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ABSTRACT Keyword search in a cluttered environment is difficult in general, and even more challenging
for people with low vision. While magnification can help in reading for low vision people, it does not facilitate
efficient visual search due to the constriction of the field of view. The motivating observation for this study
is that, in a large number of visual search tasks, people know what are they looking for (i.e., they know the
keywords), they just do not know where to find them in the scene. We have developed a mobile application
that allows the users to input keywords (by voice or by typing), uses an optical character recognition (OCR)
engine to search for the provided keyword in the scene captured by the smartphone camera, and zooms in on
the instances of the keyword detected in the captured images, to facilitate efficient information acquisition.
In this paper we describe the development and evaluation of various aspects of the application, including
comparing the various mainstream OCR engines that power the app, and an evaluation study comparing the
app to the conventional optical magnifier vision aid. Normally sighted adults, while wearing blur glasses to
lower their visual acuity, performed keyword searches for a series of items ranging from easy to difficult with
the app and with a handheld magnifier. While there was no difference in the search times between the two
methods for the easier tasks, the app was significantly faster than the magnifier for the difficult tasks.

INDEX TERMS  Low-vision aid, mobile application, optical character recognition (OCR), timed
instrumental activities of daily living (TTADL) tasks.

I. INTRODUCTION
VISUAL search is an important, frequently performed visual
task in daily life, such as looking for a street name when
walking, or finding the calorie content of a food product.
Performing visual search in a cluttered environment can be
very demanding, even for those with normal vision. [1], [2]
It is even more challenging for people with visual impair-
ments [3]-[7] Among the various aspects of daily life that are
negatively affected due to visual impairment, the limitations
in performing visual search are one of the key challenges that
hampers efficient information acquisition. [8], [9] As vision
impairment can run the gamut from moderate loss of visual
acuity (moderate low-vision) to complete blindness (no light
perception), the challenges faced in performing daily tasks
vary greatly between patients with different conditions, and
between individuals. [10], [11]

Visual search can be considered a spot reading task, which
is the act of quickly locating and acquiring a specific piece

of information from a scene. People with moderate to severe
vision loss (up to the level of legal blindness), such as
those who have central vision loss, often rely on magnifica-
tion for reading or discerning the details of their surround-
ings. [12], [13] However, increased magnification leads to a
smaller field of view, which makes searching for a particu-
lar detail within the scene highly inefficient. For example,
when searching for a particular ingredient on a product label,
the information of interest is only a small portion of the label
(Figure 1a). However, one usually needs to go through the
list from top to bottom and end-to-end. When using magni-
fication, as is usual for many visually impaired people, this
kind of search may take even longer time due to the reduction
of the field of view caused by magnification. On the other
hand, the visual field restriction for people with peripheral
vision loss (PVL), such as those with retinitis pigmentosa
(RP), greatly affects their visual search ability despite having
good visual acuity [14], [15] They may not have problems
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FIGURE 1. Different aspects of visual search applied to different tasks.
(a) Rather than reading through the whole fact sheet, a person often
needs to check just a few details about a product, e.g. GABA in this
cognitive supplement. (b) In many navigation situations, visually impaired
travelers have difficulty knowing where to look to find the needed
information amongst all the available options. When using magnification
to read distant text, the reduced field of view makes finding the target
more difficult in cluttered environments.

in discerning the scene details, but often have difficulty in
knowing where to look for the required information and may
need help in locating the targets (Figure 1b). Thus, visual
search related challenges could arise due to a variety of
reasons, including inability to locate the targets, inability to
discern target details, or both. Therefore, a vision aid assisting
in visual search can help people with vision loss in various
daily life tasks.

To tackle the visual search related challenges in visually
impaired users, dedicated devices [16] and services [17] have
been developed that leverage artificial or human intelligence.
Considering the growing prevalence of mobile devices in the
general as well as visually impaired population [18]-[21],
mobile applications aiding in visual search specifically target-
ing visually impaired users are also now available. [22], [23]
The main idea behind many of these vision aids is to perform
one or multiple functions including object detection, opti-
cal character recognition (OCR), and/or scene categorization
using computer vision, and then provide some feedback to
the user via a predefined tags or descriptions. Performing
generic object detection can be challenging in the real world
(for example, product identification based on barcode or
appearance) and the predefined categories of object classes
may be too restrictive to cover the rich variety of objects
encountered in everyday situations. Comparatively, OCR is
a much more well-defined problem with mature and estab-
lished technologies available to tackle it. Searching with key-
words can be intuitive and help narrow down the scope of the
search, thereby improving the odds of obtaining the required
information. However, dedicated OCR apps are meant for
document reading instead of detection of text in the scene [24]
Even in applications that can perform OCR in scene images,
the feedback provided to the user is generally not relevant,
as the entire text blocks detected in the scene are continuously
read to the user. We have developed a mobile app, Supervision
Search (SVS) [25], that can perform keyword search in scene
images so that the users can quickly and efficiently retrieve
the relevant information from their surroundings or from the
object of interest.

The key arguments in support of development of SVS
app are: 1) searching for items represented by text or symbols
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forms a large part of visual search activities in the daily
lives of people with low vision, ii) in most cases, people
already know what they are searching for (i.e., the keywords
are already known), and iii) if the keywords are located
in the scene, then the information related to those key-
words is available in the general vicinity (spatially) of the
detected keywords. Searching with keywords, for instance
using Google, is ubiquitous when the information is in digital
form. The SVS app merely generalizes the same approach
in real-world scenes. By leveraging powerful OCR engines,
the SVS app searches for user input keywords, then highlights
and zooms in on the found instances of the keyword in the
captured scene image to facilitate quick and easy retrieval of
information related to the keyword.

In this paper, we describe the concept of keyword search
in natural images and its relevance in various daily life activ-
ities, detail the design of the SVS app to target different
requirements of low vision users, and present results of its
preliminary evaluation: both of the underlying algorithms,
and of the app by human subjects with simulated visual acuity
loss. The goal of this work is to test whether the approach
of keyword search in natural scene images can be utilized to
design a vision aid for visually impaired people, and whether
the SVS app can provide additional benefits compared to
conventional visual aids.

Il. KEYWORD SEARCH IN SCENE IMAGES

For developing a visual search assistance application for
visually impaired people, we needed to identify methods for
performing the search, as well as define methods for seamless
interaction with the user. For performing the keyword search,
we relied on established optical character recognition (OCR)
technologies instead of developing custom algorithms from
scratch.

A. OPTICAL CHARACTER RECOGNITION ENGINE

An OCR engine lies at the heart of a keyword search appli-
cation, as its capabilities and limitations essentially shape
much of the usability of the search application. Quite simply,
an OCR engine processes the input image to detect text
regions, recognize the characters, group them into words,
and output strings of text with associated metadata, such
as its location in the image (coordinates of the bounding
box for a word), and possibly its orientation with respect to
predefined axis, among other data. The main application for
OCR technology has been to digitize printed documents; and
in the space of assistive technologies for visually impaired
people, OCR is extensively used in applications for assistance
in reading printed material and documents [24] However to
be truly useful in general scenarios, OCR needs to work for
text embedded anywhere in the scene, and not just documents.
Thus, scene text recognition is more challenging and cannot
be handled very well by applications focused on document
OCR processing. Therefore more sophisticated OCR engines
are needed.
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Fortunately, there are various commercially available
3™ party OCR engines, available for incorporation within
end-user applications, which have been trained using
advanced machine learning techniques to work in highly
demanding real-world images containing text. Four differ-
ent OCR Engines that can be implemented via an API
were evaluated to determine the accuracy and usability of
each engine: Google Machine Learning Kit (ML Kit) [26],
Microsoft Azure’s Cognitive Services (Azure OCR) [27],
ABBYY’s Real Time Recognition SDK (ABBY RTR) [28],
and Amazon’s Rekognition SDK (Rekognition) [29].

e Google Machine Learning Kit (version 16.0.0) — This
service provides machine learning models for text recognition
that are both native to the device and cloud-based. In this
study however, we only used the native version of the API
that is freely available. This engine returns the words that are
found in the image along with the coordinates of the bounding
box of each word.

e Microsoft Azure’s Cognitive Services (version 2.0) —
This cloud-based service provides image processing algo-
rithms to identify content present in the image. Pictures of the
content are sent to the service to be processed, and a JSON
file is returned with the detected text, a bounding box for each
word, and its orientation angle. There is a limitation on the
maximum image size (4MB) that can be sent to the service.
Being a cloud-based engine exclusively, it requires a network
connection to work and is not particularly well-suited for
real-time applications.

e ABBYY’s Real Time Recognition SDK (version
1.0.7.56 free demo version) — A native model similar to
Google’s Machine Learning Kit, this OCR Engine can also
process frames of a live video stream in real time. A con-
fidence level for detection needs to be set as an operating
parameter for accuracy of detection of a word within the
image. This engine returns the location of the line in which
the word is present within the image, but the exact bounding
box for a particular word was not available for the version
used in this work.

e Amazon’s Rekognition SDK (version 2.6) — This is a
cloud-based service that returns the detected text, the confi-
dence level of each word, and the “geometry” of the word,
which contains a polygon that surrounds the word. A limi-
tation of this OCR service (the version that was available for
this work) was that the image size sent to the cloud server was
restricted to SMB, and it only processed up to a maximum
of 50 words within the image.

B. EVALUATION OF OCR ENGINES

The accuracy and robustness of the above 4 OCR engines in
finding a specific search query was evaluated in a variety of
natural images captured in offices, train stations, stores, and
on streets in downtown Boston (Figure 2). For each image,
a set of most relevant keywords were identified to be tested by
the OCR engines. An image could have more than one key-
words associated with it. Keywords were selected such that
they would make sense in a realistic application. For example,
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FIGURE 2. Examples of natural images (captured with a mobile device)
used for testing the OCR engines. Actual images used for testing are
shown the in the top row and the search keyword associated with each
image is listed in the bottom row. The location of the keyword in the
images is highlighted in the images with an overlaid yellow rectangle (for
the purpose of illustration, does not reflect OCR output). The highlighted
patch is zoomed in the middle row below the images. The keywords for
each image were chosen to represent realistic usage in way finding
scenarios.

in an image of an intersection, the likely search query would
be the street name present in the image; or for a food prod-
uct, the likely search queries could be any of the nutritional
factors. A total of 203 keywords for 117 images were iden-
tified. High resolution images were captured using Samsung
Galaxy S7, S8, and Google Pixel smartphones; although the
images were not of exact same size (Mean+ SD diagonal
was 4939£258 pixels). More specifically, the 117 test images
captured from the three smartphone devices had one of these
4 resolution values: 1520x2688 (n=2), 2268 x4032 (n=31),
3024x4032 (n=12), and 3036x4048 (n=72). Each image
was tested at 3 different zoom levels — 1x, 2x, and 4x.
If an OCR engine was not able to find the keyword at the
lowest zoom level, then next zoom level was tested. Images
were zoomed such that the search keyword was present near
the center of the image. The Lanzcos interpolation was imple-
mented, as it allows for detailed upsampling of the image and
preservation of small text. The true location of the keyword
within the captured images was determined manually for
comparison of the spatial accuracy of the keyword localiza-
tion. For each keyword, the detected text and the location of
each word was saved (with the exception of ABBYY Real
Time Recognition service, where it was not possible to obtain
the location of the detected keyword from the SDK version
that we were using for testing).

The performance of the OCR engines was evaluated in
terms of the number of keywords successfully found, and the
zoom level at which they were found. Particularly, we were
interested in determining the cumulative detection success
and the success in detection at the base scale (no zoom
or 1x condition) for performance considerations. For both
of these outcomes, the proportions of successfully detected
keywords were compared between the 4 OCR engines. The
closeness of the location of the detected keyword in the
image to the ground truth location was also determined.
The distance (Euclidean) between the detected word and
the ground truth location was calculated and normalized
with respect to the image dimensions. For determining
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the localization accuracy, only successfully detected single
keyword instances were considered. Log-transformed key-
word distances were compared between the 3 OCR engines,
excluding ABBYY RTR for which we did not have data.

C. RESULTS

Out of the 203 keywords tested, only 3 were not detected
by any of the OCR engines. A 4-sample test for equality
of proportions showed that the overall successful search rate
differed significantly between the OCR engines (x> = 187.5,
df = 3, p < 0.001), with ML Kit and Rekognition hav-
ing a significantly higher overall success rate than Azure
OCR and ABBYY RTR (p < 0.001 for all multiple pairwise
comparison with Bonferroni correction). The proportion of
successfully detected keywords was significantly higher for
Azure OCR compared to ABBY RTR (p < 0.001). There was
no difference in the overall success rate between ML Kit and
Rekognition. Successful search rate at 1x zoom level differed
significantly between the 4 OCR engines (x> = 325.16,
df = 3, p < 0.001), with ML Kit being the most successful
in detecting keywords without needing to zoom in, followed
by Rekognition, Azure OCR, and ABBYY RTR. All pairwise
comparisons were significant (Bonferonni correction). While
the overall successful detection rate was not significantly dif-
ferent between ML Kit and Rekognition, ML Kit detected sig-
nificantly more keywords at the base zoom level (Figure 3a).
The keyword search success rates at different image zoom
levels for the 4 OCR engines are shown in Figure 3a and
summarized in Table I. The keyword detection accuracy did
not change significantly between different image resolutions,
when blocking for scale at which they were found (Fried-
man’s test: X2 =3.9, df=3, p=0.27).
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FIGURE 3. OCR testing results in natural images captured by a mobile
device. (a) Comparison of the percentage of keywords successfully found
by the 4 OCR engines tested in our study (from a total of 203 keywords
over 117 images) at different image zoom levels. Cumulative percentage
of detected keywords for ML Kit and Rekognition were significantly
higher than others. ML Kit was also significantly better than the other 3 in
successful detection at base zoom level (1x). (b) Comparison of the
average normalized distance to the detected keyword in the image from
the ground truth location (manually marked for each keyword). Keyword
localization error was significantly different between Rekognition and
ML Kit.

The keyword localization accuracy was evaluated by com-
puting the distances between the keywords correctly found in
the image and the ground truth locations, based on 164, 163,
and 113 cases out of 203 for ML Kit, Rekognition, and Azure
OCR, respectively. The keyword localization errors were
significantly different when comparing the three engines
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TABLE 1. Successful keyword search rates at different zoom levels for the
4 OCR engines.

ML Kit Rekognition Azure OCR ABBYY RTR
1x 172 (84.7%) 115(56.6%) 48 (23.6%) 6 (3.0%)
2x 16 (7.9%) 61 (30%) 58 (28.6%) 31 (15.3%)
4x 7 (3.4%) 17 (8.4%) 31 (15.3%) 59 (29.1%)
Total 195 (96.1%) 193 (95.1%) 137 (67.5%) 96 (47.3%)

nstant Oi Change

Alewife Oil

Coconut

FIGURE 4. Some examples where the OCR engines failed to detect the
keywords. The keywords associated with the images are shown below the
pictures. The location of each keyword within an image is indicated by a
red arrow, and the keyword region is shown in the inset for clarity. Font
type variations, background clutter, and image degradation are some of
the main reasons for OCR failure in natural images.

(Kruskal-Wallis x2 = 10.54, df = 2, p = 0.005), with pair-
wise comparisons revealing a significantly larger localization
error for ML Kit compared to Rekognition (p = 0.003 with
Bonferroni correction). There was no significant difference
between Rekognition and Azure OCR. Relative to the size
of the images, the keyword localization errors were between
0.2% and 0.4% of the image dimensions. Some examples of
keyword search failures are shown in Figure 4.

D. DISCUSSION

Our evaluation of the OCR engines with natural images shows
that ML Kit performs the best in terms of proportion of
keywords successfully recognized, as well as the proportion
of keywords recognized at the base image scale without
needing to zoom in. Not having to zoom-in for successful
recognition can potentially save processing time and maintain
the maximum possible the field of view of the scene, thereby
improving the usability of the search paradigm in complex
real world scenarios. Even though ML Kit was found to be
statistically significantly worse at localization of keywords
but overall just slightly (localization error of 1.4% of the
average image size) compared to Rekognition(error of 1%
of the average image size), the differences are mainly due
to outliers. One of the main reasons for this is OCR mis-
takes, such as the merging of the keyword with neighboring
word (for example, when searching for keyword ‘pharmacy’,
the localization is affected by the preceding text ‘CVS’.
So while the keyword is found, the localization error with
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respect to the ground truth location can be higher. While
highly precise localization of the detected keyword in the
image is an important consideration, a small localization error
can be tolerated when searching for information associated
with the keyword. As previously reported, the 0.2 to 0.4%
localization error amounts to less than 20 pixel difference,
which is negligible considering the information associated
with the keyword will still be in the neighborhood of the
searched keyword.

One of the main reasons for search failure, particularly for
OCR engines other than the ML Kit, was the small size of
the text in the image, which was resolved in most cases by
increasing the scale. Other reasons were image degradation
and presence of non-standard fonts (such as too artistic,
oriented in different directions, or composed of dots as seen
in the LED display on train station in Figure 4). Another
factor that could be responsible for search failure is OCR
errors, where the recognized text from the image contains the
keyword but OCR mistake such as merging, typos, or special
characters prevents its successful identification.

There was a large disparity in the capabilities of the OCR
engines to detect slanted text. ML Kit and ABBYY RTR were
limited to detection of text in a relatively narrow range of
orientations (& £30°). Azure OCR was able to detect text
in all possible orientations due to its ability to switch the
axes of the images based on the device orientation. However,
it assumed that all the text within the image had similar
orientations and thus could not handle multiple orientations
of text within the same search image. Rekognition was able
to handle text in multiple orientations.

From the usage-standpoint, each OCR engine had its own
strengths and limitations. Rekognition and Azure OCR were
cloud-based engines and thus required network connection.
Given the lag in transmitting the input image and retrieving
the detected text within the image from the cloud, real-time
implementation with these OCR engine is not practically
feasible. Moreover, the version of Rekognition SDK tested
in this study had an upper limit on the number of words it
could detect in a given image. Thus, despite being relatively
successful in detecting almost all the keywords in our outdoor
test images, it could not handle situations where there was
a lot of text in the image. The ABBY RTR engine could be
implemented natively (not requiring cloud-based processing),
but the demo version we tried in this study was clearly inferior
to other OCR engines in scene text detection. Compara-
tively, ML Kit worked natively on the device (did not require
cloud-based processing), was capable of providing real-time
text detection output, and showed robust performance in chal-
lenging images, particularly detecting text without needing
to zoom-in. Based on the experimentation with the OCR
engines, we chose ML Kit for implementing the Android
version of the SVS app with the capability for real-time scene
text detection.

It should be noted that the OCR engines in our experiment
could only be accessed via standard API calls, and therefore
were essentially treated as black-boxes. It is possible that
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there were internal details no known to us that led to their
differing performance in our experiment. For example, it is
possible that MLKit OCR was using some kind of multi-scale
approach internally that made it more successful in detecting
keywords at base image scale. However, our comparison
treats all the OCR engines on the same level, i.e., using them
in an ““as is” state based on the available specifications for
the application developer.

lll. THE SUPERVISION SEARCH (SVS) MOBILE
APPLICATION

A. DESCRIPTION OF SVS APP

The operational concept of the SVS app is shown in Figure 5.
The scene is captured by the device’s camera and the image(s)
are processed by the OCR engine to detect all the text present
in the image(s). The keyword input by the user is searched for
within the detected text, and depending on the usage mode,
the user is informed via a combination of various methods:
vibration of the device, voice confirmation, and displaying
the zoomed-in and highlighted instance of the keyword. The
keyword can be input via speech (standard voice input in the
mobile device) or via keypad. The underlying OCR engine
can be implemented using any of the mainstream APIs,
including the 4 OCR engines discussed above. The applica-
tion interface remains the same irrespective of the choice of
the OCR engine, although the choice of OCR engine affects
the performance and other operational parameters (such as
availability of a network if the OCR APl is cloud-based). The
implementation of the app is constrained by the off-the-shelf
OCR API itself. The OCR engines typically take the entire
image as the input and provide all the scene text detected in
the input image as the output. Therefore, keyword compari-
son has to be performed following the OCR stage. Currently,
the iOS version of the SVS app is based on Azure OCR.
The Android version of the SVS app has been implemented
using the ML Kit due to its native processing, real-time
performance, and its overall robustness. The app functionality
explained below pertains to the Android version.

Keyword

Speech to text Vibration
- Voice
Camera .Capture Preprooessmg Compare Output p.osl Output confirmation
image(s) and RO selection keyword processing

Display
(highlight &

zoom)

OCR Mainstream 3" party OCR APls
(Goolge MLKit, MS Azure,
Engine

Amazon , ABBY)

FIGURE 5. Overview of the operational steps in performing keyword
search in natural images using a mobile device. The shaded region
represents the block diagram of the Supervision Search app.

There are two modes of operation for the SVS app: point-
and-shoot mode and real-time scan mode (Figure 6). The
point-and-shoot mode is ideal for searching a keyword in the
scene or within an object. On the other hand, the real-time
scan mode is more suited for searching in a wide field of
view, for example: localizing the exit door. In point-and-shoot
mode, a single high resolution picture of the scene is captured
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FIGURE 6. The two operational modes of the SVS app. Screenshots of the
input screen, the search notification screen, and the zoomed in location
of the found keyword are shown for each mode. (a) In the
point-and-shoot mode, the user takes a picture of a scene and the search
result is highlighted and zoomed in for better viewing. (b) In the real-time
scan mode, there is a region of interest at the middle of the screen. When
the keyword is found within this region of interest, then the app provides
an indication. Thus the direction of camera pointing is loosely related to
the spatial location of the keyword in the scene. This helps in way
finding, for example- in this case, the location of the exit sign.

with the rear camera of the mobile device and processed by
the OCR engine to detect the presence of the keyword input
by the user. In the real-time scan mode, the user presses and
holds on the screen while moving the device in a scanning
pattern over the target area (for example, scanning with the
mobile device from side to side). Each video frame acquired
by the camera is grabbed from the image buffer and processed
by the OCR engine to detect the presence of the keyword
in the scene in real-time. With the real-time search, when
the keyword is detected in the scene, the orientation of the
device with respect to the user will approximately indicate
the direction of the found keyword. In order to improve
the localization precision of the keyword in the real-world,
a scanning slice is introduced to restrict the field of view of
the camera, thereby reducing the search area (searching only
within a narrow strip of each frame’s image). This scanning
slice is a user selectable option and is set as the central
50 percent region of the screen (horizontally) by default for
real-time scan mode. By reducing the region of interest for
search, the physical location where the device is pointing
aligns more closely to the actual target location, enabling
users to orient themselves more accurately with the detected

VOLUME 7, 2019

target and reduce the negative impact of motion blur from the
movement of the device when scanning.

*INSPIRATIONAL

T I O B O O
PERSPIRATORY * *

1Ss s ssdd

FIGURE 7. An example showing how the modified levenshtein distance is
calculated when comparing two words. In this graphic, ‘i’ represents an
insertion, ‘d’ represents a deletion and s represents a substitution.
Punctuation and plural words are ignored in the algorithm. Hyphenated
words are regarded as multiple separated words. The distance between
inspirational and perspiratory is 8. Due to fact that perspiratory is a
shorter word — with 12 characters— the modified algorithm would return
a value of 0.67. This number is greater than the tolerance value in the
app and thus these words would not be considered a match.

To minimize the impact of inevitable errors in OCR and
possible typos in provided keywords, the SVS app does not
require an exact match to keywords. Instead, the matching
is based on a modified Levenshtein Distance [30] When
comparing the keyword with each word in the detected text,
this algorithm determines the number of insertions, deletions,
and substitutions that are required to change the detected
word to the search keyword (Figure 7). Thus, with more
edits, the probability that the candidate word is the search
query diminishes. The net number of edits in each word is
then divided by the length of the smaller of two words being
compared to generate a distance value. This normalization
allows the comparison algorithm to be dynamic — allowing
for more edits in the detected word with a longer search query.
Finally, the distance of each word in the detected text with the
keyword is compared with a threshold. If the distance is lower
than the tolerance, then the given word in the detected text
is considered a match to the input keyword. This threshold
value was set at 0.3 for this study. Such an approach for
string comparison is useful in dealing with OCR inaccuracies,
as well as tolerating minor differences in the input keyword
and the actually present word (such as handling plurals or
other minor variations or typos made by the speech to text).

When the searched keyword is found, it is highlighted in
the image by a flashing green bar to make it more visible
to the user. At the same time, voice output from the device
indicates the number of instances of the keyword that were
found in the image. In addition, the app allows the user
to directly zoom in on the highlighted keyword to retrieve
any necessary information related to it that is present in its
immediate neighborhood. In the case of multiple instances of
the keyword being present, the app allows the user to zoom
in on each instance sequentially. The initial zoom level is
adjusted based on the size of the detected keyword relative to
the display, so that maximum zoom is applied while keeping
the entire keyword in the screen. Thereafter, the user can
change the zoom as needed using a pinch gesture. The user
also has the option to search for another keyword within
the captured image. The highlighting and zoom parameters

2900210



|EEE Journal of Translational

Engineering in
Health and Medicine

S. Pundlik et al.: Mobile Application for Keyword Search in Real-World Scenes

TABLE 2. Modified TIADL tasks used for evaluation study. A total of 50
items were identified and were divided equally in two sets to be tested in
two conditions: while using the SVS app and while using optical
maghnifiers.

C;::;l)ry Description Typl(l:{aelcfzé”:gganon Number
Printed Utility bills Due date, amount due, 15
sheets - Bank Statements amount related to a
Flyers particular transactions,
Forms (Tax etc.) reward balance,
contact info on the
flyer
Documents - Telephone directory ~ Telephone number of a 12
- Brochures particular business or a
- Catalogues person, price of an
- Manuals item in the catalogue,
specifications listed in
the manual
Restaurant Price of items 6
Menus containing a specific
kind of food (for
example, chicken,
salmon etc.)
Food Nutritional 5
products information,
ingredients

are updated accordingly. In the real-time scan mode, the app
indicates the successful detection of the keyword in the image
(in real-time) by vibration. Thus, as the user is scanning
with the mobile device, instant feedback is received when the
keyword is found. This helps in associating the presence of
the keyword within the captured image with its actual location
in the scene via proprioception.

Handling of the rotated text for display purposes has to be
done outside of the OCR engine. While the native ML Kit
OCR engine is restricted to detecting text with an orientation
of +30° with respect to the horizontal direction, the exact
orientation of the detected text is not returned by this engine.
Thus to display the rotated text (unidirectional rotation only)
properly, the rotation needs to be corrected for. This is done
by computing the average orientation of the entire text from
the bounding box information for each detected word and
then cancelling the amount of rotation with this average
orientation when displaying or highlighting.

B. EVALUATION OF THE SVS APP

Preliminary evaluation of the point-and-shoot mode of the
SVS app was conducted with human subjects to determine
whether the concept of keyword search can provide any
benefit in performing visual search activities in daily life.
We recruited 6 adults with normal vision (best corrected
visual acuity 20/20 or better and no other known vision
disorders) from our institute for performing the app evalu-
ation. During the experiment, they wore blur glasses (blur-
ring filter attached to a no-power lens) that reduced their
visual acuity to the level of 20/100 — 20/125. The study fol-
lowed the tenets of the Declaration of Helsinki and informed
consent was obtained from all the study participants.
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The protocol was approved by the institutional review board
at the Massachusetts Eye and Ear Infirmary.

The evaluation task was a variation of the timed instru-
mental activities of daily living (TTADL) task [31], [32] The
TIADL tasks consist of a sample of visual activities routinely
performed in daily life such as reading ingredients of food
products, instructions on medicines, finding phone number
in a directory, and using tools, among others. In our study,
we curated tasks that required keyword search, increased the
overall number of tasks to be performed, and changed the
complexities of the tasks such that they varied from simple
to complex (difficult). While task difficulty is a relative term,
in this study difficulty refers to the time required to complete
the search (find the keyword).

Briefly, these included finding specific information from
the items such as finding due date on a utility bill, or
whether the food product contained nuts, or finding lowest
priced clothing item from a catalogue. The items were clas-
sified into 5 categories: printed sheets (flyers, utility bills
etc.), documents (booklets, brochures etc.), restaurant menus,
food products, and other household items (Table II). Over-
all, 50 items were selected and split evenly in two condi-
tions where the subjects searched for the information either
using the SVS app or using handheld optical magnifiers
(4x and 12x). Pilot testing was done to make the overall
grouping of the items balanced in the two conditions (items
in both groups were at about same difficulty level).

The search task administration to the subjects occurred
by presenting an item (each trial consisted of a different
item) and asking them for specific information contained
within the item. The task question was framed in a manner
such that the intended search keyword was either part of
the question or was implicit in the question. However, they
keyword was not directly provided to the subjects, and they
were supposed to come up with the keyword on their own
when searching for the requested information. For example,
if the keyword to be searched in a credit card statement was
reward points, the subjects were asked to report what was
the reward point balance for the month. The examiner would
time the task (using stopwatch) after presenting the item
and communicating the keyword for it. The timing stopped
when the subject responded with the correct answer (the trial
continued if the answer was incorrect for any reason). For
the SVS app condition, timing of the trial included keyword
input time and the search time with any subsequent errors due
to inputting an incorrect keyword, speech recognition errors
by the voice input functionality of the smartphone, OCR
related errors, or any other user errors. When using optical
magnifiers, the subjects were free to choose from 4x and
12 x magnifiers depending upon the text size in the item. SVS
app was run on a Samsung Galaxy S8 smartphone. Subjects
were trained to use the SVS app and optical magnifier for
searching with some practice items before the actual trials.
The order of device use and task group was counter-balanced.
The experiment was conducted in a well lit room (standard
office room lighting). The total study time for a subject was
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about 2.5 hours including task training (230 minutes) and a
break of ~10 minutes between the two conditions.

An upper limit was placed on the search time for each trial
(360 seconds) and if the subject did not find the required
information within this time the trial was ended and the
search time for that trial was set as 360 s. For determining
the benefit of the app in visual search, we compared the
cumulative task time between the two conditions. Cumulative
task time was the sum of search times for individual trials
in a given condition. Since the individual tasks varied a lot
in terms of their difficulty within the conditions, we also
performed further fine grained comparisons by considering
task difficulties. The search times for a subject were sorted
from fastest to slowest for each condition. The average sorted
task time was compared between the two conditions. In the
sorted task list, a crossover point was determined for each
subject after which the tasks were increasingly difficult to
perform manually compared to the app. Tasks sitting at a
higher order in the list compared to the crossover point were
therefore considered difficult to perform manually using the
magnifier. Comparisons of the median task time before and
after crossover point were done between the two conditions.

C. RESULTS

Cumulative task completion times between SVS app and
optical magnifier were not significantly different, but the dif-
ference approached significance level of 0.95 (paired t-test:
t=24,df =5, p=0.059) (Figure 8a). The cumulative task
completion time reduced with the app for 5 out of 6 subjects
(average = std. for 6 subjects: manual method = 2948 min-
utes, with app = 21+£3 minutes). For the one remaining sub-
ject, cumulative task time with the app was only about half a
minute more than manual searching. However, the cumulative
task time does not fully inform us about the underlying data
given the task variety and the variable difficulty level of the
tasks, which is evident with the skewed average sorted search
times (Figure 8b). It can be seen that search with magnifier
was almost as fast as the SVS app for the items before the
crossover point for the two curves (easier tasks). However,
over the remaining items beyond the crossover point, the SVS
app appeared to be substantially faster. The crossover point
varied between subjects (Figure 8c), indicating that the rel-
ative proportion of the search tasks for which the app was
faster compared to manual search varied between subjects.
Averaged over 6 subjects, about 37% tasks were faster with
the app.

We then compared the average search times for tasks
before and after crossover point for each subject with and
without the app using repeated measures ANOVA. There
were significant effects of the search method (F(1,5) = 30.5,
p = 0.003), crossover point (F(1,5) = 231.4, p < 0.001),
and their interaction (F(1,5) = 47.8, p < 0.001) on the
average search time. Post hoc tests with Bonferroni correc-
tion showed that searching with app was significantly faster
than manual searching for the more difficult tasks (tasks
beyond the crossover point) (average of 6 subjects - without
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FIGURE 8. Evaluation of SVS app with normally sighted subjects wearing
blur glasses (n=6). (a) The cumulative task time (sum of individual trial
times) reduced when using the SVS app in all but one subject (#3).

In some subjects (for example #2 and #6), there was a drastic reduction
compared to manual search with a magnifier. (b) Average sorted search
time across subjects with and without the SVS app. The shaded region
shows the limits (max. & min.) of the response for the respective
conditions. The plot shows that the search tasks were of variable
difficulty levels ranging from simple to difficult. Difficult tasks took longer
to complete. The crossover point (denoted by downward pointing arrow
on the chart) can be determined from these curves: the point after which
search with the optical magnifier takes longer compared to the SVS

app. (c) Chart showing the proportion of the tasks that were faster with
the SVS app for each subject. These correspond to the tasks that sit at a
higher order than the crossover point for the given subject. (d) Average
task time before (easy) and after (difficult) the crossover point between
the two conditions. For the difficult tasks, the median search time with
the app decreased significantly. However, there was no statistically
significant difference in search time between the two apparatuses for
easier tasks. ** denote p < 0.01, *** denote p < 0.001.

app: 148422 seconds; with app: 90£23 seconds, p=0.009).
The difference in the average search times between the two
methods before the crossover point (easier tasks) was not
statistically significant (without app: 28+6 seconds; with
app: 32+8 seconds, p=0.12) (Figure 8d).

Over 150 trials with the app across 6 subjects (25 each),
there were 12 app errors such as OCR failures (8%), 16 key-
word input errors (10.7%), and 9 user errors such as incorrect
app operation (6%). On average (= std.) each subject encoun-
tered 2=£1.55 app errors, 2.67+1.21 keyword related errors,
and 1.5£0.55 user errors. There errors were not necessarily
on different tasks, some tasks encountered multiple kinds of
errors. When searching with the magnifier, subjects used 4 x
magnifier for 78% of the tasks, 12x magnifier for 8% of the
tasks, and both for 14% of the tasks.

D. DISCUSSION

The evaluation results show that SVS app can lead to an
overall saving in the search time, particularly for complex
search tasks that are deemed to be difficult. On an average,
there were savings of ~7.5 minutes (26% reduction) with
the app compared to search with the optical magnifier for
cumulative task time. But the cumulative search time does not
tell the entire story since the specific tasks used in this study
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were somewhat arbitrary. As Figure 8b indicates, the search
times increase exponentially as the tasks get more complex.
This is true for both with and without app conditions. It can
be expected that including more difficult tasks would lead
to more time saving, or vice versa. Therefore, the absolute
time saving in cumulative search time with the app is not
very meaningful in the sense of generalization. Previous
studies using the TIADL methodology tested with a limited
number of tasks, for instance 17 in Owsley ef al. [31], 5 in
Taylor et al. [33], and 3 in Wittich et al. [34]. It is arguable
that too few tasks may not be able to capture the variety of
situations encountered by people in their daily living.

In this evaluation study, we included 50 tasks with a wide
range of difficulties, in an attempt to generalize the study
findings. A key consideration is not simply the number of
tasks, but the difficulty range. In Figure 8b, we can see that
the search time with magnifier appeared to increase more
rapidly compared to the SVS app, as the difficulty level
of the tasks increased. This finding will remain unchanged,
i.e. it is generalizable, no matter what tasks are included,
as long as the range of task difficulty is sufficiently broad.
To perform more detailed analysis, we employed the method
of separating the tasks around the point where the sorted
search time curves for the two apparatuses cross over (the
crossover point), essentially separating search tasks into two
categories: easy vs. difficult. Separating the tasks around
the crossover point allowed us to understand the benefit of
the app across broad range of task difficulty as well as for
different individuals. The results clearly indicate that for the
easy tasks the search time was almost the same for both the
apparatuses, but for the difficult tasks the SVS app helped
in reducing the task time by a large margin (close to 40%
reduction as compared to the optical magnifier).

The search time reduction with the SVS app is not seen
across the board for all items because the app requires some
fixed amount of setup time, including inputting the search
keyword and taking the picture. Thus, the SVS app may not
be time-saving when the tasks are easy (for example, when
searching in less cluttered objects). It should be noted that the
search time for the SVS were inclusive of instances of failure
of keyword detection due to the following reasons: subjects
inputting a keyword that was not present in the item (or
inputting an incorrect keyword), failure of OCR engine due to
image capture issues (such as blur or specular reflections off
of the surface of the objects), failure of search due to incorrect
pointing of the camera (keyword out of the field of view of
the camera), and incorrect speech recognition (voice input
returning incorrect keyword). On the contrary, searching with
the optical magnifier did not require any overhead time: the
subjects could start the search the moment they heard the
question for the given task. The SVS app was able to reduce
the overall search time in complex tasks despite these limita-
tions, errors, and inaccuracies.

The human subject evaluation was currently limited to the
point-and-shoot mode of the SVS app. The ability of the OCR
engines to successfully search in images of outdoor scenes,
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as shown in this paper, lends a lot of promise to the utility of
real-time scan mode. Future work should evaluate the real-
time scan mode for the purpose of way finding. The human
subject study sample was small and was also limited to nor-
mally sighted individuals with simulated visual acuity loss.
Therefore, they were not habitual users of optical magnifiers
or habituated with searching with reduced visual acuity. Also,
there was not much variation in the visual acuity levels of
the study subjects. These reasons somewhat limit the validity
and generalizability of this study. However, the longer search
times in manual search condition indicate that loss of visual
acuity was a factor in search performance. The real benefit
of the app can only be determined after performing a study
with visually impaired people, which will be future work.
In future, we will also include subjective opinions of the
low vision participants regarding the app and their preference
relative to using habitual search aids.

IV. GENERAL DISCUSSION & CONCLUSIONS

In this work we have shown that keyword search in real-world
scenes can be implemented in a vision-assistive mobile appli-
cation, and it can help make keyword-based searches faster
and easier in real-world visual search tasks when visual acuity
is lowered. Our specific keyword search offers a direct and
realistic chance of returning a successful hit, and conse-
quently providing the users with the related information with-
out overloading them with irrelevant information. Use of the
mobile platform is justified due to the increasing popularity
of mobile devices, even in the elderly population [18], [21]
Furthermore, vision aids can be made cheaper and more
accessible if delivered via mobile platform. In the support
of implementing keyword-based vision search as a vision
aid, there is evidence that spot reading is highly prevalent in
people using mobile app-based smart vision aids. [35] Spot
reading is required for quick information gathering tasks and
thus, a keyword searching application can help in spot reading
and information acquisition.

One limitation of this approach is that the user needs to
input a keyword that is present in the scene (or a close
variation of it), which may not always be the case. This was
observed in our human subject testing of the SVS app, where
the subjects entered keyword that was not present in the scene
and thus they had to retry with a different keyword. We did
not explicitly provide the subjects with the keywords they
were supposed to search, and instead expected the subjects
to come up with their own relevant keyword for the given
task. This study design was more realistic in simulating the
daily life tasks where subjects are generally aware of likely
keywords but do not explicitly know which keyword they
should search for. Although we have designed some tolerance
for typos introduced by the OCR engines or minor changes in
the keyword depending on the context (for example, plurals
ending with an °s’), our approach cannot deal with synonyms
of a keyword. In the future, we will deal with the issue by
introducing a smarter search that can suggest context-based
synonyms of the input keyword if a direct match is not found.
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In conclusion, this work describes a novel vision aid imple-
mented on a mobile device that can help make visual search
related daily life tasks easier to perform by visually impaired
people. Impaired vision is a complex condition and loss of
visual acuity is only one aspect of it. Still, the preliminary
results shown in this paper support the approach of keyword
searches in real-world scenes for aiding visual search. The
SVS app can be potentially beneficial to the people with low
vision in complex search tasks, though further investigation
is required. In future studies, we will evaluate the benefit of
the app in visually impaired users.
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