
Review Article
Mediating Roles of PPARs in the Effects of Environmental
Chemicals on Sex Steroids

Qiansheng Huang1,2 and Qionghua Chen3

1Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences,
Xiamen 361021, China
3The First Affiliated Hospital of Xiamen University, Xiamen 361003, China

Correspondence should be addressed to Qiansheng Huang; qshuang@iue.ac.cn

Received 31 March 2017; Revised 23 May 2017; Accepted 21 June 2017; Published 27 July 2017

Academic Editor: Christopher Lau

Copyright © 2017 Qiansheng Huang and Qionghua Chen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that are widely involved in various
physiological functions.They are widely expressed through the reproductive system.Their roles in the metabolism and function of
sex steroids and thus the etiology of reproductive disorders receive great concern. Various kinds of exogenous chemicals, especially
environmental pollutants, exert their adverse impact on the reproductive system through disturbing the PPAR signaling pathway.
Chemicals could bind to PPARs and modulate the transcription of downstream genes containing PPRE (peroxisome proliferator
response element). This will lead to altered expression of genes related to metabolism of sex steroids and thus the abnormal
physiological function of sex steroids. In this review, various kinds of environmental ligands are summarized and discussed. Their
interactions with three types of PPARs are classified by various data from transcript profiles, PPRE reporter in cell line, in silico
docking, and gene silencing. The review will contribute to the understanding of the roles of PPARs in the reproductive toxicology
of environmental chemicals.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated nuclear receptors which are widely involved
in various physiological and pathological processes [1].
The family contains three subtypes (PPAR𝛼, PPAR𝛽/𝛿, and
PPAR𝛾) with various ligand specificity, tissue distribution,
and biological function. PPARs are detectable in various com-
partments of the reproductive system, including hypothala-
mus, pituitary, testis, ovary, uterus, and adrenal and mam-
mary gland. PPARs are widely involved in reproductive func-
tion, such as ovarian function, gestation, and communication
between mother and fetus [2–4]. Sex steroids, also named as
gonadal steroids, are defined as steroid hormones that inter-
act with receptors of androgen, estrogen, and progesterone in
vertebrates [5]. Sex steroids are produced by gonads (ovaries
or testes) and adrenal glands. Further conversion could occur
in other tissues such as livers and fats. PPARs are critical for

the metabolism and physiological function of sex hormones
[2, 6].

Large amounts of pollutants have been released into
the environmental media as a consequence of rapid indus-
trialization and urbanization. Exposure to pollutants has
been reported to be a big risk for reproductive health
[7]. The mechanism through which pollutants elicit adverse
effects is still not fully understood. However, it is widely
accepted that pollutants could adversely affect the repro-
ductive function through disturbing the metabolism and
function of sex steroids [8]. Pollutants could bind to PPARs
and then modulate the PPAR signaling pathways involved
in the reproductive function. Hydrophobic interactions are
the primary driving force for the binding between pollutants
and PPARs. Most of the amino acid residues are hydrophobic
around the binding pocket which located inside the protein
structure of PPARs [9]. The sequences of amino acids which
form the pocket are conserved across species. Results from
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reporter cell lines also show that environmental ligands (BPA
derivatives, phthalates, and PFAAs) share similar affinity for
PPAR𝛾 of zebrafish and human [10].

In this review, the interactions between PPARs and
sex steroids are presented. Various kinds of PPAR ligands,
especially environmental chemicals, are summarized. The
pathways through which exogenous chemicals exert their
impact on the metabolism and function of sex steroids via
PPARs are depicted.

2. Interaction between PPARs and Sex Steroids

Androgens and estrogens are the primary types of sex
steroids. Exogenous testosterone significantly inhibited the
expression of PPAR𝛾 in primary hepatocytes isolated from
brown trout [11]. 17𝛽-Estradiol could regulate the expression
of PPAR𝛾 in human peripheral blood eosinophils [12]. Addi-
tionally, precursors of sex steroids also interact with PPARs.
For example, dehydroepiandrosterone (DHEA) induced ele-
vated expression of both PPAR𝛼 and PPAR𝛽/𝛿 in the muscle
of mice [13]. Conversely, PPARs have an important impact
on sex steroids. Single nucleotide polymorphism (SNP) of
PPARs significantly affected the level of sex steroids and
was linked to hormone related diseases. For example, the
SNP of PPAR𝛾 at P12A (Pro12Ala, rs1801282) was linked to
a gynecological disease: polycystic ovary syndrome (PCOS)
as PCOS patients with CG genotype showed lower free
testosterone and other hormones than that of GG genotype
[14]. Peroxisome proliferators (PPs) are a group of chemicals
which function through PPARs. PPs could impair the func-
tion of endocrine tissues by regulating the expression of phase
I and phase II steroid metabolism enzymes [15], including
P450 enzymes and 17𝛽-hydroxysteroid dehydrogenase IV
[16]. Apart from their impact on metabolism, PPs could
also disturb the physiological function of sex steroids. They
have been reported to mimic or interfere with the action
of sex steroids and then induce reproductive disorders [17].
In addition, receptors of sex steroids were also reported to
interplay with PPARs. For example, estrogen receptor alpha
(ER𝛼) binds to the PPRE sequence of PPAR𝛾 and represses
its transactivation inMCF-7 cells [18]. Bidirectional interplay
occurs between PPAR𝛾 and ER [19].

Sources of PPs contain endogenous and exogenous
chemicals. Endogenous essential fatty acids (FAs) and their
derivative eicosanoids are able to activate the PPAR signaling
pathway [20]. 17𝛽-Estradiol could suppress the expression of
PPAR𝛼 regulating genes [21]. In addition to these endogenous
chemicals, chemicals from environmental media, drugs, and
other external sources are also reported to disturb the PPAR
signaling pathway and then affect metabolism and function
of sex steroids.

3. Environmental Chemicals as
Exogenous Ligands

A lot of environmental chemicals act as exogenous ligands
to PPARs. These chemicals are widely detectable in the
human body and have received widespread public health
attention [52]. PPARs have been regarded as a bridge to

link the environmental chemicals and their health impact
[53]. Chemicals which could modulate the PPAR signaling
pathway and affect the sex steroids are classified and listed as
follows. They are also shown in Table 1.

3.1. Phthalates. Phthalates were widely reported as repro-
ductive toxicants. Fetal exposure to environmentally relevant
di(2-ethylhexyl) phthalate (DEHP) decreased serum levels
of steroid hormones in adult male mice and antagonism
of PPAR𝛾 diminished the toxic effect [22]. In our study,
PPAR𝛾 was thought to transduce the toxicity of DEHP at
0.2–2 𝜇M in both primary cultured endometrial cells and
endometrial adenocarcinoma cell line (ishikawa) [23]. We
also obtained consistent results in a marine fish model
where the expressions of PPAR𝛾 and aromatase were both
enhanced after fish embryo exposure to DEHP at 0.1–1mg/L
[24]. In vivo, DEHP is metabolized to mono(2-ethylhexyl)
phthalate (MEHP) which could activate both PPAR𝛼 and
PPAR𝛾 and then suppress the transcription of aromatase and
estradiol production in the ovary. These have been verified
both in rat ovarian granulosa cell models [26] and in the
ovary of rat models [25]. Direct exposure to MEHP at the
dose of 50 𝜇M also inhibited the expression of aromatase by
activating PPAR𝛼 or PPAR𝛾 in rat granulosa cells [27]. Due to
the adverse health outcome of commonly used compounds,
phthalate-alternative compounds have been emerging. Some
of these chemicals also showed various affinities to PPARs
and different influences on reproductive function according
to docking studies [30, 54–56]. For example, diisononyl
phthalate (DINP) showed DEHP-like affinity to PPAR𝛼.
Di(2-ethylhexyl) terephthalate (DEHT) has the paraisomer
structure of DEHP and shows a very weak affinity to PPAR𝛼.

3.2. Perfluoroalkyl Acids. Perfluoroalkyl acids (PFAAs), char-
acteristic of fully fluorinated carbon chains, are widely used
in consumer goods and industrial products. Concerns have
arisen regarding human exposure and adverse outcome,
especially due to extremely long biologic retention time [57].
Treatments with perfluorononanoic acid (PFNA), perfluo-
rooctanoic acid (PFOA), perfluorodecanoic acid (PFDA),
perfluoroundecanoic acid (PFUnDA), and perfluorooctane
sulfonate (PFOS) all dose-dependently activated PPAR𝛼
using a PPRE reporter system [31, 33]. PFOS and PFOA are
top two members in toxicological studies. Our study showed
that the effects of PFOS (1–16mg/L) were different on the
expression of these three types of PPARs in the larvae of
O. melastigma [37]. PFOA (5mg/kg) exposure affected the
expression of PPARs in a tissue dependent manner in fetal
and postnatal CD-1 mice [34]. Both PFOS and PFOA can
induce PPARs-mediated transcriptional activity determined
by PPRE reporter assay [31, 33, 35, 36, 38, 39]. This led
to alterations in immune response and other physiological
processes [58]. However, the mediating roles of PPARs are
not consistently recognized. Several studies confirm that
PFOA can exert its toxicity independently of PPAR𝛼 [59, 60].
It is worth mentioning that four weeks’ PFOA treatment
(5mg/kg) increased the expression of enzymes catalyzing the
biosynthesis of steroid hormone and enhanced serum levels
of progesterone in PPAR𝛼 knockout female mice [61]. Apart
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from the toxicological studies, a lot of epidemiological studies
also revealed the effects of PFOA on reproduction. Positive
or negative association was reported by publications from
C8 science panel [62–64]. Different members of PFAAs show
various impacts on PPAR signaling due to their various chain
lengths and functional groups [65, 66]. Thus, toxicities of
other familymembers are being studied. For example, perflu-
orododecanoic acid (PFDoA) administration (3mg/kg) led
to reduced serum levels of 17𝛽-estradiol in prepubertal female
rats; however, the roles of PPARs have not been verified yet
[67].

3.3. Bisphenol A (BPA) and Its Derivatives. BPA is widely
used in plastic bottles, paper, and other daily commodities.
Due to structural similarity with 17𝛽-estradiol, the estrogenic
activity of BPA via ER activation was widely studied. In
addition to ERs, BPA also show an affinity to human PPAR𝛾
as confirmedby data fromdocking andPPRE reporter studies
[9, 42, 43]. The affinity was ranked as ERR𝛾 > ER𝛼 > PPAR𝛾.
BPA exposure (0–100 𝜇M) led to reduced expression of aro-
matase and decreased level of E2 secretion in human ovarian
granulosa cells, which also happened after overexpression of
the PPAR𝛾 [44]. By contrast, the same level range of BPA
showed no significant effect on the expression of both PPAR𝛾
and aromatase in human endometrial stromal fibroblast cells
[68]. To be noted, low dose effects were observed in the
toxicology of BPA. A low dose was considered to be a dose
below the range typically used in toxicological studies of
chemicals [69]. Biphasic U- or inverted U-shaped dose-
response curves have been observed when evaluating the
effects of BPA on reproduction and other health outcomes.
Competitive binding to PPARs and other receptors between
BPA and sex hormonemight contribute to this low dose effect
[70]. Derivatives of BPA could also interfere with PPARs.
Brominated or chlorinated derivatives of BPA display their
adverse impact through PPARs. Both tetrabromobisphenol A
(TBBPA) and tetrachlorobisphenol A (TCBPA) show binding
affinity to PPAR𝛾 as indicated by reporter cell lines [40, 71].
Of further note, TBBPA (0.01–10 𝜇M) can also induce the
expression of aromatase and thus enhance estrogen synthesis
independently of PPAR𝛾 in human choriocarcinoma JEG-3
cells [72, 73].

3.4. Dioxin-Like Chemicals. Dioxin and its structure-like
chemicals are widely accepted as the ligands to aryl hydro-
carbon receptor (AHR). They also interplay with PPARs
as confirmed by in silico docking experiments [47]. An in
vivo study using male rat model revealed that polychlo-
rinated biphenyls 126 (PCB126) exposure at the dose of
5 𝜇mol/kg inhibited the mRNA expression of PPAR𝛼 and its
downstream genes acyl-CoA oxidase (Acox1) and hydroxy-
3-methylglutaryl-CoA synthase 2 (Hmgcs2) in liver [48]. In
our study using both cells andmicemodels, PCB126 exposure
at human relevant levels induces the expression of HSD17B7
and enhances the secretion of estradiol in endometrium [7].
Molecular evidence confirmed the existence of two PPRE
sites at the promoter of cytochrome P4501A1 (CYP1A1).
Thus, direct activation of CYP1A1 by PPAR𝛼 without AHR
might be a new pathway to link PCBs and PPARs [74, 75].

However, strong evidence is still needed to confirm the
link.

3.5. Pesticides. A lot of pesticides show disrupting effects on
metabolismand function of sex steroids, such as deltamethrin
[76], linuron [77], and methomyl [78]. The mediating func-
tion of PPARs is being studied in the toxicity of pesticides. For
example, a large in vitro reporter gene assay screening study
with 200 pesticides showed that PPARs did not have a major
role in the toxicity of pesticides. Various kinds of pesticides
were examined including 29 organochlorines, 11 diphenyl
ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22
carbamates, 11 acid amides, 7 triazines, 8 ureas, and 44 others.
Results showed that only three (diclofop-methyl, pyrethrins,
and imazalil) could activate PPAR𝛼 and none of them could
activate PPAR𝛾. The agonist roles of these three pesticides
were further confirmed inmice [79]. In a study that has raised
wide ecotoxicological concern, themRNA level of PPAR𝛾was
induced by DDT at the doses of 100 pM-10 𝜇M in human
mesenchymal stem cells [49]. To be noted, direct evidence
is still expected on the effects of pesticides on sex steroids
through PPAR signaling.

3.6. Other Pollutants. Organotin compounds are ubiqui-
tously present in environment media. The compounds have
been reported to alter endocrine functions in juvenile salmon
and human choriocarcinoma cell lines [50, 80]. Tributyltin
(TBT) could activate all three types of RXR (retinoid X
receptor): PPAR𝛼, PPAR𝛽/𝛿, and PPAR𝛾 heterodimers by
PPRE luciferase experiment [51]. 2,4-Dichlorophenoxyacetic
acid (2,4-D) is a possible endocrine disruptor. Treatment
with 2,4-D decreased the level of testosterone in mice serum
and testis through inhibiting the expression of 3-hydroxy-3-
methylglutaryl coenzyme A synthase 1 and reductase, which
led to decreased cholesterol levels. PPAR𝛼 exerted a critical
role as its silencing diminished these toxic effects [6].

3.7. Pollutant Mixtures. In addition to individual pollutants,
chemical mixtures also display reproductive toxicity through
PPARs. Combined exposure to 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) and DEHP led to decreased estradiol synthe-
sis in human granulosa cell line—KGN. Direct activation of
AHR and transactivation of PPARs are indispensable parts
in this molecular response pathway [81]. Chemical mixtures
extracted from natural water could also disturb the function
of steroid hormones where PPARs act as key regulators
[82, 83]. In our study, cotreatment with DEHP and PCBs
promoted the expression of PPAR𝛾 but not the other PPAR
types in mice liver [84].

4. Conclusion and Perspectives

PPARs, especially the subtype of 𝛼 and 𝛾, have important
roles in mediating the toxicological outcomes caused by
environmental ligands. Various kinds of environmental pol-
lutants show impacts on the metabolism and function of
sex steroids through disturbing the PPARs signaling path-
ways. The interactions between PPARs and environmental
chemicals have been revealed through various approaches
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including molecular docking, PPRE reporter, transcript pro-
files, and gene silencing which are performed in silico, in
vitro, and in vivo. Future studies that should be carried out
include (1) structural biological studies on crystal structures
of pollutants bound to PPARs and (2) further evaluation
of the crosstalk between PPARs and other classical nuclear
receptors, such as ER and AHR. These studies will help
reveal the roles of PPARs in the toxicology of environmental
pollutants on sex steroids.
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