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Abstract Regression is a kind of data analysis technique in

which the relationship between the independent vari-

able(x) and dependent variable(y) is modeled and for

polynomial regression it is up to the nth degree polynomial.

Polynomial regression fits a nonlinear relationship between

the value of x and the corresponding conditional mean of y,

denoted by E (y|x). In this paper polynomial regression

analysis has been improved through efficient selection of

variables that is coefficient of determination. Coefficient of

determination is a square of the correlation between new

predicted y values and actual y values and its values are in

the range from 0 to 1. The main purpose of regression

analysis is to discover the relationship among the inde-

pendent and dependent variables or in other words it is an

explanation of variation in one variable with another

variable. In this paper, the main focus is on Multivariate

data sets that have many attributes and it is not necessary

that all variables are required for data analysis purposes.

Using coefficient of determination (COD) irrelevant attri-

butes get eliminated during analysis. The main objective of

research is to reduce the cost of data maintenance, reduce

the execution time and improve the prediction accuracy

rate. COD helps in selecting suitable independent vari-

ables. It is a notch that is used in statistical analysis that

assesses how well a model explains and forecasts upcom-

ing outcomes. This method also helps in eliminating the

irrelevant variables which are not required for the predic-

tion model by this maintenance cost and size of data sets

can be reduced.

Keywords Polynomial regression � Coefficient of

determination (COD) � Independent variable � And

multivariate data sets

1 Introduction

Regression is an approach used for data analysis and helps

in taking decisions. It is a data mining approach to predict

the continuous values or range of numeric values. It is a

prediction technique where the regression equation

involves two variables: Unknown variable (predictor vari-

able) and Response variable (values to predict). Manoj

Kumar Gupta and Pravin Chandra [11] presented a sys-

tematic and detailed survey of different tasks and tech-

niques of data mining. In addition, authors presented

different real-life data mining applications. Authors

explained the Data mining task realization and data mining

techniques. Copeland, Karen [1] introduced non parametric

methods which can relax assumptions on the outline of a

regression method and can help to search for data which

must be applicable for suitable regression function and for

data sets as well. The use of these non-parametric functions

with parametric techniques can yield immensely powerful

data analysis tools. Eva Ostertagová [4] determined on the

polynomial regression sculpt, if the relationship of two

variables is curvilinear then polynomial regression is useful

for prediction and characterizes the relationship between

strains and drilling depth. Least square method is used to

guesstimate the parameters of the model. After fitting and

evaluating the model some frequent indicators are used to

weigh up the truth of the regression model. Fawcett et al.

[2] describes an automatic approach for fraud detection on

the basis of transaction records, and the introduced system
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will learn the features and generate confidence alarms for

the users.

Samar Wazir, Sufyan Beg, Tanvir Ahmad [12] Proposed

earlier Master Apriori algorithm which is used to measure

estimated frequent Items for a combination of certain and

uncertain databases with the help of UApriori for the

uncertain database based on Apriori for Certain and Plan-

ned support. Researcher expanded the previous work for

the uncertain database by using UApriori based on poisson

and normal distribution. There is only one-time commu-

nication between sites where data is transmitted in the

proposed algorithms, which decreases the overhead of

communication. By using normal and synthetic databases,

the scalability and efficiency of proposed algorithms were

then tested. The performances were then calculated by

comparing the time taken and each algorithm generated a

number of frequent products.

Rimal and Almøy, [9] introduced a novel approach that

can be evaluated based on various aspects of data. How-

ever, it is very limited for multiple response variables. A

novel approach is used for real data and simulated data

sets. Authors compared their approach with well-estab-

lished prediction methods. This approach is specially

designed by varying properties such as multi col-linearity,

the correlation between multiple responses and position of

relevant principal components of predictors. Tahani S.

Gendy [6] discusses thermal formation of stabilized limited

jet dispersal flames in the presence of various geometries of

trick body burners which has been scientifically modeled.

Two stabilizer disc burners the radial mean temperature is

measured to develop and stabilize flames at multiple nor-

malized axial distances. Stangierski, Weiss and Kaczmarek

[10] compared the quality of multiple linear regression

(MLR) and artificial neural network (ANN) to predict the

whole quality of spreadable Gouda cheese during storage at

8 �C, 20 �C and 30 �C. The models were based on ANNs

with high values of coefficients determination and lower

RMSE values proved to be more accurate.

A polynomial mathematical model has been measured to

learn this occurrence to find the finest connection on behalf

of the new data. Least Squares regression study has been

applied to guess the coefficients of the polynomial and

inspect its satisfactions. In the study, it has been identified

that for predictions in large data sets may cause of high cost

for maintaining the data sets and it requires lot of execution

time to work on large data sets. Proposed method will

reduce the maintenance cost of large sets and with efficient

selection of variable, which are required for prediction, it

reduce the execution time and improve the prediction rates

with low errors. Ramjeet Singh Yadav [13] found that the

root mean square error of the sixth degree polynomial is

much smaller in these six models compared to other

quadratic, third degree, fourth degree, fifth degree, and

exponential polynomials. Therefore, the sixth-degree

polynomial regression model for COVID-2019 data anal-

ysis in India is a very good model for predicting the next

6 days. In this analysis, authors found that in the next

7 days, the sixth-degree polynomial regression models

would enable Indian physicians and the government to

prepare their plans. This model can be optimized for

forecasting over long-term periods based on additional

regression analysis studies. Apurbalal Senapati, Amitava

Nag, Arunendu Mondal and Soumen Maji [14] found from

the latest COVID-19 data review that the pattern of

infection number per day follows linearly and then

increases the exponentially. This property has been used in

our prediction and the linear regression in the piece is the

most suitable model for adopting this property. The

experimental results indicated the superiority of the pro-

posed scheme and that was a new approach to the COVID-

19 prediction to the best of our knowledge.

Felix Schönbrodt [7] discusses the response surface

analysis into psychological science and eliminates numer-

ous problems of surrounding and introduces the concept of

fit patterns, which provides the hypothetical base intended

for difficult fit hypotheses with incommensurable scales.

New-fangled statistical models, namely the shifted (and

rotated) squared difference models and their extensions

with rising ridges, extend the statistical toolbox and facil-

itate researchers to experiment fit hypotheses devoid of

having to rely on impractical assumptions. These models

have an advanced statistical authority to notice genuine fit

patterns and provide easily interpret-able parameters. New

hypotheses can be tested using these parameters which

could be difficult or impossible to test with traditional

methods. Lastly, new open-source software provides easy

to use functions which hopefully make polynomial

regression methodology easier to get to researchers from a

wide range of scientific fields. In data mining analysis

techniques various types of data sets are available like

stream data, temporal data, continuous data, discrete data,

spatial data etc. Few data sets consist of one independent

variable and few consist of two or more independent

variables. Generally, data sets are considered in three

categories:

Uni-variate data sets consist of one variable.

Bi-variate data sets consist of two variables.

Multivariate data sets consist of more than two variables.

Uni-variate data is the simplest type of data set, only one

variable in the data set is considered. This data set deals

with information or data sets that contain a single entity. It

does not focus on causes. The representation of pattern will

be initiated in this kind of data and can find the assump-

tions using measures of central tendency like mean, mode

and median. Bi-variate data sets include two dissimilar
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variable quantities. The fields of bi-variate data set are

quite less with result and analytic thinking. Bi-variate data

sets are used to get the relationship between the two vari-

ables. The outcome relationship is involved in Bi-variate

data sets, depth psychology, causes, comparison and

account. Multivariate data sets are much similar to Bi-

variate, but they contain more than one independent vari-

able. Analysis in multivariate data sets is dependent on the

results which are to be achieved through various algorithms

and tools.

Multivariate data set consists of more than two inde-

pendent variables. Generally, this data set is used for

explanatory purposes. In this data set, analysis is done on

the basis of two or more than one independent variables.

On the basis of objectives of data analysis, various

regression methods can be applied. Regression analysis,

path analysis, factor analysis and multivariate analysis of

variance are some of the techniques for data analysis. In

Table 1 example of multivariate data set of energy con-

sumption is shown: Humidity is recorded in every 10 min;

humidity is estimated on the basis of various parameters:

temperature (inside of building), windspeed, pressure

(Press_m_hg), temperature outside (t_out), humidity out-

side (RH_out), humidity (humidity inside of building).

2 Regression components and data analysis

For prediction and analysis various types of regression

techniques are used, Linear Regression (for numeric data

sets), Logistic Regression (for binary data sets), Polyno-

mial Regression, Stepwise Regression, Ridge Regression,

Lasso Regression and Elastic Net Regression. Selection of

prediction technique is based on the type of data sets, for

example, if a data set involves logical data like 0 and 1,

logistic regression is applied (Fig. 1).

All regression techniques have different levels of

accuracy in predictions. These methods are regularly

determined by three parameters: number of independent

variables, type of dependent variables and shape of the

regression line.

2.1 Data analysis

It is the statistical standard of observations in statistics.

Data analysis is a study of more than one statistical

resultant variable at a time. It is a process of inspecting,

cleansing, converting and modeling data with the goal of

discovering useful information, informing conclusions and

supporting decision-making. The aim of data analysis is to

withdraw needful information from data and take the

assessment based upon the data analysis. Analysis study of

Multivariate data sets says that one variable is treating it as

a dependent variable and others as independent variables.

In data analysis process include various steps as shown in

Fig. 2.

2.2 Data requirements specification

Identify necessary inputs for analysis and its types, like it

should be continuous, logical or discrete.

2.3 Data collection

Process of gathering the required data or variables for

targeted variables. Data collection should be accurate.

Table 1 Energy consumption

multivariate data sets
Date and Time Humidity Temperature T_out Press_m_hg RH_out Windspeed

1/11/2016 17:00 50.91074 17.16741 6.60 733.5 92 7

1/11/2016 17:10 50.82722 17.14963 6.48 733.6 92 6.666667

1/11/2016 17:20 50.62889 17.1037 6.37 733.7 92 6.333333

1/11/2016 17:30 50.57481 17.06704 6.25 733.8 92 6

1/11/2016 17:40 50.73296 17.07074 6.13 733.9 92 5.666667

1/11/2016 17:50 50.79185 17.04852 6.02 734 92 5.333333

1/11/2016 18:00 50.78815 17.04074 5.90 734.1 92 5

1/11/2016 18:10 50.80296 17.01852 5.92 734.1667 91.83333 5.166667

1/11/2016 18:20 50.90194 17.01852 5.93 734.2333 91.66667 5.333333

1/11/2016 18:30 51.05074 17.03963 5.95 734.3 91.5 5.5

1/11/2016 18:40 51.22861 17.06676 5.97 734.3667 91.33333 5.666667

Regression

Independent 
variables

Dependent 
variables

Shape of 
Regression 

Fig. 1 Components of regression equation

Int. j. inf. tecnol. (June 2021) 13(3):1039–1046 1041

123



2.4 Data pre-processing

It is a method for structuring the data according to the

analysis method.

2.5 Data cleaning

It is a method for detecting and avoiding the errors in data

sets. Eradicate the replica values, irrelevant values, or

incomplete data from data sets.

2.6 Data analysis

It is a technique to recognize, interpret, and to find con-

clusions that are based on the requirements for analysis.

2.7 Communication

Is the result of the data analysis, reported in a format as

essential by the handlers to support their decisions and

further action.

Benefits of Data analysis are following:

On the basis of changing scenarios in the market or

organization, production can be increased or decreased.

Analysis of variances (ANOVA), is an analysis to help

in decision making.

Data modeling is applied to reduce a large number of

variables to a smaller number of variables.

To confirm a range or index by representing its

constituent items load on the same factor. Drop proposed

scale items which cross-load on more than one factor.

3 Forecasting method and its execution

Forecasting is an approach to do prediction on the basis of

historical data, current data sets and on the basis of recent

trends. In the earlier studies, it has been found that various

algorithms are used to predict one dimensional and two-

dimensional stream data. Various methods are used to

improve the prediction accuracy rate and reduce the errors

during the prediction. Sagar et al. [5] 11 introduced a

prediction algorithm using regression for time series data

sets to improve the performance of algorithms. Prediction

method is a structure of multi regression equation up to the

ordinal degree, its relationship edged by the experimental

variable x and also the variable y. Polynomial regression

fits a nonlinear relationship between the value of x and

corresponding conditional mean of y. It is mentioned by

E(y|x), and it has been accustomed to depict nonlinear

phenomena that performs the calculations. Polynomial

regression fits a nonlinear equation for estimation. Oster-

tagová [3] used a polynomial state control model devel-

oped using the sign of the relationship between the

complexity and the depth of the flow. The model param-

eters are estimated using the least squares method. After

fitting the model was evaluated using some of the most

commonly indicators used to assess the accuracy of the

regression model. Data was analyzed using the MATLAB

computer program. Polynomial regression is taken into

account as a special case of multiple linear regression.

Step 1 Find the total numbers of regression model 2n, n

is the number of independent variables. Find the ANOVAs

for each regression equation shown in Table 2.

y1 ¼ Temperature; y2 ¼ T out; y3 ¼ Pressure; y4

¼ R h; y5 ¼ WindSpeed; x ¼ Humidity

Step 2 Find the coefficient of determination and mean

square error for each of the regression equations which are

defined in Table 2. For example, a set of independent

variables are four y1, y2, y3, y4 and coefficients are b0, b1,

b2, b3, b4. All possible sets of independent variables are

considered in regression equations. In Model 2, the

regression equation includes one independent variable and

two coefficients, and in every equation all independent

variables are used with different combinations. In Model 3,

all regression equations include three coefficients and two

independent variables; in this model all possible sets of

coefficients and independent variables are taken. Find the

ANOVA for each regression equation, using ANOVA

model coefficient of determination and MSE are

calculated.

Fig. 2 Steps for data analysis
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Coefficient ofdetermination : ðð
X

ðSumSq y1 þ y2 þ y3ð Þ

þ residualÞ= ð
X

ðSum Sq y1 þ y2 þ y3ð Þ
� 100ÞÞÞ

ð1Þ

MSE = value of ‘‘Mean sq’’ corresponding to residuals

in ANOVA model.

ANOVA models for regression equations shown in

Table 1 are shown in Table 3a–d and in each ANOVA

response is Humidity (x, dependent variable).

In each model the regression equation is selected with

the highest coefficient of determination and minimum

mean square error (MSE). The values of equations which

have been selected (highlighted) are regression Eq. 3 from

Model 2, regression Eq. 1 from Model 3, regression Eq. 1

from Model 4 and regression Eq. 1 from Model 5. By

comparing all selected values of r2p and MSE in Table 4,

value of Model 4 is finally selected because although r2p

value 95.91 of Model 5 is higher than r2p value 95.87 of

Model 4, but the MSE value 0.07 of Model 4 is lowest

among all. All independent variables in selected regression

Models (with high coefficients and lowest MSE) are more

relevant for prediction and these variables are selected for

structuring of improved prediction methods.

Step 3 Table 5 is having all selected values from

Table 4. In Table 4 regression equation of Model 4 is

chosen for identifying relevant variables for regression

analysis. Regression Eq. 1 in Model 4 has 3 independent

variables y1, y2, y3, which are most important and

appropriate for the prediction model. X is a dependent

variable that is converted in one column matrix as in

Eq. (2). Independent variables are converted to matrices as

in Eq. (3). Calculate values of inverses of x and y matrix.

Matrix y’ is the transpose of matrix y. Regression coeffi-

cients matrix b can be calculated as follows:

x ¼

x1

x2

x3

:
:
xn

2
6666664

3
7777775

b ¼

b0

b1

:
:
:
bk

2
6666664

3
7777775

ð2Þ

Y ¼

1 y1; 1 y2; 2 y1k1

1 y2; 1 xy; 2 y2; k
. . . . . . . . . . . .
. . . . . . . . . . . .
1 yn; 1 xn; 2 xn; k

2

66664

3

77775
ð3Þ

Y0X ¼ Y0Yb ð4Þ

Y0Yð Þ�1
Y0Yb ¼ Y0Yð Þ�1

Y0Y ð5Þ

b ¼ Y0Yð Þ�1
y0x ð6Þ

X ¼ b0 þ b1y1 þ b2y22 þ b3y33 þ b4y44 þ � � � bNyNN

ð7Þ

Mean absolute error(MAE)

MAE ¼ 1

n

Xn

i¼0

y� predicted y ð8Þ

4 Experimental results

Data set is collected from the UCI repository (https://

archive.ics.uci.edu/ml/datasets/Appliances?energy?pre

diction). Sample data set is presented in Table 1, humidity

is dependent variable rest of variables are independent

variables. Humidity (inside of a building) is to be predicted

on the basis of wind speed, temperature (inside of build-

ing), temperature outside of building (t_out), pressure of

wind etc. Experiments are implemented in r studio 3.3.2. In

experiment general polynomial regression and improved

polynomial regression are implemented. The improved

method is based on selection of variables using coefficient

of determination and mean square errors. In Fig. 3 blue

plots represent the errors in forecasting using existing

Table 2 The 2n possible regression equations

Model 1 Model 2 Model 3 Model 4 Model 5

x = b0 ? e x = b0 ? b1y1 x = b0 ? b1y1 ? b2 9 2 x = b0 ? b1y1 ? b2y2 ? b3y3 x = b0 ? b1y1 ? b2y2 ? b3y3 ? b4y4

x = b0 ? b2y2 x = b0 ? b1y1 ? b3y3 x = b0 ? b1 9 1 ? b2y2 ? b4y4

x = b0 ? b3y3 x = b0 ? b1y1 ? b4y4 x = b0 ? b1y1 ? b3y3 ? b4v4

x = b0 ? b4y4 x = b0 ? b2y2 ? b3y3 x = b0 ? b2y2 ? b3y3 ? b4y4

x = b0 ? b2y2 ? b4y4

x = b0 ? b3y3 ? b4y4
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Table 3 ANOVA for regression equations of (a) Model 2, (b) Model 3, (c) Model 4 and (d) Model 5

Df Sum Sq Mean Sq F value Pr([F)

(a) Model 2

Regression equation-1 of Model 2: x = b0 ? b1y1

y1 1 25.7695 25.7695 104.89 6.179e-09***

Residuals 18 4.4224 0.2457

Regression equation-2 of Model 2: x = b0 ? b2y2

y2 1 3.6481 3.6481 2.4739 0.1332

Residuals 18 26.5439 1.4747

Regression equation-3 of Model 2: x = b0 ? b3y3

y3 1 26.6034 26.6034 133.44 9.293e-10***

Residuals 18 3.5886 0.1994

Regression equation-4 of Model 2: x = b0 ? b4y4

y4 1 1.1281 1.128 0.6986 0.4142

Residuals 18 29.0639 1.6147

(b) Model 3

Regression equation-1 of Model 3: x = b0 ? b1y1 ? b2y2

y1 1 25.7695 25.7695 341.29 1.090e-12***

y2 1 3.1388 3.1388 41.57 6.017e-06***

Residuals 17 1.2836 0.0755

Regression equation-2 of Model 3: x = b0 ? b1y1 ? b3y3

y1 1 25.7695 25.7695 159.637 4.555e-10***

y3 1 1.6782 1.6782 10.396 0.00498**

Residuals 17 2.7442 0.1614

Regression equation-3 of Model 3: x = b0 ? b1y1 ? b4y4

y1 1 25.7695 25.7695 240.5 1.823e-11***

y4 1 2.6009 2.6009 24.273 0.0001278***

Residuals 17 1.8216 0.1072

Regression equation-4 of Model 3: x = b0 ? b2y2 ? b3y3

y2 1 3.6481 3.6481 17.32 0.0006534***

y3 1 22.9632 22.9632 109.02 8.19e-09***

Residuals 17 3.5807 0.2106

Regression equation-5 of Model 3: x = b0 ? b2y2 ? b4y4

y2 1 3.6481 3.6481 8.9029 0.008338**

y4 1 19.5779 19.57799 47.7783 2.514e-06***

Residuals 17 6.966 0.4098

Regression equation-6 of Model 3: x = b0 ? b2y3 ? b4y4

y3 1 26.6034 26.6034 128.5916 2.379e-09***

y4 1 0.0716 0.0716 0.3459 0.5642

Residuals 17 3.517 0.2069

(c) Model 4

Regression equation-1 of Model 4: x = b0 ? b1y1 ? b2y2 ? b3y3

y1 1 25.7695 25.7695 330.7466 4.122e-12***

y2 1 3.1388 3.1388 40.2861 9.690e-06***

y3 1 0.037 0.037 0.4748 0.5006

Residuals 16 16 1.2466 0.0779

Regression equation-2 of Model 4: x = b0 ? b1y1 ? b2y2 ? b4y4

y1 1 25.7695 25.7695 327.7094 4.423e-12***

y2 1 3.1388 3.1388 39.9162 1.023e-05***

y4 1 0.0254 0.0254 0.3235
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polynomial regression models. In this paper residuals,

MAE, and average errors are analyzed.Red plots in Fig. 3

represent the errors in forecasting using enhanced poly-

nomial regression models. By using the coefficient of

determination an effective independent variable can be

selected and these variables will be included in the pre-

diction model and can reduce the errors during the

prediction.

In Fig. 4 average errors in improved method are less in

comparison of existing polynomial method. In Table 4

consider the coefficient of determination (must be highest)

and mean square errors (must be lowest) of all prediction

equations in each model. In Table 4, Model 4, regression

Eq. 1 is selected with high coefficient with low mean

square error.

It is corresponding to Table 2, Model 4 first regression

equation ‘‘x = b0 ? b1y1 ? b2y2 ? b3y3’’ presented as a

forecasting model for prediction with absolute selection of

variables. It means y1, y2, y3 variables are efficient models

for prediction. Using appropriate selection of variables for

prediction models can improve the accuracy rate of pre-

diction (Fig. 5).

Table 3 continued

Df Sum Sq Mean Sq F value Pr([F)

Residuals 16 1.2582 0.0786

Regression equation-3 of Model 4: x = b0 ? b1y1 ? b3y3 ? b4y4

y1 1 25.7695 25.7695 226.3686 7.301e-11***

y3 1 1.6782 1.6782 14.7418 0.001447**

y4 1 0.9228 0.9228 8.1064 0.011649*

Residuals 16 1.8214 0.1138

Regression equation-4 of Model 4: x = b0 ? b2y2 ? b3y3 ? b4y4

9 2 1 3.6481 3.6481 22.3025 0.00023***

9 3 1 22.9632 22.9632 140.3845 2.473e-09***

9 4 1 0.9635 0.9635 5.8903 0.02740*

Residuals 16 2.6172 0.1636

(d) Model 5

Regression equation of Model 5: x = b0 ? b1y1 ? b2y2 ? b3y3 ? b4y4

y1 1 25.7695 25.7695 313.4913 1.830e-11***

y2 1 3.1388 3.1388 38.1843 1.763e-05***

y3 1 0.037 0.037 0.4501 0.5125

y4 1 0.0136 0.0136 0.1653 0.6901

Residuals 15 1.233 0.0822

Table 4 MSE and r2p

(coefficient of determination)
Model 2 Model 3 Model 4 Model 5

r2p (%) MSE square r2p (%) MSE square r2p (%) MSE square r2p (%) MSE square

85.35 0.24 95.74 0.07 95.87 0.07 95.91 0.08

12.08 1.47 90.91 0.16 95.83 0.07

88.11 0.19 93.96 0.11 93.96 0.11

3.7 1.61 88.14 0.21 91.33 0.16

76.92 0.4

88.35 0.2

Table 5 Selection of highest

coefficient of determination

with lowest mean square error

Model r2p (%) MSE

1 0 0.21

2 88.11 0.19

3 95.74 0.07

4 95.87 0.07

5 95.91 0.08
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5 Conclusion and future scope

In multivariate data sets if there are many independent

variables and it is not necessary that all independent vari-

ables will be included in the prediction model. Some

variables have less weightage, in results using coefficient

of determination appropriate independent variables are

chosen to formulate an efficient prediction model with

reduced error rates. Exempt the variables which are not

required for forecasting. In a data set, reprocessing of

variables consumes less time. Elimination of irrelevant

variables from huge data sets will reduce the cost of data

maintenance. In future, this improved algorithm can be

applied in the area of agriculture for different zone of the

states in country to estimate the production of crops on the

basis water supply, temperature, uses of pesticides,

humidity etc. prediction algorithms also can be used in the

area production of industries, market analysis, weather

forecasting, finding of disease on the basis of symptoms.
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