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Stem cell therapy has long been considered a promising mode of treatment for many incurable

. diseases. Human mesenchymal stem cells (hMSCs) have provided the most promising results to date

. forregenerative medicine. Nevertheless, due to several obstacles such as difficulty in sourcing and

. characterizing hMSCs, they remain largely unavailable for clinical use. The signaling requirements for
maintaining stem cell function have been studied widely, but little is known about how metabolism
contributes to stem cell function. hMSCs have been shown to promote therapeutic efficacy in hypoxic
conditions through metabolic conversion. According to published studies, certain metabolites are able

© to convert stem cell metabolism from oxidative phosphorylation to glycolysis. In this study, we selected
several metabolites (fructose-1,6-bisphosphate (FBP), Phosphoenolpyruvic acid (PEP) and sodium

. oxalate (OXA)) to examine the relation between metabolites and stem cell functions. In addition,

. weinvestigated the ability of selected metabolites to induce rapid expansion of this cell population.
Our results indicate that selected metabolites stimulate stem cell proliferation by induce glycolytic
metabolism via AKT/STAT signaling.

The current excitement regarding the potential for stem cell therapy to improve patient outcomes is understand-
able. However, several challenges remain with respect to the use of stem cells in scientific, ethical, and politi-
cal realms. Despite the absence of compelling evidence from adequate, well-controlled clinical trials, human
mesenchymal stem cells (hMSCs) may nevertheless be effective therapies for conditions currently considered
incurable™.
: Mesenchymal stem cells (MSCs) have been shown to promote therapeutic efficacy via a mechanism that is
: potentiated by hypoxic conditions (low O,)>. In particular, hypoxia increases the self-renewal capacity of stem cells
- through metabolic conversion®. According to published studies, certain metabolites are able to convert stem cell
. metabolism from oxidative phosphorylation to glycolysis. Among these metabolites, fructose-1,6-bisphosphate
(FBP), 3-phosphoglyceric acid (3PG), Phosphoenolpyruvic acid (PEP), 2-deoxyglucose (2DG), indoleacetic acid
(IAA), and sodium oxalate (OXA) have been shown to have promising effects in vitro in several cancer and pro-
genitor cell line models®-®. However, systematic identification of effective bioactive agents is challenging, partly
due to their low specificity for molecular targets.

Bioactive compounds target glycolytic signaling pathways including protein kinase B (AKT) and signal trans-
ducer and activator of transcription (STAT) in addition to other signaling pathways associated with stem cell
differentiation and progression. Importantly, natural compounds represent an invaluable resource for synergetic
combinatorial treatments’®. Indeed, the ability of these compounds to target multiple pathways might be advanta-

: geous in that they may limit compensatory signaling feedback loops and cross-talk between cellular pathways as

- well as between different cell types within the stem cell microenvironment.

: In the present study, we investigated the molecular effects and relationship between hypoxic condition and
metabolites on hMSCs. Our results will improve the understanding of the underlying mechanisms of metabolites
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on hMSCs and may also expand our understanding of stem cells. Ultimately, our results may increase the feasi-
bility of stem cell therapy.

Results

Enhanced cell proliferation in hypoxic conditions through metabolic regulation.  We first exam-
ined the effect of hypoxic conditions on hMSC metabolism. To this end, hMSCs between passages 7 and 10 were
cultured for 72 hrs under normoxic (20% oxygen) or hypoxic (1% oxygen) conditions. The number of hMSCs at
the end of the culture period was greater under hypoxic conditions compared to normoxic conditions (Fig. 1a).
In addition, the protein expression of proliferation cell nuclear antigen (PCNA) in the hypoxic condition group
was higher than that of the normoxic group (Fig. 1b). Compared to hMSCs cultured under normoxic conditions,
cells cultured under hypoxic conditions exhibited upregulation of glycolysis related genes (glucose transporter 1
(GLUT1), hesokinase2 (HK2), and lactate dehydrogenase A (LDHA)) and downregulation of TCA cycle related
genes (pyruvate dehydrogenase kinase isoform 2 (PDK2), isocitrate dehydrogenase 1 (IDH1), and succinate dehy-
drogenase complex subunit A (SDHA)) (Fig. 1¢). In addition, the expression of glycolysis-related proteins (HK2,
pyruvate kinase isozymes M2 (PKM2), LDHA, and monocarboxylate transporter 4 (MCT4)) was increased cells
cultured under hypoxic conditions compared to cells cultured under normoxic conditions (Fig. 1d). Cells cul-
tured under hypoxic conditions also exhibited upregulation of Cyclin A and B1 and downregulation of Cyclin D1
and D3 protein expression compared to cells cultured under normoxic conditions (Fig. Le).

Conversion of hMSC metabolism by selected metabolites. To investigate stem cell metabolism, we
treated hMSCs for 72 hrs with different metabolites related to glycolysis, namely, FBP, PEP, 2DG, and OXA, and
evaluated their effects on cell proliferation and PCNA expression (Fig. 2a,b). Among the selected metabolites,
treatment with hypoxia, FBP, PEP, or OXA resulted in increased cell numbers compared to cells cultured under
normoxic conditions, but 2DG treatment showed lower cell numbers compared to that of normoxic conditions.
The expression of PCNA protein of 2DG treatment was lower than normoxic condition and other metabolite
treatment. In order to examine the relationship between glycolysis and metabolite treatment, hMSCs were also
treated with FBP, PEP, or OXA at varying doses and treatment durations. The expression of proteins related to
glycolysis, namely, HK2, PKM2, LDHA, and MCT4, were increased following metabolite treatment (Fig. 2c—e).

Maintenance of hMSC characteristics after metabolite treatment. To investigate the characteris-
tics of hMSC:s after treatment with metabolites, cells were stained with MSC markers (CD31, CD34, CD45, CD73,
CD90, and CD105) and analyzed by FACS. hMSCs treated with the different metabolites exhibited nearly identi-
cal characteristics as untreated hMSCs as well as hMSCs cultured under hypoxic conditions (Fig. 3).

Downregulation of markers of differentiation and senescence after metabolite treatment. To
examine the effect of the different metabolites of hMSC differentiation, we investigated their effect on osteo-
genic (Osterix, Osteonectin, and alkaline phosphatase (ALP)), adipogenic (runt related transcription factor
(Runx), fatty acid binding protein 4 (FABP4), peroxisome proliferator-activated receptor gamma (PPAR~), and
Adiponectin), and chondrogenic (Chondroadherin, Collagen2, and Sox9) differentiation markers. hMSCs treated
with the metabolites exhibited significantly decreased expression of differentiation markers compared to hMSCs
cultured under normoxic conditions. But downregulation effect of differentiation markers after metabolite treat-
ment was smaller than that of hypoxic condition culture (Fig. 4a). We also investigated the effect of metabo-
lite treatment on levels of senescence marker genes. Especially, we found that the gene expression of p16 was
decreased in hMSCs treated with metabolites compared to cells cultured under normoxic conditions. On the
other hand, there was no significant difference in the gene expression of p21 and p53 between hMSCs cultured
with the metabolites or under normoxic conditions (Fig. 4b).

Cell cycle transition and AKT/STAT pathway change after metabolite treatment. We next
examined hMSCs treated with metabolites by cell cycle analysis and western blot assay for proteins involved
in cell cycle progression. Among the selected metabolites, cells treated with FBP and OXA exhibited increased
expression of cyclin A and B1 (Fig. 5a). Likewise, the percentage of cells in the S phase of growth was higher in
hMSCs treated with FBP or OXA compared to cells cultured under normoxic conditions (Fig. 5b,c). The expres-
sion levels of AKT/STAT proteins after treatment with the selected metabolites were also increased compared to
cells cultured under normoxic conditions (Fig. 5d).

Discussion

Hypoxic condition is natural microenvironments of the stem cell niches that maintain the MSCs in vivo
Maintenance of the MSCs under hypoxic condition in vitro showed enhanced cell proliferation and increased
PCNA protein expression (Fig. 1a,b). The cell cycle related proteins were changed under hypoxic culture (Fig. 1e).
This results are in agreement with previous studies cultured MSCs in vitro under hypoxic conditions'*"'°. The
PCR data indicates hypoxic condition can regulate metabolism of the MSCs through upregulation of glycoly-
sis related genes and downregulation of TCA cycle related genes (Fig. 1c). In addition, expression of glycolysis
related proteins were upregulated under hypoxic condition culture (Fig. 1d). This finding suggests that enhanced
proliferation of MSCs cultured under hypoxic conditions is related to changed metabolic pathway. Metabolic
regulation under hypoxic culture in stem cells was studied previously*!”'8, but correlation of changed metabolic
pathway through treatment of metabolites and the MSCs behavior has not been revealed perfectly.

Metabolism plays a pivotal role in controlling whether a cell will proliferate, differentiate, or remain qui-
escent. A key unresolved question in this paradigm is how metabolism integrates with epigenetic and genetic
programs to regulate coordinately stem cell function and fate!”!°-2°. Numerous studies have shown that mouse
and human ESCs and iPSCs, or highly pluripotent stem cells, have an increased dependence on glycolysis under
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Figure 1. Enhanced cell proliferation under hypoxic conditions is mediated by metabolic regulation. (a) Cell
numbers after growth under hypoxic or normoxic conditions. *p < 0.05 compared to the normoxia group at
each passage; n =4 per group. (b) Proliferating cell nuclear antigen (PCNA) protein expression after culture
under hypoxic conditions. (c) Expression of genes related to glycolysis (GLUT1, HK2 and LDHA) and oxidative
phosphorylation (PDK2, IDH1 and SDHA) after culture under hypoxic conditions. *p < 0.05 compared to

the normoxia group at each passage; n=4 per group. (d) Cell metabolism signaling protein expression after
hypoxia treatment. (e) Expression of cyclin proteins following culture under hypoxic conditions. For all studies,
‘hypoxic conditions’ refers to incubation at 1% O, for 72 hrs.

aerobic conditions compared to cells utilizing oxidative phosphorylation to meet their energy needs. The molec-
ular mechanisms that regulate both energy metabolism in pluripotent stem cells and the changes that occur
during differentiation or reprogramming remain an area of active scientific study?”?%. For example, glycolysis
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Figure 2. Conversion of hMSC metabolism by selected metabolites. (a) Expression of proteins related to cell
metabolism after metabolite treatment. Cell numbers (b) and expression of proliferating cell nuclear antigen
(PCNA) (c) after metabolite treatment. (d—f) Expression of proteins involved in cell metabolism signaling after
treatment with the indicated metabolites (FBP, PEP, OXA) according to dose and duration of treatment.

regulating enzymes including hexokinase and lactate dehydrogenase A are highly expressed in pluripotent stem
cells?!. Consistent with previous studies, we treated four metabolites to the MSC and found that glycolysis metab-
olism was induced by certain concentration of FBP, PEP and OXA (Fig. 2), all of which play roles in stem cell met-
abolic conversion and proliferation®8. Treatment of FBP, PEP and OXA did not induced MSC characterization
change compared with normoxic or hypoxic culture (Fig. 3), but caused decrease of differentiation markers and
senescence markers (Fig. 4). Decrease of senescence markers may affect to paracrine functions and differentiation
markers expression of MSC!>*%. In addition, metabolites treatment induced cyclin A and cyclin B1 expression
(Fig. 5a) and cell cycle change (Fig. 5b,c). Especially in PEP and OXA treated group showed increased protein
expression of STAT3 and AKT pathway (Fig. 5d). It is well known that AKT/STAT pathway can regulate cell
cycle®=33. The tendency of protein expression and gene expression of metabolite treated MSCs were similar with
that of the cells cultured under hypoxic condition, but the change of protein and gene expression was smaller than
that of the hypoxic condition culture. Our results suggested that treatment with certain metabolites is an effective
means of enhancing MSCs maintenance, which is important with regard to the use of these cells in regenerative
medicine, without hypoxic condition.

The results of the present study have the potential to have a significant impact on the field of stem cell culture
and, more broadly, the study of diseases that may benefit from adult stem cell implantation. Therefore, our study
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Figure 3. Maintenance of hMSC characteristics after metabolite treatment. Flow cytometry analysis for hMSC

markers (CD31, CD73, CD34, CD45 negative and CD 90, CD105 positive) after treatment with the indicated
metabolites (FBP, PEP, OXA).

not only highlights the importance of metabolism maintaining stem cells, but suggests that understanding the
metabolic changes associated with stem cell may shed light on the metabolic mechanisms that regulate cellular
proliferation. On the other hand, the results of the present study, while important, are not sufficient to generate a
complete picture of the molecular components regulating stem cell function and differentiation. As metabolism
involved in every aspect of cell function, future studies may focus on understanding the effect of metabolism on
cell fate.

Materials and Methods

Cell culture. Human umbilical cord derived mesenchymal stem cells (hMSCs; PromoCell) were grown in
Dulbecco’s modified Eagle’s medium (DMEM; GIBCO) containing 10% fetal bovine serum (GIBCO) and 1%
penicillin/streptomycin antibiotics (Invitrogen) at 37°C in a 5% CO, incubator with either 21% O, (normoxia)
or 1% O, (hypoxia). The hypoxic condition culture cells were maintained in hypoxia after passage number 3. For
cell number counting, cells were stained with Trypan blue (Invitrogen) and cell densities were determined with a

SCIENTIFICREPORTS| (2019) 9:6112 | https://doi.org/10.1038/s41598-019-42669-x 5


https://doi.org/10.1038/s41598-019-42669-x

www.nature.com/scientificreports/

a Differentiation marker
1.2
c
S
‘» 1.0
73
2
3 0.8 — N
) s H
206 === N +FBP
< —— N+PEP
b 04 = N +OXA
= *
ia L
< 0.2
4
0.0 i
|Osteogenic | Adipogenic Chondrogenic
& 0‘.'\(\ < \)& Qﬁ d&\ & 0(0' ol
e e Q\&Qq‘g‘& S P
oe'e' v;>\Q° @ P
b o®
Senescence marker
1.4 -
c
xe]
0w 1.2 1
]
<
% 1.0 1 === N
08 —
g - == N+FBP
S 06 . — N+PEP
g’ . mmm N + OXA
-E 0.4 1
8
[ ]
& 0.2
0.0

Figure 4. Downregulation of differentiation markers and senescence marker following metabolite treatment.
(a) Gene expression of markers specific for osteogenic, adipogenic, and chondrogenic lineage differentiation
after culturing under hypoxic conditions or with the indicated metabolites (FBP, PEP, or OXA). *p < 0.05 as
compared with N group; n=4 per group. (b) Gene expression of markers for senescence after culturing under
hypoxic conditions or with the indicated metabolites (FBP, PEP, or OXA). *p < 0.05 as compared with N group;
n=4 per group.

Countess (Thermo Fisher Scientific) automated cell counter. The initial density of seeded cell 5000 cells per cm?.
Cell number counting experiments were performed at 6 day after seeding for Fig. 1a and 3 day after seeding for
Fig. 2a. Passage number 8 cells were used for metabolite treatment experiment.

Western blotting. Cells were lysed in LIPA buffer and the lysates were clarified by centrifugation at
13,200 rpm for 30 min at 4 °C. Protein lysates were subjected to SDS-PAGE and transferred to membranes.
Membranes were blocked in TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween-20, pH7.4) containing 5% skim
milk and then incubated with the primary antibody at an appropriate dilution in TBS-T containing 5% skim
milk for 3h at room temperature or overnight in a cold room. Staining with a secondary antibody (anti-rabbit- or
anti-mouse-conjugated horseradish peroxidase; Cell signaling and Bethyl, respectively) was followed by ECL (AB
Frontier) for visualization.

RNA isolation and quantitative real-time PCR. Total RNA was extracted using and RNeasy Mini
Kit (Qiagen) and quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific). cDNA was
prepared with a PrimeScriptTM RT reagent kit (Takara) using Oligo d(T) and Random primers for gRT-PCR.
Primers for the following genes were used for our analysis: GLUT1, HK2, LDHA, PDK2, IDH1, SDHA, p53, p21,
p16, Osterix, Osteonectin, ALP, Runx, FABP4, PPAR~, Adiponectin, Chondroadherin, Collagen2 and Sox9.

Metabolite treatment. Fructose-1,6-Bisphosphate (FBP), phosphoenolpyruvic acid (PEP), 2-Deoxyglucose
(2DG), and Sodium oxalate (OXA) were purchased from Sigma Aldrich. Cells were treated with FBP or PEP ata
concentration of 200 uM or with 2DG or OXA at a concentration of 100 pM for 72 hrs.

Flow cytometry analysis. Human UC-MSCs were evaluated using surface marker detection at passage 8 (P
8) to confirm the effect of metabolite treatment on MSC characterization. hUCB-MSCs at 80% confluence were
harvested and suspended in FACS buffer (1 x 107 cells/ml). The following antibodies were then added to each
sample: Anti-CD34 fluorescein isothiocyanate (FITC), Anti-CD90 phycoerythrin (PE), Anti-CD73-PerCP-Cy5.5,
Anti- CD105-allophycocyanin (APC), Anti-CD31 Violet450 (V450), and Anti-CD45 Violet500 (V500) (BD
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Figure 5. Cell cycle transition after metabolite treatment. (a) Cyclin protein expression after culturing under
hypoxic conditions or with the indicated metabolites (FBP, PEP, or OXA). *p < 0.05 as compared with N

group; n=4 per group. (b,c) Cell cycle analysis after culturing under hypoxic conditions or with the indicated
metabolites (FBP, PEP, or OXA). (d) Western blot analysis and its quantification about expression of AKT/STAT
signaling proteins after metabolite treatment. *p < 0.05 as compared with N group; n =4 per group.

Biosciences) followed by incubation at 4 °C for 30 min. For cell cycle analysis, hUCB-MSCs treated with hypoxic
condition and metabolites were stained with Phase-Flow BrdU Cell Proliferation Kit (BioLegend). After staining,
cells were washing with PBS and evaluated with a BD FACS Verse flow cytometer (BD Biosciences). Data were
analyzed with BD Verse analysis software (BD Biosciences).
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Statistical analysis. Quantitative data were expressed as mean + SD. OriginPro 8 software (OriginLab,
Northampton, MA) served for one-way analysis of variance. “Statistically significant” means that the p value is
less than 0.05.
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