 
approaches have identified the AMPKα1 and AMPKβ1 sub-
units as essential protumorigenic genes in melanoma [34] and 
prostate cancer [35], respectively. Activation of AMPK follow-
ing loss of the tumor suppressor FLCN increases mitochondrial 
biogenesis by inducing peroxisome proliferator-activated recep-
tor γ (PPARγ) coactivator 1α (PGC1α) expression, which in 
turn results in the production of reactive oxygen species (ROS). 
Yan et al. [26] also demonstrated that high levels of ROS acti-
vate HIF1α transcriptional activity, resulting in elevated expres-
sion of glycolytic enzymes, which induce ATP production. The 
AR-CaMKK2-AMPK axis in prostate cancer increases aerobic 
glycolysis and anabolic metabolism partly through PGC1α-
mediated mitochondrial biogenesis, which can provide both 
the energy and the building blocks required for rapid cell 
growth [22,23]. Recently, mechanisms associated with the met-
abolic functions of AMPK, other than those involved in the 
production of energy or building blocks, have attracted increas-
ing attention. Jeon et al. [36] showed that in the absence of 
AMPK activity, oxidative stress is the major cause of cancer cell 

death during glucose deprivation and matrix detachment. Un-
der such stressful metabolic conditions, maintenance of 
NADPH levels rather than ATP levels is crucial for AMPK-in-
duced solid tumor formation in vivo, tumor cell survival, and 
anchorage-independent growth. Acetyl-CoA carboxylase 
(ACC) 1 and ACC2 decrease NADPH consumption by inhibit-
ing fatty acid synthesis and increase NADPH production by ac-
tivation of fatty acid oxidation, respectively. They both need to 
be inhibited to maintain the glutathione/oxidized glutathione 
ratio and to reduce H2O2 levels, thereby protecting against oxi-
dative stress-induced cell death. In osteosarcoma, AMPK pro-
tects against H2O2-induced cell death by maintaining NADPH 
levels [37]. Loss of FLCN results in the constitutive activation of 
AMPK, which in turn induces autophagy, inhibits apoptosis, 
improves cellular bioenergetics, and confers resistance to ener-
gy-depleting stresses such as oxidative stress, heat, anoxia, and 
serum deprivation [25]. 

AMPK: A TUMOR SUPPRESSOR?

Despite accumulating evidence highlighting the oncogenic role 
of AMPK, this enzyme was originally identified as a tumor sup-
pressor following the discovery of LKB1 and mTORC1 [38-41]. 
Germline mutations in the gene encoding AMPK were detect-
ed in Peutz-Jeghers Syndrome [42]. Additionally, somatic mu-
tations in the tumor suppressor LKB1 were observed in lung 
and cervical cancers [43]. mTORC1, which is inactivated by the 
LKB1-AMPK axis, is an important regulator of growth factor 
and nutrient signaling that controls protein synthesis and cell 
growth, and is over-activated in most human cancers [43]. 
Since LKB1 activates AMPK and AMPK inhibits mTORC1, it 
is reasonable to classify AMPK as a tumor suppressor. Although 
LKB1 deletion alone is not sufficient to cause lung cancer, it ele-
vates mTORC1 and Src activity, which enhances lung cancer 
induced by K-Ras activation or PTEN deletion [44-46]. LKB1 
deletion accelerates ErbB2-mediated breast cancer associated 
with elevated mTORC1 activity [47]. Conversely, in the endo-
metrium, LKB1 deletion alone is sufficient for the development 
of invasive endometrial cancer, which can be effectively treated 
by rapamycin, an mTORC1 inhibitor, suggesting that mTORC1 
activation is the major downstream target of LKB1 inhibition 
[48-50]. Notably, LKB1 also plays an AMPK/mTORC1-inde-
pendent role in tumor suppression that depends on microtu-
bule affinity-regulating kinase-mediated regulation of Snail or 
Hippo signaling [51,52]. 
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  Deletion of PRKAA1, the gene that encodes AMPKα1, ac-
celerates development of Myc-induced lymphoma [17]. This 
observation contradicts the findings of Liu et al. [20], who 
showed that AMPK plays an important role in the development 
of Myc-induced HCC. Faubert et al. [17,53] also demonstrated 
that deletion of either LKB1 or PRKAA1 induces mTORC1/
HIF1α-dependent metabolic reprogramming that helps cancer 
cells meet their energetic and anabolic demands. This observa-
tion also conflicts with the findings of Yan et al. [26], who sug-
gested that AMPK activates aerobic glycolysis through the 
PGC1α-ROS-HIF1α axis in the absence of FLCN. Although 
this discrepancy could be due to tissue-specific and context-de-
pendent functions of AMPK, further research is needed to ob-
tain an unequivocal interpretation of these seemingly contra-
dictory findings. 
  Several additional studies have reported conflicting pharma-
cological evidence regarding the role of AMPK in cancer. The 
antidiabetic drug metformin, which indirectly activates AMPK 
by inhibiting mitochondrial metabolism, decreases the inci-
dence and mortality rate of breast cancer [54,55]. Moreover, 
several lines of evidence support the idea that AMPK activators, 
such as 5-aminoimidazole-4-carboxamide-1-b-D-ribofurano-
side (AICAR), metformin, and phenformin, suppress cancer 
cell growth and proliferation [56-59]. However, in contradic-
tion to these findings, Liu et al. [60] showed that AICAR and 
metformin reduce glioblastoma proliferation and viability. Fur-
thermore, the direct AMPK activator A769662 has no effect on 
proliferation, suggesting that the antitumor effects of AICAR 
and metformin are AMPK-independent. Shackelford et al. [61] 
also demonstrated that phenformin selectively kills LKB1-defi-
cient lung tumor cells in vivo, suggesting that the antitumor ef-
fect of phenformin is not dependent on activation of AMPK. 
Notably, Vincent et al. [62] showed that all these nonspecific 
and indirect AMPK activators strongly inhibit cell proliferation 
and viability in the absence of AMPK, whereas such cytotoxic 
effects are reduced in the presence of AMPK, suggesting that 
the activation of AMPK actually opposes the cytotoxic effect of 
the indirect AMPK activators. Along these lines, Vincent et al. 
[62] demonstrated that the direct AMPK agonist A769662 pro-
moted cell proliferation under metabolically stressful condi-
tions, supporting the idea that AMPK plays an oncogenic role 
in the tumor microenvironment. AMPK regulates diverse as-
pects of metabolism and cell physiology in both health and dis-
ease. Therefore, we must consider the effects of organ, cancer 
type, and acute vs. long-term AMPK activation and inactiva-

tion when investigating the mechanistic contribution of AMPK 
to cancer [63-65].

REGULATION OF AMPK IN BLADDER CANCER

Non–muscle-invasive bladder cancer (NMIBC) and muscle-in-
vasive bladder cancer (MIBC) are associated with distinct molec-
ular pathways. NMIBC is characterized by activation of the Ras 
pathway through mutations in H-Ras, FGFR-3, and PI3K, while 
MIBC is associated with a loss of tumor suppressor genes, includ-
ing p53, Rb, and PTEN [66-72]. Activation of the Ras pathway 
occurs in approximately 80% of all NMIBCs [66,68,69], whereas 
more than 50% of MIBCs exhibit loss of p53 function [70-72]. 
Importantly, there is crosstalk between these pathways and the 
mTOR pathway [67,68,73], which means that alterations in either 
pathway are predicted to influence mTOR activity. Seager et al. 
[70] reported that intravesical rapamycin instillation exerts strik-
ing inhibitory effects on tumor progression in a bladder-specific 
PTEN and p53 double knockout transgenic mouse model, which 
develops carcinoma in situ lesions that progress to MIBC. 
  In addition to the H-Ras, p53, and PTEN pathways, diverse 
upstream signals such as AMPK and insulin can affect the 
mTOR pathway. Although no direct evidence about the role of 
the AMPK pathway in bladder cancer is currently available, 
several studies support the idea that the AMPK pathway might 
influence both bladder cancer development and progression. 
Liu et al. [74] reported that Rhodiola rosea extract and salidro-
side inhibit the mTOR pathway and translational initiation via 
activation of AMPKα in UMUC-3 bladder cancer cells. Metfor-
min inhibits the growth of bladder cancer cells via indirect acti-
vation of AMPK [75,76], which in turn suppresses the mTOR/
p70 S6 kinase-1 (S6K1) pathway in 253J and RT4 bladder can-
cer cell lines. Yan et al. [77] demonstrated that troglitazone (a 
synthetic ligand of PPARγ) activates autophagy concurrent 
with the activation of AMPK and suppression of the mTOR 
signaling pathway in T24 cells. Activation of mTOR occurs via 
a multistep process including upstream PI3K and Ras activa-
tion, or inactivation of AMPK, leading to phosphorylation and 
inactivation of the tuberous sclerosis complex 1 and 2 (TSC1/
TSC2) heterodimer [78,79]. Inactivation of TSC1/TSC2 results 
in release of Rheb inhibition and subsequent mTOR activation 
through Rheb-GTPase activity. Finally, mTOR activity regulates 
the effects of a number of downstream molecules, including 
S6K and elongation-initiation factor 4E binding protein-1 
[78,79].
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  In MIBC, PTEN loss appears to correlate with an increased 
mTOR activity, suggesting that it exerts a direct effect on down-
stream signaling components in bladder cancer [80,81]. Thirty-
nine percent of MIBC cases exhibit either loss-of-heterozygosi-
ty (LOH) or homozygous deletion of the PTEN locus, and oc-
casionally, mutations in the PTEN coding region occur [82]. 
Additionally, loss of p53 function appears to synergize with 
PTEN loss to promote activation of the mTOR signaling path-
way [80]. Finally, LOH of TSC1 has been reported in approxi-
mately 50% of bladder cancer cases [83]. Taken together, the 
deregulation of components upstream of the mTOR pathway 
may occur in bladder tumors, suggesting that mTOR signaling 
may be elevated in this type of cancer. 
  Recently, we performed metabolomic profiling of bladder 
cancer patients. The results of our analysis revealed that patients 
with bladder cancer have elevated levels of urinary acetyl-CoA 
and carnitine. Because carnitine is crucial for the entry of fatty 
acids into the mitochondria for oxidation, and acetyl-CoA is 
the final product of this oxidation event, we speculate that 
β-oxidation of fatty acids might be an important factor in the 
development of bladder cancer [84]. When we examined the 
gene expression levels of the enzymes involved in fatty acid oxi-

dation using our published microarray data [85], we found that 
bladder cancer specimens expressed significantly higher levels 
of carnitine palmitoyl transferase 1A (CPT1A) than normal 
bladder mucosae. CPT is a key enzyme that uses carnitine to 
transfer fatty acids to the mitochondria for oxidation. In partic-
ular, the CPT levels were higher in MIBC than in NMIBC. 
Thus, CPT1A may be associated with the aggressiveness of 
bladder cancer. Several investigators have attempted to develop 
inhibitors of CPT as anticancer agents [86,87]. Our microarray 
data also showed that bladder cancers express carnitine acylcar-
nitine translocase-like protein (CACL), another enzyme in-
volved in fatty acid transport to mitochondria [88,89], at higher 
levels than normal bladder mucosae. Both MIBC and NMIBC 
express significantly higher levels of CACL than normal blad-
der mucosae. Although CACL has not been studied as exten-
sively as CPT1A, strategies that target it may also have thera-
peutic potential in bladder cancer. Thus, in line with other 
studies implicating fatty acid oxidation in various types of tu-
morigenesis [90,91], our metabolomics study [84] and microar-
ray analysis [85] indicated that β-oxidation of fatty acid plays an 
important role in bladder tumorigenesis and aggressiveness. 
The level of acetyl-CoA, another molecule associated with 

Fig. 4. Putative pathways that may be altered in bladder cancer. Metabolites detected in our study [84,85] are indicated in red. AMPK, 
5´-AMP-activated protein kinase; CACL, carnitine acylcarnitine translocase-like protein; CPT, carnitine palmitoyltransferase; CRAT, 
carnitine O-acetyltransferase; PTEN, phsophatase and tensin homolog; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; GβL, 
G-protein β-subunit-like protein; PRAS40, proline-rich Akt substrate of 40 kDa; RAPTOR, regulatory-associated protein of mTOR; 
RHEB-GTP, Ras homolog enriched in brain-GTP; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; TCA, tricar-
boxylic acid; TSC1/2, tuberous sclerosis 1/2; S6K, S6 kinase. 
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β-oxidation, can be influenced by input from pyruvate through 
the pyruvate dehydrogenase complex. We also found that the 
level of a third component of the complex, dihydrolipoyl dehy-
drogenase, is significantly reduced in bladder cancer. This ob-
servation suggests that the higher acetyl-CoA levels in bladder 
cancer are largely due to elevated β-oxidation, rather than con-
version from pyruvate. Our speculation is concordant with the 
Warburg effect in cancer cells [92], in which pyruvate is con-
verted to lactate rather than acetyl-CoA. Although the AMPK-
fatty acid β-oxidation pathway has not been completely charac-
terized in the context of bladder cancer, fatty acid β-oxidation is 
mainly controlled by the AMPK pathway, suggesting that 
AMPK acts as an oncogenic regulator of bladder cancer. The 
pathways related to AMPK-fatty acid β-oxidation that are puta-
tively affected by bladder cancer, based on data from our two 
studies [84,85], are summarized in Fig. 4. 
  Several lines of evidence suggest that activation of the mTOR 

pathway and stimulation of the fatty acid β-oxidation pathway 
might be important in the development of bladder cancer. Both 
pathways are connected with the AMPK pathway. However, no 
study to date has described the connection between the AMPK, 
mTOR, and β-oxidation pathways. Additional research into the 
missing link between mTOR and β-oxidation of fatty acids fol-
lowing AMPK activation may reveal novel mechanisms under-
lying the roles of AMPK in bladder cancer.

AMPK AS A THERAPEUTIC TARGET FOR 
CANCER

As discussed above, AMPK activation exerts two seemingly op-
posing functions in cancer. Although AMPK activation (resulting 
in TORC1 inhibition) is considered to be a reasonable anticancer 
tactic [93], AMPK may in fact exert very complex effects in tu-
mor cells. The antidiabetic drug metformin, which inhibits mito-

Table 1. Drugs and compounds that modulate AMPK activity		

Drug and compound Function Effect on AMPK

AICAR AMP analog Activation

Metformin (biguanide) Reduces mitochondrial ATP production Activation

Phenformin Inhibition of respiratory chain Activation

Resveratrol Changes in ATP synthase activity 
Prevents acetylation of LKB1 
Upregulation of adiponectin synthesis 
Multimerization

Activation

TZD derivatives (TZDs, troglitazone;  
  rosiglitazone, pioglitazone)

Stimulate expression of adiponectin 
Increase in AMP concentration
Activation of PPAR

Activation

Antimycin A Inhibition of respiratory chain Activation

Sodium azide Inhibition of respiratory chain Activation

NO Inhibition of respiratory chain Activation

Oligomycin Inhibition of ATP synthase Activation

Dinitrophenol Uncoupling of electron transfer/ATP synthesis Activation

2-Deoxyglucose Inhibition of glycolysis Activation

Arsenite Inhibition of TCA cycle Activation

β-guanadinopropionic acid Increases AMP/ATP ratio Activation

A23187 Increase in cytosolic calcium ions Activation

A769662 Direct AMPK activator Activation

Compound C (dorsomorphin) Reversible, ATP-competitive inhibitor Inhibition

Sunitinib Binding to AMPK subunit Inhibition

Midostaurin Binding to AMPK subunit Inhibition

AMPK, 5´-AMP-activated protein kinase; AICAR, 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside; ATP, adenosine triphosphate; LKB1, 
liver kinase B1; TZD, thiazolidinedione; PPARγ, peroxisome proliferator-activated receptor γ; NO, nitric oxide; TCA, tricarboxylic acid.	



62    www.einj.org

Kim  •  AMPK in Bladder CancerINJ

Int Neurourol J 2015;19:55-66

chondrial metabolism, inhibits mTORC1 in both an AMPK-de-
pendent and AMPK-independent manner [60,62,94,95]. Com-
pound C, a selective AMPK inhibitor [96], binds to the AMPKα 
subunit and acts as an ATP-competitive inhibitor. However, sev-
eral studies have demonstrated that compound C can also inhibit 
many other kinases as well as the bone morphogenetic protein 
receptor, and this promiscuity raises doubts about whether its ef-
fects are mediated by AMPK inhibition [97]. Sunitinib, a multiple 
tyrosine kinase inhibitor that is used clinically against advanced 
clear-cell renal cell carcinoma, can directly inhibit AMPK by 
binding the AMPKα subunit [98]. Table 1 summarizes how 
AMPK activity can be affected not only in vitro, but also in grow-
ing cells, organs, or whole organisms. These data were collected 
from several publications describing the molecular mechanisms 
and tissue-specific effects of AMPK activity [64,99,100].
  Currently, several lines of evidence suggest that AMPK could 
act as a tumor promoter rather than tumor suppressor. Notably, 
secondary activation of AMPK by many metabolic inhibitors 
actually induces resistance to apoptosis, suggesting that inhibi-
tion of AMPK with concurrent induction of metabolic stress 
represents a more reasonable anticancer therapeutic strategy 
than activating AMPK. Such an approach might provide an ef-
fective way to investigate the synergistic anticancer effects of 
combination therapy using current treatment modalities in 
conjunction with the relevant AMPK inhibitors.

CONCLUSIONS

Although AMPK was originally considered a tumor suppressor 
that acted via mTORC1 inhibition, today the consensus is that 
AMPK might in fact be a tumor promoter. This suggests that in-
hibition of AMPK is a more reasonable strategy for treating can-
cers than activating the enzyme. Although activation of the 
mTOR pathway and elevated fatty acid β-oxidation are closely as-
sociated with the AMPK pathway, no publication has described 
the connection between the AMPK, mTOR, and β-oxidation 
pathways. Therefore, further research aimed at identifying the 
missing link between mTOR and β-oxidation of fatty acid follow-
ing AMPK activation will provide better insight into the role of 
AMPK in bladder cancer.
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