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Abstract 

Background:  Mathematical models are needed for the design of breeding programs using genomic prediction. 
While deterministic models for selection on pedigree-based estimates of breeding values (PEBV) are available, these 
have not been fully developed for genomic selection, with a key missing component being the accuracy of genomic 
EBV (GEBV) of selection candidates. Here, a deterministic method was developed to predict this accuracy within a 
closed breeding population based on the accuracy of GEBV and PEBV in the reference population and the distance of 
selection candidates from their closest ancestors in the reference population.

Methods:  The accuracy of GEBV was modeled as a combination of the accuracy of PEBV and of EBV based on 
genomic relationships deviated from pedigree (DEBV). Loss of the accuracy of DEBV from the reference to the target 
population was modeled based on the effective number of independent chromosome segments in the reference 
population (Me). Measures of Me derived from the inverse of the variance of relationships and from the accuracies of 
GEBV and PEBV in the reference population, derived using either a Fisher information or a selection index approach, 
were compared by simulation.

Results:  Using simulation, both the Fisher and the selection index approach correctly predicted accuracy in the 
target population over time, both with and without selection. The index approach, however, resulted in estimates of 
Me that were less affected by heritability, reference size, and selection, and which are, therefore, more appropriate as a 
population parameter. The variance of relationships underpredicted Me and was greatly affected by selection. A leave-
one-out cross-validation approach was proposed to estimate required accuracies of EBV in the reference population. 
Aspects of the methods were validated using real data.

Conclusions:  A deterministic method was developed to predict the accuracy of GEBV in selection candidates in a 
closed breeding population. The population parameter Me that is required for these predictions can be derived from 
an available reference data set, and applied to other reference data sets and traits for that population. This method 
can be used to evaluate the benefit of genomic prediction and to optimize genomic selection breeding programs.
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Background
As was proposed by Meuwissen et al. [1], genomic selec-
tion involves the use of genotypes from high-density 
single nucleotide polymorphisms (SNPs) to estimate so-
called genome-enhanced or genomic estimated breeding 
values (GEBV) based on genomic prediction. Genomic 
prediction requires a training or reference population of 

individuals that have been genotyped and phenotyped 
in order to predict the GEBV of individuals in the target 
population, i.e. the selection candidates, based on their 
SNP genotypes without requiring them to be pheno-
typed. Genomic selection promises to increase rates of 
genetic improvement by enabling higher accuracy of EBV 
at a young age. While the original concept of genomic 
prediction was based on SNPs that capture population-
wide linkage disequilibrium (LD) between markers and 
quantitative trait loci (QTL), Habier et  al. [2] showed 
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that, in a closed population, pedigree information and 
co-segregation between QTL and SNPs can also substan-
tially contribute to the accuracy of GEBV.

The design of breeding programs with genomic selec-
tion requires methods to a-priori predict the accuracy 
of GEBV. During the past decade, several deterministic 
approaches have been developed for this purpose based 
on population parameters. Dekkers [3] showed that the 
accuracy of GEBV is the product of the square root of 
the proportion of genetic variance that is captured by 
the SNP panel ( q ) and the accuracy with which genetic 
effects that are captured by the SNPs can be estimated 
( r ). Daetwyler et al. [4] showed that the latter depends on 
the heritability of the phenotypes in the reference data-
set, the size of the reference population, and the number 
of independent QTL that affect the trait. These concepts 
were further developed by Goddard [5], Daetwyler et al. 
[6], Hayes et  al. [7], Goddard et  al. [8], Meuwissen [9], 
Erbe et  al. [10], Wientjes et  al. [11], and others. A key 
population parameter in these predictions is the effec-
tive number of chromosome segments, Me, which was 
first introduced by Visscher et  al. [12] to represent the 
number of independent genetic (QTL) effects that are 
estimated based on the available SNP genotypes. Viss-
cher et al. [12] and Goddard [5] showed that Me can be 
derived based on historical effective population size and 
size of the genome. Based on these concepts, multiple 
deterministic formulae have been developed to predict 
Me [5, 8, 13–15]. Brard and Ricard [16] compared several 
of these and found that they result in very different esti-
mates of Me and, therefore, in very different accuracies of 
GEBV, with none providing accurate predictions across a 
range of programs.

As an alternative, Hayes et  al. [7] and Goddard et  al. 
[8] showed that Me within a population is equal to the 
reciprocal of the variance of deviations of genomic rela-
tionships from their pedigree-based expectations, while 
Wientjes et al. [11] showed that, across populations, Me 
can be estimated from a genomic relationship matrix that 
combines both populations. Thus, if a sufficient num-
ber of individuals within a population is genotyped, an 
empirical estimate of Me can be derived from the popula-
tion’s genomic and pedigree-based relationship matrices. 
However, recently, van den Berg et  al. [17] showed that 
the use of Me derived from the variance of relationships 
results in overestimates of the accuracy of GEBV in dairy 
cattle populations.

To address the inadequacy of theoretical predictions 
of GEBV, Erbe et  al. [10] derived empirical adjustments 
to the deterministic predictions of accuracy of [4] based 
on observed accuracies from cross-validation. Brard and 
Ricard [16] also proposed to derive Me empirically from 
the observed accuracy of GEBV in the population, as 

originally proposed by Daetwyler et al. [6]. A similar con-
clusion was recently reached by van den Berg et al. [17], 
who showed that a parameter that is related to Me can 
be estimated from a reference dataset for a population 
and used as a population parameter to predict accuracies 
of GEBV obtained from other reference datasets from 
that population, including for phenotypes with different 
heritabilities. Thus, until a better theoretical foundation 
is obtained, deriving an empirical estimate of Me from 
a relevant reference dataset as a population parameter 
appears to be the only solution to obtain the required 
parameters to predict accuracies of GEBV for different 
reference datasets for that population. Although this lim-
its applications to breeding programs that already have 
a reference population, it should be noted that ongoing 
genomic selection programs require many decisions to 
be evaluated and optimized, including which animals 
to genotype and which animals to phenotype for which 
traits and at what age. All these decisions require the 
ability to model the accuracy of GEBV.

A key controversy in the development of methods 
to predict the accuracy of GEBV has been whether Me 
should be derived based on the reference population or 
based on the relationship of the reference to the target 
population, or both. Several studies have shown that 
the accuracy of GEBV declines as the distance between 
the reference and target population increases [2, 18]. 
Habier et  al. [2] showed that this decline in accuracy 
is the result of the break-up of LD between SNPs and 
QTL between the reference and target populations and 
of the decline in pedigree relationships and pedigree 
information that is implicit to GEBV. Goddard et al. [8] 
suggested that Me should be based on the variance of 
relationships between the reference and target popu-
lations and this has been applied by several [11, 17]. 
However, the accuracy with which the effect of chro-
mosomal segments can be estimated should depend 
on Me in the reference population, not on Me between 
the reference and target populations, although the lat-
ter may affect the loss in accuracy between the refer-
ence and target populations. Clark et  al. [19] showed 
that the accuracy of GEBV of selection candidates 
depends on their maximum relationship with indi-
viduals in the reference population, rather than on the 
variance of those relationships. Similarly, Pszczola et al. 
[20] showed that the accuracy of genomic predictions 
for a target population can be maximized by minimiz-
ing relationships within the reference population and 
by maximizing relationships between the reference 
and target populations. For across-population genomic 
prediction, Wientjes et  al. [21] showed that the con-
sistency of marker-QTL LD between the reference and 
target populations is an important factor to explain the 
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much lower accuracy of GEBV in across-population 
versus within-population prediction. Wientjes et  al. 
[21] quantified this consistency based on the accuracy 
with which a selection index that was derived to pre-
dict QTL genotype based on SNP genotypes within the 
reference population, can predict QTL genotypes in the 
target population.

Habier et al. [2, 22] showed that it is important to dif-
ferentiate between contributions of pedigree, co-segre-
gation, and LD information to GEBV when investigating 
and modeling the accuracy of GEBV because each of 
these accumulates and erodes at a different rate. How-
ever, this has not been explicitly considered when deriv-
ing deterministic predictions of the accuracy of GEBV, 
with some exceptions. For example, van den Berg et  al. 
[17] used the concept of Fisher’s information to adjust 
the accuracy of GEBV for the contribution of pedigree 
information when combining genomic information from 
two related reference populations.

Deterministic methods to predict response to selection 
are important for the design and optimization of breed-
ing programs. Within the context of genomic selection, 
such methods must be able to account for the contribu-
tion of pedigree versus genomic information and for 
the relationship of selection candidates with animals 
in the training population in order to compare breed-
ing programs that differ in which and when animals are 
genotyped and phenotyped relative to when selection 
decisions are made. Methods to model the accuracy of 
GEBV that take these aspects into account have not been 
developed.

Against this background, the objectives of this study 
were to: (1) develop a deterministic approach to model 
and predict the accuracy of GEBV for selection can-
didates in a closed breeding population by explicitly 
modeling the contribution of pedigree versus genomic 
information and the relationship between the reference 
and target populations, and (2) develop an empirical esti-
mate of Me based on a reference population, that can be 
used as a population parameter in the above predictions 
for use across reference dataset sizes and traits for that 
population. Although this limits applications to situa-
tions where a reference population is available, this is 
now the case for most ongoing breeding programs. The 
developed method will enable further optimization of 
genomic selection breeding programs, including deter-
mining which animals should be genotyped and which 
should be phenotyped for which traits and at what age, 
among others. Simulation will be used to demonstrate 
that the developed methods result in accurate predictions 
of the accuracy of GEBV within a closed population, both 
without and with selection, while real data will be used to 
test some of the assumptions made.

Methods
General modelling strategy
The trait considered is assumed to follow the pseudo-
infinitesimal additive model, i.e. phenotype is affected by 
many additive QTL with small effects across the genome, 
as well as by random environmental effects. In the fol-
lowing, predictions of breeding values are assumed to 
be based on best linear unbiased prediction (BLUP) [23], 
using either pedigree or genomic relationships. Follow-
ing Legarra and Ducrocq [24], GEBV can be partitioned 
into a part that can be captured by pedigree relationships 
and a part that can be captured by genomic relationships 
deviated from pedigree relationships:
ĝA = EBV based on pedigree relationships (PEBV), with 

accuracy rA,
ĝD = EBV based on genomic deviated from pedigree 

relationships (DEBV), with accuracy rD,
ĝG = EBV based on genomic relationships (GEBV), 

with accuracy rG .
Following Legarra and Ducrocq [24], ĝD could be 

obtained from a model in which the breeding value, gG is 
partitioned into a pedigree-based component, gA, and a 
genomic minus pedigree component, gD, as: 
gG = gA + gD, with variance–covariance matrix: 

Var




gG
gA
gD



 =




G A G− A
A A 0

G− A 0 G− A



σ 2
g , where A and G are 

the pedigree-based and genomic relationship matrices, 
respectively, and σ 2

g  is the genetic variance. Legarra and 
Ducrocq [24] showed that this model is equivalent to the 
standard GBLUP model that fits gG with the genomic rela-
tionship matrix G. In the approach that will be used here, 
however, ĝA represents EBV from standard pedigree BLUP, 
using only the pedigree-based relationship matrix A, while 
ĝD represents EBV based on ( G− A) as relationship 
matrix. Note that ĝD exists only in concept, representing 
contributions of phenotypes to GEBV through deviations 
of genomic from pedigree relationships. This approach 
was used to model the contribution of pedigree versus 
genomics to GEBV, instead of the Legarra and Ducrocq 
[24] approach, because deterministic models have been 
well developed for the accuracy of conventional pedigree-
based BLUP EBV ([25, 26]), but not for the pedigree-based 
EBV obtained from the Legarra and Ducrocq [24] model.

The three EBV, ĝA, ĝD, and ĝG , can be defined for both 
the reference and the target population and their corre-
sponding accuracies, rA, rD, and rG , are related to each 
other, as will be described below. Throughout this paper, 
accuracies will refer to population accuracies, rather than 
individual accuracies, as defined by [27], because popula-
tion accuracies are relevant for prediction of response to 
selection.
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The general strategy that will be used here to predict the 
accuracy of GEBV in the target population is illustrated in 
Fig. 1. The goal is to predict the accuracies of ĝA and ĝD in 
the target population, which are then combined to predict 
the accuracy of ĝG in the target population based on the 
relationship of rA and rD with rG . The accuracy of pedigree-
based EBV, ĝA, in the target population, rAt , can be derived 
using standard pseudoBLUP approaches [25, 26], e.g. as 
implemented in the software SelAction [28]. Although, 
typically, selection candidates will not have own phenotype 
in genomic selection programs, this is not required for the 
proposed approach, as own phenotype can be accommo-
dated in the pedigree-based predictions. The accuracy of 
ĝD in the target population, rDt , depends on the accuracy of 
ĝD in the reference population, rDr , and the decline in accu-
racy from the reference to the target population, prt . The 
accuracy of ĝD in the reference population could be derived 
using theoretical methods previously developed [4, 5, 17] 
based on size of the reference population, heritability, and 
Me in the reference population. However, given the limita-
tions of these methods to estimate Me, as described in the 
Background section, here, two empirical methods will be 
explored to derive Me in the reference population based 
on observed accuracies of ĝA and ĝG in that population. A 
pseudo code for the developed method is in Appendix 1.

Basic predictive relationships
The accuracy of ĝD in the reference population can be 
derived based on the following relationship, after Daetwy-
ler et al. [4] and van den Berg et al. [17]:

where h2 is the heritability of the phenotypes used for 
training, q2D is the proportion of genetic variance that is 
captured by genomics, and

(1)r2Dr
=

q2DθDr

1+ θDr − r2Dr
q2Dh

2
,

where N  is the size of the reference population and Me 
is the effective number of chromosome segments in the 
reference population, as defined by Visscher et  al. [12], 
Goddard [5], and Hayes et  al. [7]. Equations  (1) and (2) 
are modified from van den Berg et al. [17] by accounting 
for q2 < 1, which enters Eqs. (1) and (2) in two ways: (i) 
q2 affects the marker-based heritability of the phenotypes 
(= q2h2 ), which appears in the denominator of Eq. (1) and 
in the numerator of Eq.  (2); (ii) q2 reduces the squared 
accuracy of genomic information as a predictor of the 
breeding value [3], which enters q2 in the numerator of 
Eq.  (1). When the distribution of minor allele frequen-
cies of markers is the same as that of QTL, Goddard [8] 
showed that q2 can be derived as a function of the num-
ber of genotyped markers ( M ) and Me as:

Note that for ĝA and ĝG , q2A = q2G = 1, as both ĝA and 
ĝG include pedigree information, which covers the entire 
genome. The general form of Eq. (1) can be solved for θi 
for each component i (= A, D, G) as:

Relationship between rG , rA and rD
The relationship between accuracies ĝG , ĝA, and ĝD in 
either the reference or the target population was derived 
by two approaches: using Fisher’s information statistics 
(Fisher) and using selection index theory (Index). Both 
approaches are based on the assumption that the sam-
pling errors of ĝA and ĝD are independent of each other, 
following van den Berg et al. [17].

Fisher information approach
Parameter θD in Eqs. (1) and (2) is proportional to N  and, 
as noted by van den Berg et  al. [17], represents Fisher’s 
information of ĝD, which quantifies the amount of infor-
mation about the true breeding value that is contained in 
ĝD [29]. The general form of Eq.  (1) can also be applied 
to the pedigree-based and genomic EBV, ĝA and ĝG , with 
their corresponding Fisher’s information statistics, θA and 
θG. Based on standard statistical theory [29], under the 
assumption of independence of sampling errors, the sum 
of the Fisher’s information statistics of ĝA and ĝD is equal 
to Fisher’s information of ĝG [17], i.e.:

(2)θDr = Nq2Dh
2/Me,

(3)q2D = M/(M +Me).

(4)θi =
r2i (1− r2i q

2
i h

2)

q2i − r2i
.

(5)θG = θA + θD.

Fig. 1  Illustration of the general strategy of predicting the accuracy 
of genomic estimated breeding values (GEBV) in the target 
population. The accuracy of GEBV in the target (t) population 
is predicted based on the accuracy of GEBV in the reference (r)
population of genotyped and phenotyped individuals, by separating 
the accuracy of GEBV ( rG ) into the accuracy of pedigree information 
( rA ) and genomics ( rD ), using Me as a key parameter of the reference 
population and prt representing the loss of accuracy of genomic 
information from the reference to the target population
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When estimates of rG and rA are available, Eq.  (4) can 
be used to compute θG and θA after which θD can be com-
puted as θD = θG − θA based on Eq. (5).

Equation  (4) can also be converted into the following 
quadratic form for r2i :

q2i h
2r

4

i + (−1− θi)r
2
i + q2i θi = 0, which can be solved 

for r2i  as:

With Me and, therefore, q2D known (see later), Eq.  (6) 
can then be used to compute rD.

Selection index approach
The selection index to combine ĝA and ĝD is:

Using standard selection index theory [30] and assum-
ing that sampling errors of ĝA and ĝD are independent, 
the squared accuracy of this index can be derived to be 
(see Appendix 2):

which can be used to compute r2D as:

Similar relationships were previously derived by Har-
ris and Johnson [31], among others, to compute the 
accuracy of animal model EBV based on pedigree, own, 
and progeny data as sources of information with inde-
pendent sampling errors. Note that the Fisher and Index 
approaches do not result in the same value for rD for 
given values of rG and rA.

Me for the reference population
If an estimate of Me for the reference population is avail-
able, the accuracy of GEBV in the reference population 
can be estimated using Eqs. (1), (2), and (3) to predict 
rDr . Cross-validation or pseudoBLUP methodology can 
be used to predict rAr . These two accuracies can then be 
combined to predict rGr , using either the Fisher approach 
(Eqs. (6) and (7)) or the Index approach (Eq. (9)).

If Me for the reference population is not known, it can 
be derived using different approaches:

(1)	 Based on theoretical functions of effective popula-
tion size ( Ne ), reference size ( N  ), and genome size 

(6)r2i =

[
1+ θi −

√
(1+ θi)

2 − 4h2q4i θi

]
/2q2i h

2
.

(7)ĝG = bAĝA + bDĝD.

(8)r2G =
r2A + r2D − 2r2Ar

2
D

1− r2Ar
2
D

,

(9)r2D =
r2G−r2A

1+ r2A(r
2
G − 2)

.

in terms of number of chromosomes ( k ) and the 
individual or average ( L in Morgans) size of chro-
mosomes [5, 7, 9, 14]. Here, two such theoretical 
predictions of Me will be used: Me = 2NeLk based 
on [8], and Me = 2NeLk/ln(NeL) based on [7].

(2)	 Based on the inverse of the variance of relationships 
[8]. Because Me is used to estimate the accuracy 
of DEBV, the variance of genomic minus pedigree 
relationships among all pairs of individuals in the 
reference population was used.

(3)	 Based on observed accuracies of GEBV and of 
PEBV in the reference population, rGr and rAr , using 
the relationships among the accuracies derived 
above based on either the Fisher or the Index 
approach:

(a)	 Using the Fisher approach, θG and θA can be com-
puted from the observed rGr and rAr using Eq.  (4), 
with q2G = q2A = 1 . Fisher information statis-
tic θD can then be computed as θD = θG − θA 
based on Eq.  (5). Substituting Eq.  (3) into Eq.  (2) 
results in the following quadratic form in Me : 
θDM

2
e + θDMMe − NMh2 = 0 , which can be 

solved for Me as:

(b)	 Using the Index approach, r2Dr
 can be computed 

from the observed rGr and rAr using Eq.  (9), which 
can then be used to compute θD for a given value 
of q2D using Eq. (6). Me can then be derived from θD 
using Eq. (2), resulting in:

Because q2D = M/(M +Me) based on Eq. (3), the solu-
tion for Me must be obtained in an iterative manner by 
substituting the new value of q2D based on Eq.  (3) back 
into Eq.  (11) until a stable value of Me is obtained (see 
Appendix 1).

Prediction of rG in the target population
The accuracy of ĝD in the target population was mod-
elled as the product of the accuracy of ĝD in the reference 
population ( rDr ) and the loss of genomic information 
between the reference and target population ( prt ) as:

Parameter prt can be derived by considering that ĝD in 
the reference population is the sum of estimates for Me 
independent chromosome segments in the reference 
population, each with accuracy rDr , as derived above for 
ĝD. If an individual in the target population inherits both 

(10)

Me =

[
−θDM +

√
θ2DM

2 + 4θDNMh2
]
/2θD.

(11)Me = Nq2Dh
2/θD.

(12)rDt = prtrDr .
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its paternal and maternal haplotype in a segment intact 
from its closest ancestors in the reference population, 
then that segment will maintain the same accuracy rDr 
in the target population. However, if either the paternal 
or the maternal segment recombined between the refer-
ence and the target population, then the accuracy of that 
segment was assumed to be 0 for that target individual. 
The rationale for the latter is that, although covariates for 
individual SNPs are fitted in genomic prediction, with LD 
among SNPs in a region, predictions are implicitly based 
on the combination of genotypes at SNPs that an indi-
vidual carries at a genomic segment, i.e. the individual’s 
so-called diplotype [32]. As a result, if a new diplotype 
is created in the target individual because the maternal 
and/or paternal haplotype that it received had recom-
bined since leaving the reference population, the predic-
tive accuracy for that segment was assumed to be lost 
and equal to zero. This assumption will require further 
validation. The probability that an individual received a 
recombined paternal and/or maternal segment can be 
derived as follows: let lp and lm be the number of genera-
tions between an individual in the target population and 
its closest paternal and maternal, respectively, ancestors 
in the reference population (= 1 if the target individuals 
are progeny of individuals in the reference population). 
Then the probability of no recombination of a segment 
between the reference and target population is equal to:
prt = (1− kL/Me)

(lp+lm), where kL/Me is the average 
size of a segment in Morgans.

Note that the derivation of the average size of inde-
pendent segments based on Me assumes that segment 
size is entirely driven by LD. However, Habier et al. [22] 
showed that genomic predictions also capture co-seg-
regation of markers and QTL within families and that 
co-segregation information declines more quickly over 
generations than LD information because it extends over 
larger distances than LD information. To allow for this, 
the average segment size was multiplied by a factor γ , 
resulting in:

Here, a fixed value of γ = 2 was used across all simula-
tions, which was derived by calibration of the predicted 
against the observed accuracy of GEBV in the target 
population based on one set of simulations (see section 
on simulations). This assumption was validated based on 
real data but will require further validation for other situ-
ations. Note, however, that for typical values of k , L , and 
Me , the ratio kL/Me is close to zero and in those cases, prt 
is close to 1 and rather robust to the choice of γ.

Given the predicted accuracy of ĝD in the target popu-
lation ( rDt = prtrDr , based on Eq.  (12)), the accuracy of 
GEBV in the target population, rGt , can then be predicted 

(13)prt = (1− γ kL/Me)
(lp+lm).

by combining rDt and rAt using either the Fisher (Eqs. (5) 
and (6)) or the Index approach (Eq. (8)).

Empirical accuracy of genomic and pedigree‑based EBV 
in the reference population
As described above, important parameters for predic-
tion of the accuracy of ĝG in the target population are 
the accuracies of ĝG and ĝA in the reference population, 
because these accuracies are required to compute the 
accuracy of ĝD in the reference population, as well as the 
value of Me . Four methods can be used to estimate the 
accuracies of ĝG and ĝA within a population:

	(i)	 Theoretical prediction of accuracy based on the 
inverse of the coefficient matrix of the mixed 
model equations [23], or approximations thereof 
[33, 34].

	(ii)	 Theoretical prediction of accuracy based on the 
accuracy without selection and genetic variance 
under selection [27, 35].

	(iii)	 Empirical prediction based on cross-validation, e.g. 
[36].

	(iv)	 Empirical prediction using the semi-parameteric 
LR method of Legarra and Reverter [37].

In a population that is under selection, an important 
distinction must be made between the accuracy of EBV 
in the unselected base population and the correlation 
between EBV and true BV in the selected population [27, 
35]. The above method (i) predicts the accuracy of EBV 
in the unselected population and is usually provided as 
auxiliary information for EBV in routine genetic evalu-
ation of livestock populations. It predicts the accuracy 
of the EBV of an individual in an unselected population 
with the same amount of information as the individual 
in the population that is under selection, in terms of the 
number and type of phenotypes available on the indi-
vidual and its relatives, including genomic information 
[35, 38]. However, in a population that is under selection, 
these accuracies overestimate the correlation between 
EBV and true BV because of the reduction in the genetic 
variance resulting from the Bulmer effect, as well as the 
reduced impact of pedigree information [27, 35, 39]. To 
account for this (method (ii)), Dekkers [35] showed that, 
under the infinitesimal model, the accuracy of EBV of 
individuals in a population under selection ( r ) is related 
to the accuracy of those EBV in an unselected population 
(from method (i) above) in the following manner:

 where σ 2
G and σ ′2G are the genetic variance in the unse-

lected and selected population, respectively. This equa-
tion was derived using the fact that the prediction error 

(14)r2 = 1− (1− r′
2
)σ ′2

G/σ
2
G ,
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variance of EBV is not affected by selection under the 
infinitesimal model [38], which also holds for genomic 
EBV [27, 39, 40]. This is the basis of above method (ii) 
for the prediction of the accuracy of EBV in a population 
under selection.

While estimates of the genetic variance in the unse-
lected (base) population are generally available, a chal-
lenge for applying Eq.  (14) to compute the accuracy 
under selection is to obtain an estimate of the genetic 
variance in the selected population [41, 42]. However, 
Eq. (14), along with the theory of selection under multi-
variate normality can be used to deterministically model 
the impact of the Bulmer effect in an ongoing breeding 
program on genetic parameters, accuracy, and response 
to selection under the infinitesimal model using pseu-
doBLUP, and to derive the equilibrium or asymptotic 
values for these parameters in a stabilized population for 
both single-trait and multiple-trait selection programs 
[27, 35, 43]. Combined with the methods developed here, 
these parameters enable derivation of the accuracy of 
GEBV in the reference population based on method (ii).

While these theoretical predictions of accuracy have 
proven to be useful, they are based on assumptions that 
may not hold in practice, especially with genomic pre-
diction, such as those of the infinitesimal model and 
multi-variate normality. To overcome these limitations, 
empirical estimation of the accuracy of EBV using cross-
validation (e.g. [36] and [37]) has gained importance 
over the past decade (method (iii) above). In the simu-
lations presented in the following, leave-one-out (LOO) 
cross-validation [44] was used to derive the accuracy of 
ĝG and ĝA in the reference population. In this approach, 
the information of each individual is eliminated from the 
data one-at-a-time to estimate the GEBV of that indi-
vidual using all other data. Rather than having to conduct 
as many genetic evaluation runs as there are individuals 
in the data, computationally efficient methods have been 
developed to obtain LOO GEBV [44, 45]. The accuracy 
of the LOO EBV can then be  obtained based on their 
correlation with pre-adjusted phenotypes divided by the 
square root of heritability. This correlation can be com-
puted for subsets of animals to account for the heteroge-
neity of the population in terms of the information that 
is available, e.g. by generation, sex, and/or whether they 
were used for breeding.

The accuracy of LOO EBV underestimates the accu-
racy of EBV in the reference population because it does 
not include own phenotype. Information from the indi-
vidual’s own phenotype can be incorporated by model-
ling the EBV of individuals in the reference population, 
ĝG or ĝA , as an index of the LOO EBV ( ̂giLOO for i = A 
or G ), with LOO cross-validation accuracy riLOO , and 

own phenotype, y (adjusted for fixed and other random 
effects), as follows:

Using selection index theory and after scaling by σ 2
G , 

this results in the following index weights:

and squared accuracy:

In a related approach (the above method (iv)), Reverter 
et  al. [46]) showed that the correlation between EBV 
based on partial and whole data is equal to the ratio of 
the accuracy of EBV based on partial versus whole data. 
Legarra and Reverter [37] showed that this also applies 
to the use of pedigree versus genomic relationships, i.e.: 
rĝA,ĝG = rĝA/rĝG . Thus, if an estimate of the accuracy of ĝA 
in the reference population is available ( rĝA ), which can 
be based on pseudoBLUP, the accuracy of ĝG in the refer-
ence population can be derived based on the correlation 
of ĝG and ĝA in the reference population as:

Simulations
Stochastic simulation was used to validate the devel-
oped approaches. The main purpose of the simulations 
was to compare alternate estimates of Me in the refer-
ence population, with the aim to identify an estimate 
of Me that is little affected by reference population size, 
heritability, and selection, such that it can be used as a 
population parameter. A second objective was to deter-
mine the validity of the proposed approach for predic-
tion of the accuracy in the target population outlined in 
Fig. 1. Specific emphasis was on comparing and validat-
ing the Fisher and Index methods for separating infor-
mation in the reference population into that contributed 
by pedigree versus genomic deviated from pedigree 
relationships and for combining those two sources of 
information in the target population, as well as on vali-
dating the approach used to model the loss of accuracy 
of genomic information between the reference and target 
populations. The final objective of the simulations was 
to evaluate the proposed methods for estimation of the 

(15)ĝi = bLOOĝiLOO + byy.

(16)

[
bLOO
by

]
=

[
r2iLOO r2iLOO
r2iLOO 1/h2

]−1[
r2iLOO
1

]

=
1

1− h2r2iLOO

[
1− h2

h2(1− r2iLOO)

]
,

(17)r2i = (r2iLOO + h2 − 2h2r2iLOO)/(1− h2r2iLOO).

(18)rĝG = rĝA/rĝA,ĝG .
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accuracies of pedigree-based and genomic EBV in the 
reference population based on cross-validation, which 
are required to implement the proposed approach in 
practice.

Using the software XSim [47], a genome of k = 9 
chromosomes of L = 1.5 Morgan each was simulated, 
using bi-allelic loci and a mutation rate of 10–8 at a 
locus per generation. Two thousand historical genera-
tions were simulated to generate stable allele frequen-
cies and linkage disequilibrium, with random selection 
and mating of 250 males and 250 females per gen-
eration. After these 2000 generations, approximately 
20,000 loci with a minor allele frequency (MAF) greater 
than 0.1 were selected, of which 1000 random loci, with 
equal numbers per chromosome, were selected as QTL. 
The remaining ~ 19,000 loci were used as genotyped 
markers. Additive effects of QTL were sampled from 
a normal distribution and the true breeding value of 
each individual in generation 0 of the pedigree genera-
tions was computed by summing the product of geno-
type (0/1/2) and effect across all QTL. The resulting 
breeding values in generation 0 were then centered and 
scaled to a standard deviation of 1. Phenotypes were 
simulated by adding a random normal environmental 
effect, resulting in a heritability of 0.2 or 0.4. Pedigree 
generations 1 to 10 were produced by randomly mat-
ing 10 or 40 males to 120 females, with each female 
producing either 12 or 24 progeny (half male/female), 
resulting in 1440 or 2880 phenotyped and genotyped 
individuals per generation. Individuals used for breed-
ing were either randomly selected or selected based 
on ĝG based on GBLUP, using a genomic relationship 
matrix derived using methods 1 or 2 of VanRaden [48]. 
Pedigree-based EBV, ĝA , were computed using pedigree 
relationships going back to generation 0. The herit-
ability that was used to simulate the data was used for 
genetic evaluation.

Empirical accuracies of ĝG and ĝA in the reference 
or target populations were obtained as the correlation 
between EBV and true BV, averaged over 50 replicates. 
With selection, EBV and true BV were centered within 
generation to avoid the correlation to be affected by 
genetic trend.

In the presentation of results, average empirical accu-
racies of ĝG and ĝA across 50 replicates in the training 
and the target populations are presented first, followed 
by empirical estimates of Me derived from the average 
empirical accuracies in the reference population and, 
finally, predicted accuracies of ĝG in the target popula-
tions derived using the developed method and empirical 
or theoretical estimates of Me in the reference popula-
tion. This was done first for reference populations of a 
single generation that were 1 to 5 generations separated 

from the target generation, in order to test the model for 
the loss in accuracy from the reference to the target pop-
ulation and to compare alternate measures of Me . Results 
are then presented for reference populations that accu-
mulate data across generations to predict the next gen-
eration, to more accurately mimic an ongoing breeding 
program. The latter was done without and with selection 
on GEBV. Estimates of Me in the reference population 
and predicted accuracies in the target populations were 
derived using the average empirical accuracies of ĝG 
and ĝA in the reference population across replicates in 
order to validate the proposed approaches and compare 
alternate measures of Me based on the Fisher or Index 
approach.

To evaluate the ability to estimate the accuracies of 
ĝG and ĝA in the reference population from available 
data, empirical accuracies were derived using the LOO 
approach based on Eq.  (17), as described above for 
method (iii). The true heritability was used in these cal-
culations. Empirical accuracies were also derived based 
on the LR approach of Eq.  (18), as described above for 
method (iv). The correlation between ĝA and gA was used 
as the accuracy of ĝA in these calculations.

Real data application
The Index method was also applied to the results of the real 
data genomic prediction analyses presented in Wolc et al. 
[18] for a multi-generational layer chicken breeding popu-
lation. Results from the evaluation of the persistency of the 
accuracy of GEBV across generations, as presented in Fig. 4 
of Wolc et al. [18], were used. In this analysis, the reference 
population consisted of data from 777 individuals that were 
genotyped for 23,356 SNPs and successive validation (tar-
get) populations consisted of the subsequent and up to the 
fifth generation after the reference population, one gen-
eration at a time. Parents of the first validation generation 
were part of the last generation of the reference population. 
Estimates of the average cross-validation accuracy across 
traits in each validation generation based on single-trait 
GBLUP and pedigree-based BLUP were used. For each 
successive validation generation, these accuracies were 
used to calculate the accuracy of DEBV ( rDt ) using Eq. (9). 
Then, the decline in rDt across validation generations was 
estimated by regressing the natural log of estimates of rDt 
on the number of generations that separates the validation 
population from the reference population (1 to 5) based on 
Eq. (12). The estimate of the resulting regression coefficient 
was then equated to 2(1− γ kL/Me) based on Eq. (13), as 
the exponent lp + lm increases by 2 at each generation, 
and solved for Me . Here, γ was set equal to 2 and kL equal 
to 30, since the chromosomes that SNPs were located on 
summed to ~ 30 Morgan, based on [49]. An estimate of Me 
was also obtained from the estimate of rD in the reference 
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data. Since a direct estimate of the latter was not available, 
it was estimated as the intercept of the regression equation, 
i.e. setting the number of generations between the valida-
tion and reference populations equal to 0. The resulting 
estimate of rDr was used to obtain an alternate empirical 
estimate of Me by iterating on Eqs. (3) and (11). In Eq. (11), 
N  was set equal to 777, M equal to 23,356, and heritability 
was set equal to 0.523, which was the average of the herit-
ability estimates of the traits analyzed by Wolc et  al. [18] 
(individual trait heritability estimates ranged from 0.25 to 
0.74).

Results
Single generation reference populations
To compare measures of Me in the reference population 
and evaluate the proposed method of predicting the loss 
of accuracy of ĝG from the reference to the target popula-
tion, generations 5, 6, 7, 8, and 9 were used as reference 
population, one generation at a time, and generation 10 
as the target population. Selection was at random. Size 
of the reference dataset was either 1440 or 2880 and her-
itability was 0.2 or 0.4. Figure  2 shows average empiri-
cal accuracies of ĝG and ĝA in the reference populations 
across 50 replicates. Average accuracies were fairly stable 
across the 1-generation reference populations but with a 
slight tendency to increase in later generations. Estimates 
of the accuracy of ĝG were very similar based on the use 
of method 1 versus method 2 of [48] to create G and, 
therefore, only results for method 2 are shown in Fig. 2.

Empirical estimates of Me derived from the aver-
age empirical accuracies from Fig. 2 are shown in Fig. 3. 
Although average empirical accuracies were fairly stable 

over time, changes in the relative magnitude of the accu-
racy of ĝG versus ĝA did result in a slight decline of 
empirical estimates of Me over generations. The Fisher 
approach to derive Me (method 3a above) resulted in 
higher values of Me than the Index approach (method 
3b above). However, estimates of Me derived based on 
the Index approach were less affected by reference size 
( N  ) and especially by h2 , than estimates of Me derived 
by using the Fisher approach, suggesting that the Index 
approach provides a more stable population parameter 
than the Fisher approach. Estimates of Me based on the 
inverse of the variance of relationships ( G− A ) were 
lower than corresponding estimates based on the Fisher 
or Index approach with 10 sires and similar to those from 
the Index approach with 40 sires. With 10 sires, variances 
of the relationships were smaller when G was based on 
method 1 of [48] compared to method 2.

Average empirical and predicted accuracies in the tar-
get population (generation 10) based on the 1-generation 
reference populations (generations 5 to 9) are shown in 
Fig. 4, along with the average empirical accuracies in the 
corresponding reference population across 50 replicates. 
Average empirical accuracies of ĝG were very similar for 
genomic relationships based on methods 1 or 2 of [48]. 
Predicted accuracies in the reference population (not 
shown) were identical to observed accuracies because 
Me was derived from the average empirical accuracies of 
ĝG and ĝA for each reference population. This was true 
for both the Fisher and the Index approach, although 
these two approaches resulted in different estimates of 
Me (Fig.  3). Note that the purpose of these simulations 
were not to predict the accuracy of ĝG in the reference 

Fig. 2  Average observed accuracy of genomic ( rG ) and pedigree-based ( rA ) predictions of breeding values in the 1-generation reference 
populations of generation 5 through 9. Results are based on 50 replicates for different reference data sizes ( N ), heritabilities ( h2 ), and numbers of 
sires and dams used for breeding
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population but to evaluate the proposed approach of 
separating pedigree-based and genomic information to 
model the accuracy of ĝG in the target population and 
to compare alternate measures of Me in the reference 
population.

Both the Fisher and the Index approach predicted 
the accuracy of ĝG in the target population rather well, 
accounting for the increase in pedigree information as 
the reference generation moved closer to the target gen-
eration (generation 10). However, there was some overes-
timation of the accuracy when the number of generations 
between the reference and target populations increased, 

especially for the larger reference size. The Fisher 
approach resulted in slightly higher predictions of accu-
racy in the target population than the Index approach 
because it resulted in higher estimates of Me (Fig.  3), 
which resulted in a smaller loss in accuracy of genomic 
information from the reference to the target population, 
based on Eq. (13).

Results in Fig. 4 were based on γ in Eq. (13) set equal to 
2, i.e. doubling the segment size relative to the estimate of 
Me . Resulting estimates of prt based on Me derived using 
the Index approach are also shown in Fig. 4 and increased 
almost linearly as the reference population moved closer 
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to the target population. With γ = 1, accuracies in the 
target population were overestimated when the number 
of generations between the reference and target popula-
tions was greater than 1, as shown in Additional file  1: 
Figure S1. All results presented in the remainder are 
based on γ = 2.

Multi‑generation reference populations
To evaluate the developed methods within the context 
of an ongoing breeding program, simulations were con-
ducted with an accumulating reference population over 
generations. I.e., starting with generation 0 as reference 
population and generation 1 as the target population, the 
reference population accumulated from generation 0 to 
9, each time targeting the next generation. The number of 
genotyped and phenotyped individuals was 1440 in each 
generation and 10 males and 120 females were selected 
for breeding from the target generation. Selection was 
either at random or based on GEBV of individuals in 
the target generation prior to them being phenotyped. 
Results were based on the average of 50 and 30 replicates 
with random and GEBV selection, respectively.

Figure  5 shows the average empirical accuracies of 
ĝG and ĝA in the reference population, with or without 
selection, as well as the accuracies of ĝD ( rD ) that were 
derived based on these average accuracies, using the 
Fisher (Eq. (6)) or the Index (Eq. (9)) approach. With ran-
dom selection, the accuracy of ĝA initially increased, as 
pedigree information accumulated, and then plateaued, 
as expected. With selection, the accuracy of ĝA initially 
increased because of the accumulation of pedigree infor-
mation, similar to the case without selection, but then 
gradually declined, first as a result of the Bulmer effect, 
then because of the loss of genetic variation due to allele 
frequencies moving to fixation.

Derived accuracies of ĝD , rD , increased at a declining 
rate as the size of the reference population increased. 
Accuracies of ĝD increased faster than accuracies of 
ĝG and ĝA as reference size increased because genomic 
minus pedigree information replaces pedigree informa-
tion as the size of the reference population increases 
and pedigree information reaches its limit. Interestingly, 
derived accuracies of ĝD were little affected by selection. 
Towards the end of the 10-generation period, accura-
cies of ĝD were slightly lower with selection than without 

selection, which is probably due to the greater loss of 
genetic variance beyond the Bulmer effect, which reduces 
the Mendelian sampling variance. The derived accuracy 
of ĝD was substantially lower when based on the Fisher 
approach compared to the Index approach. However, in 
both cases, rD was little affected by selection. The accu-
racy of ĝG , which combines pedigree and genomic infor-
mation, also increased at a declining rate as the size of the 
reference population increased. The effect of selection on 
reducing the accuracy was greater for ĝG than for ĝD but 
less than for ĝA.

Empirical estimates of Me derived from the aver-
age empirical accuracies from Fig. 5 are shown in Fig. 6. 
Estimates of Me initially decreased because the popu-
lation switched from Ne = 500 to 37. Estimates of Me 
derived using the Fisher approach were larger and were 
affected more by heritability than Me derived using the 
Index approach, again indicating that the Index approach 
results in a more stable estimate of Me for a population. 
Estimates of Me derived using either approach were not 
much affected by selection, although, with selection, 
Me based on the Fisher approach tended to increase in 
later generations, while Me based on the Index approach 
tended to plateau. Estimates of Me based on the inverse 
of the variance of relationships substantially underesti-
mated Me and were substantially lower with than with-
out selection. They were similar for relationships based 
on VanRaden methods 1 and 2 [48]. Theoretical estimates 
of Me based on effective population size also substantially 
underestimated Me.

Average empirical and predicted accuracies in each 
target generation based on the accumulating reference 
populations are shown in Fig. 7, along with the observed 
accuracy of the corresponding reference populations and 
estimates of prt . Again, empirical accuracies were very 
similar for genomic relationships based on VanRaden 
methods 1 and 2 of [48] for both the reference and target 
populations. Predicted accuracies in the reference popu-
lation that were based on either the Fisher or the Index 
approach were again identical to empirical accuracies 
because estimates of Me were derived from the average 
empirical accuracies of ĝG and ĝA for the reference popu-
lation. Both the Fisher and the Index approach correctly 
predicted accuracy in the target population over time, 
both with and without selection. Although the Fisher and 
Index approaches resulted in different estimates of Me , 

(See figure on next page.)
Fig. 4  Average observed (empirical r  ) accuracies of genomic estimated breeding values in the reference (blue) and target populations (red) and 
predicted of accuracy of genomic estimates breeding values in the target population Results are based on 50 replicates for 1-generation reference 
populations of generation 5 through 9 for different reference data sizes ( N ), heritabilities ( h2 ), and numbers of sires and dams used for breeding. 
Predicted accuracies are based on the Fisher information (green) or selection index (Index; yellow) approach. The line designated with prt is the 
proportional loss from the reference to the target population in accuracy of EBV based on genomic deviated from pedigree information



Page 12 of 23Dekkers et al. Genet Sel Evol           (2021) 53:55 

10 sires x 120 dams

40 sires x 120 dams

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10

Training Genera�on to predict G10

h  = 0.2 N=1440 

Empirical_r reference

Empirical_r target

Index_r target

Fisher_r target

2Accuracy

prt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10

Training Genera�on to predict G10

h  = 0.4 N=1440 

Empirical_r reference

Index_r target

Empirical_r target

Fisher_r target

2Accuracy

prt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10

Training Genera�on to predict G10

h  = 0.2 N=2880 

Empirical_r reference

Empirical_r target

Index_r target

Fisher_r target

2Accuracy

prt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10

Training Genera�on to predict G10

h  = 0.4 N=2880 

Empirical_r reference

Empirical_r target

Index_r target

Fisher_r target

2Accuracy

prt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10
Training Generation to predict G10

h = 0.2 N=1440

Empirical_r reference

Empirical_r target

Index_r target

Fisher_r target

2Accuracy

prt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10
Training Genera�on to predict G10

h   = 0.4 N=2880 

Empirical_r reference

Empirical_r target
Index_r target

Fisher_r target

2Accuracy

prt

Fig. 4  (See legend on previous page.)



Page 13 of 23Dekkers et al. Genet Sel Evol           (2021) 53:55 	

they resulted in nearly identical predictions of accuracy 
in target population. Estimates of prt were greater than 
0.97 in all cases, because individuals in the target popula-
tion were progeny of individuals in the reference popula-
tion. Thus, the main reason for the drop in accuracy of ĝG 
from the reference to the target population was the con-
tribution of pedigree information.

Application to real data
Figure  8 shows the natural log of the cross-validation 
accuracies of GEBV and PEBV in the validation popu-
lations that were 1 to 5 generations removed from the 

reference population, as well as the natural log of the 
derived rDt for each validation generation. Declines 
in the log of rAt and of rDt by generation were approxi-
mately linear, with estimates of regression coefficients 
equal to − 0.3663 and − 0.0327, respectively. Note that 
the former corresponds to a decline of rAt by a factor 
e− 0.3663 = 0.70, which is as expected based on pedigree. 
The average decline of rDt per generation was by a fac-
tor e− 0.0327 = 0.968. Based on Eq.  (13), the latter can be 
used to obtain an estimate of Me by equating 0.968 to 
2(1− 2 ∗ 30/Me) , resulting in Me = 3705. Alternatively, 
an estimate of Me can be also obtained from an estimate 

Fig. 5  Average empirical and predicted accuracies of estimated breeding values in an accumulating reference population and breeding program 
with random selection (Random; broken lines) or selection on genomic estimated breeding values (Select; solid lines) of 10 males and 120 females 
per generation. Results are based on 50 replicates for 1-generation reference populations of generation 5 through 9 for different reference data 
sizes ( N ), heritabilities ( h2 ), and numbers of sires and dams used for breeding. Predicted accuracies are based on the Fisher information (green) or 
selection index (Index; yellow) approach

Fig. 6  Estimates of Me in an accumulating reference population for each target generation. Estimates were derived using different methods for 
different heritabilities ( h2 ) and with random selection or selection on genomic estimated breeding values of 10 males and 120 females from the 
target generation for breeding. Me were derived based on the Fisher information or selection index (Index) approaches or based on the reciprocal 
of the variance of genomic minus pedigree-based relationships, with genomic relationships computed using method 1 (G1) or 2 (G2) of VanRaden 
[48]. Horizontal broken lines represent theoretical predictions of Me based on the effective population size ( Ne = 37 or 120) and the number ( k = 9) 
and size ( L = 1.5) of chromosomes based on Goddard [5] ( Me = 2NeLk ) and Goddard et al. [8] ( Me = 2NeLk/ln(NeL))
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of rD in the reference population, which was derived 
based on the intercept of the estimated regression equa-
tion as rDr = e−1.2855 = 0.277 . Using the latter to iterate 
on Eqs. (3) and (11) resulted in Me = 3727, which was 
very close to the estimate of Me based on the decline in 
accuracy over validation generations, validating both the 
estimate of Me based on the Index approach and how the 
decline in accuracy of genomic information over genera-
tions was modeled.

Estimation of the accuracy of EBV in a reference population
In the previous section, average empirical estimates of 
the accuracies of ĝG and ĝA in the reference population 
across replicates were used to derive Me in the reference 
population and the accuracy of ĝD in the reference popu-
lation in order to compare alternate measures of Me and 
to validate the developed methods to predict the accu-
racy of ĝG in the target population. If an estimate of Me 
in the reference population is not available, the accuracy 
of ĝG and ĝA in the reference population can be estimated 
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Fig. 7  Average (50 replicates without selection, 30 with selection) empirical (broken lines) and predicted (solid lines) accuracy of genomic 
estimated breeding values in each target generation based on an accumulating reference population. Empirical results are based on 50 replicates 
with random selection and 30 replication with selection on GEBV. Results are shown for different heritabilities ( h2 ), and with random selection or 
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from available data. To demonstrate how to obtain such 
within-population accuracies, they were both estimated 
based on LOO cross-validation Eq.  (17) and based on 
the correlation of part-whole EBV Eq.  (18). Results are 
in Fig. 9 for one replicate of the accumulating reference 
population for target generation 10. For the full reference 
population, estimated accuracies were very close to the 
true accuracies, for both ĝG and ĝA . For individual gen-
erations of this reference population, true and estimated 
accuracies fluctuated, especially when heritability was 
lower and with selection. For the most part, estimates of 
accuracy of individual generations differed from the true 
accuracy but not substantially and more-or-less at ran-
dom. The LOO and LR approaches resulted in different 
estimates of accuracy for individual generations, without 
a consistent advantage of one approach over the other.

Discussion
Breeding programs are complex and expensive to run 
and their design requires many decisions that must be 
optimized, including the choice of the breeding goal, the 
size of the breeding population, which phenotypes to 
measure, on which animals, and at what age, and, with 
the availability of high-density SNP genotyping panels, 
which animals to genotype, at what density, and at what 

age. Because of the expense and long planning horizon 
of breeding programs, opportunities to evaluate alter-
nate breeding program designs by experimentation are 
prohibitive. Thus, instead, design and optimization of 
breeding programs must be based on mathematical mod-
els. One approach is to model a breeding program by 
stochastic simulation and many studies have used this 
to evaluate alternate genomic selection programs over 
the past decades [1, 2]. However, stochastic simulation 
is computationally demanding, in particular because 
many replicates must be run to obtain accurate estimates 
of the expected outcomes of breeding programs, which 
is the key feature of interest when comparing alterna-
tive programs. Deterministic mathematical models of 
breeding programs for prediction of expected responses 
to selection are computationally much less demanding 
and, as a result, allow large numbers of alternates to be 
evaluated and also enable optimization of breeding pro-
grams. In addition, deterministic models of breeding pro-
grams provide greater insight into the factors that affect 
expected outcomes. A limitation of deterministic models 
of breeding programs is that, by necessity, they assume 
the infinitesimal genetic model and multivariate normal-
ity, while stochastic simulation allows alternate genetic 
architectures of traits to be considered. However, for 
most traits of interest in animal breeding, the infinitesi-
mal model provides good approximations to the nature 
of traits, especially over a limited number of generations 
of selection.

A key parameter for deterministic models of breeding 
programs is accuracy of selection. For pedigree-based 
breeding programs, prior to the era of genomic predic-
tion, selection index approaches based on PseudoBLUP 
have been developed and used to evaluate the accuracy 
of PEBV [25, 26]. PseudoBLUP selection index methods 
were extended to incorporate information from indi-
vidual genetic markers and genomic predictions [3], 
assuming the accuracy of such information, in terms of 
its correlation with the true breeding value of selection 
candidates, is known. Although multiple formulae and 
concepts to predict the accuracy of GEBV have been 
developed, these methods have not been able to approxi-
mate the accuracy of GEBV obtained with real data [10, 
16, 17].

The method developed here is the first to explicitly 
account for the contribution of pedigree versus genomic 
information to GEBV of selection candidates, as well as 
the distance of selection candidates from the reference 
data. The resulting method enables the modeling and 
comparison of breeding programs that differ in the size, 
scope, and design of their phenotyping and genotyp-
ing programs. Ultimately, this will enable optimization 

y = -0.0327x - 1.2855

y = -0.3633x - 0.7862

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
0 1 2 3 4 5

ln
(a

cc
ur

ac
y)

Genera�on

ln(rG)

ln(rD)

ln(rA)

O Predic�on of ln(rD) in genera�on 0

Fig. 8  Cross-validation accuracies of genomic ( rG ) and 
pedigree-based ( rA ) EBV in a real chicken population and the 
derived accuracy of EBV based on genomic deviated from pedigree 
relationships ( rD). Shown are the natural log of the accuracies of 
GEBV, PEBV, and DEBV in validation populations that were 1 to 5 
generations removed from the reference population. The broken lines 
show the linear regression lines for rD (red) and rA (blue). The open 
circle at generation 0 is the prediction of rD based on the regression 
line



Page 16 of 23Dekkers et al. Genet Sel Evol           (2021) 53:55 

of breeding programs with genomic data, including who 
should be genotyped and phenotyped for which traits 
and when, as well as optimization of multiple-stage selec-
tion programs.

The method for prediction of the accuracy of GEBV in 
the target population that was developed here is based 
on three concepts: (i) the contribution of pedigree rela-
tionships versus genomic deviations from pedigree 
relationships to GEBV, (ii) prediction of the accuracy of 
ĝD based on genomic relationships deviated from pedi-
gree relationships in the reference population, and (iii) 
erosion of this genomic information between the refer-
ence and target populations. Methods to model these 
three concepts were developed and, using simulation, 
they were shown to result in accurate estimates of the 
accuracy of GEBV in selection candidates, both with 

and without selection. Aspects of the methods were 
also validated using real data. However, full validation 
of the developed method was not possible, as it requires 
an estimate of the accuracy in the training data, which 
is typically not provided.

Modeling the contribution of pedigree information 
to GEBV
While it is well-known that GEBV capture pedigree 
information [2], most methods to predict the accuracy 
of GEBV have not explicitly modeled this. In fact, the 
original formula for prediction of the accuracy of GEBV 
assumed a reference population of unrelated individu-
als [4, 5]. Separating out pedigree-based information 
from GEBV in the reference population and adding it 
back into the GEBV for the target population was able to 

Fig. 9  True and estimated accuracy of genomic (GEBV) and pedigree-based (PEBV) estimated breeding values in the nine-generation reference 
population for generation 10 (Overall) and in each of its contributing generations.Results are based on one replicate for different heritabilities 
( h2 ) and with random selection or selection on genomic estimated breeding values of 10 males and 120 females in each generation. Estimated 
accuracies were based on leave-one-out cross-validation (LOO) or based on the correlation of part-whole EBV (LR)
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accurately model the decline in accuracy of GEBV as the 
target population was more generations separated from 
the reference population. This was demonstrated using 
both simulated and real data. Differentiating between 
pedigree-based and genomic information also enabled 
the differential rate of erosion of pedigree-based informa-
tion versus genomic information to be modelled, which 
was recognized to be important by Habier et al. [2].

Two approaches were used to quantify the contribu-
tion of pedigree versus genomic information to GEBV: 
the Fisher information approach and the selection index 
approach. Note that both these approaches are different 
from the GBLUP model that was proposed by Legarra 
and Ducrocq [24], which simultaneously fits pedigree 
and genomic minus pedigree components of breeding 
values, such that the GEBV is the sum of the resulting 
predictions, ĝA and ĝD : ĝG = ĝA + ĝD . The latter equa-
tion does not hold for the Fisher and Index approaches 
that were used here to differentiate pedigree and genomic 
contributions to GEBV, as both these approaches assume 
that the estimates ĝA and ĝD are obtained in separate 
evaluations rather than simultaneously, akin to single- 
versus multiple-trait evaluation. Both the Fisher and the 
Index approaches assume that the information that is 
used to estimate ĝD is independent of the information 
that is used to estimate ĝA . Although both estimates are 
based on the same phenotypic data, independence of the 
information used for these two EBV is based on the use 
of pedigree relationships to estimate ĝA , while deviations 
of genomic from pedigree relationships are used to esti-
mate ĝD . The assumption of independence of prediction 
errors of ĝA and ĝD is motivated by the independence 
of pedigree relationships, which contribute to ĝA , from 
genomic minus pedigree relationships, which contribute 
to ĝD . Although a proof of this independence was not 
derived, results show that any violation of this assump-
tion appears to have limited effects on results.

To further investigate the relationships of ĝA from a 
pedigree-based analysis with ĝ∗A and ĝD from the Legarra 
and Ducrocq [24] model, the latter were computed for 
a number of simulation replicates. As shown in [24], 
ĝ∗A can be computed from the vector of GEBV, ĝG , as: 
ĝ∗A = AG−1ĝG , where A and G are the pedigree-based 
and genomic relationship matrices, respectively. Then, ĝD 
can be computed as: ĝD = ĝG − ĝ∗A . Results showed that 
ĝ∗A and ĝD were highly negatively correlated (up to − 0.8), 
as expected, because their sum is equal to ĝG . This high 
negative correlation also reflects the instability of the 
predictions ĝ∗A and ĝD that are obtained from this model, 
although ĝG may be quite accurate. In contrast, ĝA from 
the pedigree-based analysis and ĝD from the Legarra and 
Ducrocq [24] model had very low correlations, reflecting 
the near independence of their prediction errors.

Me in the reference population
A key parameter in deterministic methods to predict the 
accuracy of GEBV is the effective number of chromo-
some segments, Me , as defined by [12] and [5]. While the 
original methods that used this concept referred to Me 
as a property of the reference data, related to the num-
ber of effects that need to be estimated, recent methods 
have defined Me to be between the reference and target 
population [8, 11]. Our results demonstrate that Me in 
the reference population is the key parameter that deter-
mines both the accuracy of genomic information in the 
reference population and the loss in accuracy of genomic 
information from the reference to the target population.

The relationship between Me and accuracy of genomic 
information in the reference population was used here 
to identify a measure of Me which, similar to effective 
population size, Ne , can be viewed as an inherent param-
eter of the population and its history in terms of family 
structure, rather than of the data that it generates. Deri-
vation of Me from the accuracy of information captured 
by genomic minus pedigree relationships in the reference 
data based on the Index method provided such a meas-
ure, as it was not much affected either by reference data 
size and trait heritability, or by selection. This was less 
the case when partitioning accuracies using the Fisher 
approach, which was used by van den Berg et  al. [17]. 
The importance of this result is that Me does not have 
to be derived separately for each trait in a population, at 
least when GEBV are based on the GBLUP method; van 
den Berg et  al. [17] showed that Me for a trait tends to 
be smaller when variable selection methods (Bayes R) are 
used for genomic evaluation, depending on the number 
of QTL that affect the trait. This implies that Me may 
need to be estimated separately for each trait, if variable 
selection methods are used for genomic prediction. How-
ever, the number of QTL does not affect the accuracy 
and, therefore, Me for GBLUP [17].

In this paper, several approaches are described to 
estimate Me in the reference population, including 
deterministic estimates based on effective population 
size, empirical estimates based on the reciprocal of the 
variance of genomic deviated from pedigree relation-
ships in the reference population, and empirical esti-
mates derived from the accuracies of ĝA and ĝG in the 
reference population based on the Fisher or the Index 
approach. Resulting estimates of Me differed greatly 
between methods. Limitations of deterministic esti-
mates of Me based on Ne have been addressed in the 
literature [10, 16, 17] and also here, they provided poor 
estimates. Estimates of Me based on the reciprocal of 
the variance of genomic minus pedigree relationships 
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were also found to be lower than expected, which was 
also observed by van den Berg et  al. [17], especially 
when the number of sires was much smaller than the 
number of dams. Further work is needed to investigate 
the relationship of Me with the variance of relationships 
with a hierarchical family structure. The variance of 
relationships was also substantially affected by selection 
and continued to increase over generations, leading to a 
continuous decline in Me (Fig. 6). Thus, the variance of 
relationships does not provide an appropriate means of 
estimating Me in a population, as was also concluded by 
van den Berg et al. [17].

To evaluate empirical measures of Me based on 
observed accuracies of ĝA and ĝG , using the Fisher or 
Index approach, Me was derived separately for each ref-
erence dataset. As a result, predicted accuracies of ĝG in 
the reference population were identical to the observed 
accuracies for all reference datasets for both the Fisher 
and Index approach. However, the purpose of these sim-
ulations was to evaluate the resulting measures of Me and 
how they depended on heritability, reference data size, 
and selection, as well as how they changed over genera-
tions. For this purpose, historical effective population 
size was also chosen to be substantially different from 
the current population size, as might be the case when a 
selection program is implemented in a previously unse-
lected population. As expected, this resulted in substan-
tial changes in estimates of Me in the initial generations 
(Fig.  6) but, importantly, Me tended to stabilize after a 
number of generations, in particular Me derived using the 
Index approach (Figs. 3 and 6). Thus, the Index approach 
can be recommended for estimation of Me as a popula-
tion parameter. In practice, this implies that an estimate 
of Me for a population can be obtained from estimates of 
the accuracy of ĝA and ĝG in a reference population for 
one trait and then applied across traits. Alternatively, Me 
could be estimated separately for multiple traits and then 
averaged.

If empirical accuracies of ĝA and ĝG in the reference 
population are available, knowledge of Me is not required 
for derivation of the empirical accuracy contributed by 
genomic relationships deviated from pedigree relation-
ships in the reference population when using the Index 
approach (Eq. (10)), nor is it required for combining the 
accuracies of ĝA and ĝD in the target population into the 
accuracy of ĝG in the target population. In the Index 
approach, Me only enters into computing the loss of the 
accuracy of genomic information from the reference to 
the target population. When using the Fisher approach, 
Me does enter into the partitioning of the accuracy of 
ĝG into the accuracies of ĝA and ĝD but only through the 
proportion of genetic variance that is captured by mark-
ers, i.e. q2 . Note that, if the number of markers is large, 

q2 is approximately 1 and, then, Me also only enters into 
computing the loss of accuracy of genomic information 
from the reference to the target population for the Fisher 
approach. However, if the accuracy of GEBV in the refer-
ence population is not known, then an estimate of Me is 
needed to derive the accuracy of ĝD in the reference pop-
ulation, based on Eq. (6).

Loss of accuracy from the reference to the target 
population
In the literature, several approaches have been used to 
model the loss of accuracy of GEBV from the reference to 
the target population. Habier et al. [2] modeled the ero-
sion of the accuracy of the genomic component of GEBV 
over generations based on the probability of no recom-
bination between the markers and QTL. For prediction 
across populations, Wientjes et al. [21] modeled the loss 
of accuracy of GEBV from one population to the next 
based on the consistency of marker-QTL LD between the 
reference and the target populations. They quantified this 
loss by the ability to predict QTL genotypes in the target 
population based on predictions of QTL genotypes from 
marker genotypes in the reference population. Karaman 
et al. [50] showed that the accuracy of GEBV in the target 
population is limited by the estimability of marker geno-
type combinations that are present in the target popula-
tion based on genotype combinations that are present in 
the reference data.

The approach developed here to predict the loss of 
accuracy of genomic information from the reference 
to the target population was based on the probability 
that both the maternal and the paternal haplotype that 
a target individual received for a genome segment were 
inherited from the reference population without recom-
bination, following Habier et  al. [2]. If both haplotypes 
are inherited without recombination, then the accuracy 
of the estimate of that segment in the target individual is 
expected to be the same as the accuracy of that segment 
in the reference population. If one or both haplotypes 
are inherited with recombination, then that segment 
will be novel and its estimate based on the reference 
population was assumed to be zero. The probability of 
no recombination was based on the number of genera-
tions between the target individual and its closest ances-
tors in the reference population and the average size of 
each segment. The former was based on Clark et al. [19], 
who showed that the  accuracy of GEBV was driven by 
the maximum relationship of the target individual with 
individuals in the reference population. Further research 
may be needed to validate this assumption, especially 
for multi-generational and heterogeneous data; in those 
cases, some weighted average of the distance of the target 
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to individuals in the reference population may be more 
appropriate.

The average size of segments was initially based on Me 
in the reference population and genome size in Morgans. 
However, this resulted in underestimation of the loss of 
accuracy from the reference to the target population (see 
Additional file 1: Figure S1). This underestimation is likely 
because Me is based on LD in the population and ignores 
that part of the contribution of genomics to the accuracy 
of GEBV is through co-segregation between markers and 
QTL, as demonstrated by Habier et  al. [22]. Contribu-
tions from co-segregation extend over longer genomic 
distances than contributions from LD [22]. Doubling 
the size of independent segments, which was based on 
correctly predicting the loss of accuracy as the number 
of generations between the reference and target popula-
tions increased in the simulated base scenario (compar-
ing Fig. 4 and Additional file 1: Figure S1), was found to 
improve predictions of the loss of accuracy across all sce-
narios investigated here. However, this adjustment will 
require further validation and theoretical development. 
Ideally, contributions of genomic over pedigree informa-
tion to GEBV are further separated into contributions 
of co-segregation versus LD, such that the decay of their 
information over generations can be modelled separately. 
In addition, the loss of accuracy should be affected by the 
distribution of the effect of a QTL across its neighboring 
markers and their distance from the QTL. This distribu-
tion will depend on the multi-locus LD of the QTL with 
its neighboring markers, the size of the reference popula-
tion, and whether the statistical model prioritizes nearby 
markers. For example, markers that capture effects of a 
QTL are expected to be closer to the QTL when using 
variable selection models such as Bayes-B, compared to 
GBLUP [2]. Therefore, Bayes-B is expected to result in a 
smaller loss of accuracy of GEBV from the reference to 
the target population than GBLUP. However, if the size of 
the reference population is large, only markers very close 
to the QTL are expected to capture most of the effects of 
the QTL for both Bayes-B and GBLUP. In that case, loss 
of accuracy is expected to be small for both methods.

The method to model the decline in accuracy of 
genomic information over generations was validated 
using observed accuracies in the reference and valida-
tion data from a layer chicken population. Based on these 
accuracies, which were averaged over traits to reduce 
variability, Me was estimated based on the decline in 
accuracy of genomic information over generations, and 
based on the observed accuracy of genomic information 
in the training data. These two estimates of Me showed 
very good agreement, which demonstrates that, at least 
for this example, the proposed approach to estimate 
Me based on observed accuracies in the reference data 

and its use to model the decline in accuracy of genomic 
information over generations holds, including the choice 
of doubling the size of segments ( γ = 2). However, fur-
ther research is needed to determine whether this holds 
for other cases. In practice, if a multi-generation refer-
ence population is available, as in the real data used here, 
reference-training scenarios with increasing numbers of 
generations between the reference and training data can 
be generated, as in [18], and used to calibrate γ.

Although some of the assumptions of the method used 
here to model the loss of accuracy of genomic informa-
tion from the reference to the target populations may 
be violated in practice, it should be noted that this loss 
of accuracy is expected to be small when the target indi-
viduals are progeny of individuals in the reference popu-
lations. Thus, in that case, which will be typical for most 
livestock breeding programs, results will be rather insen-
sitive to the value of Me used to estimate that loss, as well 
as the choice of γ . Instead, most of the loss of accuracy of 
GEBV in those cases results from the erosion of pedigree 
information and, therefore, depends on the contribution 
of pedigree information, which appears to be accurately 
modeled in the proposed approach.

The loss in accuracy of DEBV from the reference to the 
target population by recombination could also explain 
the inflation of GEBV that is often observed for genomic 
predictions, as quantified by the regression of phenotype 
on GEBV of validation animals being less than 1 [37]. 
Based on BLUP theory [38], a decline in accuracy should 
result in a corresponding decline in the variance of DEBV 
among selection candidates compared to the reference 
population. However, considering that the GEBV of a 
selection candidate is based on the sum of the product 
of the candidate’s SNP genotype codes and SNP effect 
estimates from the reference population, the variance of 
DEBV of selection candidates is not expected to be lower 
than that of DEBV in the reference population, resulting 
in inflation of the GEBV of selection candidates.

Accuracy of genomic information in the reference 
population
Key elements for predicting the accuracy of GEBV in 
the target population using the method developed here 
are the accuracies of PEBV and GEBV in the reference 
population. In the simulations, accuracies in the refer-
ence population were based on the correlation between 
true and estimated BV across all individuals in the ref-
erence population, with correction for genetic trend in 
the case of selection. Note that the goal here is to obtain 
the population-based accuracy of GEBV, rather than the 
accuracy of the GEBV of individual animals. As defined 
by Bijma [27], the accuracy of the EBV of an individual 
is defined based on the prediction error variance of the 
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individual’s EBV, i.e. over repeated sampling, and can be 
derived from the inverse of the coefficient matrix of the 
mixed model equations [23]. However, what is relevant 
for prediction of response to selection, is the population 
accuracy, which is defined as the correlation between 
EBV and true BV across the population [27]. In a popu-
lation that is under selection, it is important for both 
the individual and population accuracies to be adjusted 
for the effect of selection, as described by Dekkers [35] 
and Bijma [27], in order not to overestimate accuracy. 
Note also that the goal here is to estimate the accuracy 
of within-sample prediction, i.e. the accuracy within the 
reference data, rather than the accuracy of predictions of 
breeding values or phenotypes of individuals that are not 
in the reference data.

In a reference population that consists of multiple gen-
erations, accuracies of EBV were found to differ between 
generations (Fig.  9), especially accuracies of PEBV. In 
addition, within a generation, accuracies differed sub-
stantially between animals that were used as parents 
versus those that were not. To derive the contribution of 
genomic information deviated from pedigree informa-
tion to GEBV, however, the pooled accuracy across gen-
erations was used and found to lead to good predictions 
of the accuracy of GEBV in the target population.

Several approaches were described to obtain an empiri-
cal estimate of the accuracy of GEBV in the reference 
population. A standard approach is to conduct k-fold 
cross-validation in the reference data [51], where the ref-
erence data is split into k subsets and the EBV for each 
subset are then estimated using the data from all other 
subsets. This results in a cross-validation EBV for each 
individual in the full data and the accuracy of these 
EBV is then obtained by dividing their correlation with 
observed phenotypes by the square root of heritability. 
A limitation of this approach is that the resulting esti-
mate of accuracy depends highly on how the dataset is 
split into subsets and whether close relatives are spread 
across subsets. For example, the estimate of accuracy will 
be lower if subsets are created by k-means clustering on 
relationships, which minimizes relationships between 
subsets [51].

Leave-one-out cross-validation was proposed here 
as one approach to obtain an empirical estimate of the 
population accuracy of EBV in the reference population. 
Note that this approach is not recommended to obtain 
the accuracy of GEBV of selection candidates. Efficient 
methods to obtain LOO EBV have been developed [44, 
45] and were recently extended to complex mixed linear 
models with multiple random effects and without requir-
ing pre-adjustment of phenotypes for fixed effects by 
Cheng et  al. [52]. This approach also allows the pheno-
type of a validation individual to be corrected for fixed 

effects estimated using the LOO data, rather than the 
complete data. Although further research is needed, this 
approach provided accurate estimates of the accuracy of 
EBV under simulation. However, this method requires an 
estimate of heritability in the reference population, both 
for converting the validation correlation to an accuracy of 
EBV and when adding information from own phenotype 
to the EBV. In a population that is under selection, this 
heritability may be difficult to obtain. One solution would 
be to estimate the decrease in genetic variance as a result 
of the Bulmer effect using an approximate deterministic 
model of the breeding program, e.g. following Dekkers 
[3].

Another approach that was explored to obtain an 
empirical estimate of the accuracy of GEBV in the refer-
ence population was the correlation between part-whole 
EBV, applied to PEBV versus GEBV, as proposed by 
Legarra and Reverter [37]. This approach could be used 
in combination with the LOO approach, e.g. by deriving 
the accuracy of pedigree-based LOO EBV and the cor-
relation of these PEBV with GEBV using the full data. 
Alternatively, the accuracy of PEBV could be derived 
deterministically using a PseudoBLUP approach and 
divided by the correlation between PEBV and GEBV 
from the data to derive the accuracy of GEBV in the ref-
erence population. The best approach to derive the accu-
racies of PEBV and GEBV in the reference population 
requires further investigation.

An interesting finding from the simulations was that 
the accuracy of DEBV in the reference population was 
not affected by selection (Fig.  5). This is likely because 
DEBV are based on deviations of genomic from pedi-
gree relationships, i.e. based on Mendelian sampling 
terms, which are not affected by the Bulmer effect. How-
ever, in the simulations, the genetic variance continued 
to decrease over generations because of inbreeding and, 
with selection, fixation of favorable QTL alleles. Whether 
these relationships are as expected requires further 
investigation.

Conclusions
A deterministic method was developed for the prediction 
of the accuracy of GEBV of selection candidates within 
a breeding program based on the accuracy of GEBV 
and PEBV in the reference population and the distance 
of selection candidates from their closest ancestors in 
the reference population. The method uses the fact that 
GEBV are a combination of PEBV and EBV that are 
based on genomic relationships deviated from pedigree 
(DEBV). Assuming that these two EBV have independ-
ent sampling errors, the accuracy of GEBV can be par-
titioned into the accuracy of these respective EBV based 
on selection index theory or based on Fisher information 
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theory. Loss of the accuracy of DEBV from the reference 
to the target population depends on the effective number 
of chromosome segments in the reference population 
( Me ), which determines the size of independent segments 
whose effects are estimated in the reference population 
and the probability that a random segment is broken up 
by recombination when moving from the reference to 
the target population. Me in the reference population can 
be estimated based on the observed accuracies of GEBV 
and PEBV in the reference population, using either the 
Fisher or the Index approach. Both the Fisher and Index 
approach correctly predicted the accuracy of GEBV in 
the target population over time, both with and without 
selection. The Fisher and Index approaches, however, 
resulted in different estimates of Me , with the Index 
approach resulting in estimates that were less affected by 
heritability, reference size, and selection, and which are, 
therefore, more appropriate as a population parameter.

Appendix 1
Pseudo‑code to predict the accuracy of GEBV in the target 
population using the selection index method
Based on variables and parameters as defined in the text.

A reference population is available

(1)	 Estimate the accuracy of GEBV in the reference pop-
ulation, rGr, by cross-validation.

(2)	 Estimate the accuracy of PEBV in the reference 
population, rAr,estimated by cross-validation or by 
Pseudo-BLUP).

(3)	 Compute the accuracy of DEBV in the reference 
population based on Eq. (9):

4)	 Set the proportion of genetic variance captured by 
markers for DEBV equal to 1: q2D = 1.

5)	 Compute θDr in the reference population using Eq. (4): 
θDr =

r2Dr (1−r2Dr q
2
Dh

2)

q2D−r2Dr
.

6)	 Compute Me in the reference population based on 
Eq. (11): Me = Nq2Dh

2/θDr .

7)	 Update q2D using Eq. (3): q2D = M/(M +Me).

8)	 Return to step 5) until a stable value for Me is obtained.
9)	 Compute the accuracy of PEBV in the target popula-

tion by Pseudo-BLUP.
10) �Compute the loss of accuracy of DEBV from the 

reference to the target population using Eq.  (13) as: 

rDr =

√√√√ r2Gr
−r2Ar

1+ r2Ar
(r2Gr

− 2)
.

prt = (1− γ kL/Me)
(lp+lm) , with γ = 2 or obtained 

by calibration.
11)	 Compute the accuracy of DEBV in the target pop-

ulation using Eq. (12): rDt = prtrDr .

12)	 Compute the accuracy of GEBV in the target pop-

ulation using Eq. (8): rGt =

√
r2At

+r2Dt
−2r2At

r2Dt
1−r2At

r2Dt

.

A reference population is not available

1)	 Obtain an estimate of Me in the reference population 
by other means, i.e. based on theory or based on an 
estimate of Me from a comparable reference popula-
tion.

2)	 Compute q2D using Eq. (3): q2D = M/(M +Me).

3)	 Compute θDr in the reference population using Eq. (4): 
θDr =

r2Dr (1−r2Dr q
2
Dh

2)

q2D−r2Dr
.

4)	 Compute the accuracy of DEBV in the reference pop-
ulation based on Eq.  (6): 

rDr =

√[
1+ θDr −

√(
1+ θDr

)2
− 4h2q4DθDr

]
/2q2Dh

2.

5)	 Go to step 9) under the above paragraph “A reference 
population is available”.

Appendix 2
Derivation of the accuracy of GEBV using the selection 
index theory
Based on variables and parameters as defined in the text.

The selection index to combine ĝA and ĝD is:

Using standard selection index theory [30], optimal 
index weights can be derived as:

 where rĝA,ĝD is the correlation between ĝA and ĝD . If sam-
pling errors of ĝA and ĝD  are independent, rĝA,ĝD = r2Ar

2
D 

and 
[
bA
bD

]
= 1

1−r2Ar
2
D

 
[
1− r2D
1− r2A

]
. The squared accuracy of 

(19)ĝG = bAĝA + bDĝD.

[
bA
bD

]
=

[
var(ĝA) cov(ĝA, ĝD)

cov(ĝA, ĝD) var(ĝD)

]−1[
cov(ĝA, gG)
cov(ĝD, gDG)

]

=

[
r2A rĝA ,ĝD

rĝA ,ĝD r2D

]−1[
r2A
r2D

]
=

1

r2Ar
2
D − rĝA,ĝD

2

[
r2Ar

2
D − r2DrĝA,ĝD

r2Ar
2
D − r2ArĝA,ĝD

]
,
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the resulting index can be derived as: 

r2G =

[
bA
bD

]’[
cov(ĝA, gG)
cov(ĝD, gDG)

]
=

r2A+r2D−2r2Ar
2
D

1−r2Ar
2
D

.
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