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Introduction
Adipose-derived stromal cells are stem cells with multi-
directional differentiation potential, and have numerous 
advantages, including strong proliferative ability, low im-
munogenicity and no legal or ethical issues (Zuk et al., 2001, 
2002; McIntosh et al., 2006; Liu et al., 2007; Wu et al., 2013; 
Cao et al., 2014). Previous studies have shown that adult ad-
ipose-derived stromal cells can be successfully transformed 
into neurons and astrocytes (Safford et al., 2002; Ashjian 
et al., 2003; Yoshimura et al., 2007; Liu et al., 2010; Ye et al., 
2010; Ou et al., 2011a, b). Astrocytes participate in various 
physiological process and brain development, and help 
maintain a stable environment for neurons. They also play 
a very important role in repair and regeneration after brain 
injury and neurodegeneration (Pekny and Nilsson, 2005; Ja-
cobsen et al., 2006; Di Giorgio et al., 2007; Holden, 2007; Van 
Den Bosch and Robberecht, 2008). The in vitro induction 
of these astroglia has provided a new way for the treatment 
of clinical nervous system damage and neurodegenerative 
disorder (Kang et al., 2003; Goldman, 2005; Nakagami et 
al., 2006). However, when 3-isobutyl-1-methylxanthine was 
used to induce adipose-derived stromal cell differentiation, 
the survival time of the resulting astrocytes was only approx-
imately 30 days (Liu et al., 2010; Ou et al., 2011b), limiting 
further research and clinical applications.

Our previous experiments showed that apoptosis is a major 
cause of death of neurons originating from adipose-derived 

stromal cells (Cai et al., 2011; Lu et al., 2012). Studies have 
shown that there are two types of apoptosis; caspase-depen-
dent and caspase-independent (Daniel, 2000; Vittar et al., 
2010; Zhang et al., 2011). In caspase-dependent apoptosis, 
the caspase family of proteases mediates apoptosis (Gil and 
Esteban, 2000; Chen and Wang, 2002; Kavitha et al., 2012). 
The caspases include two types of caspases (Ren et al., 2012; 
Tatsuta et al., 2013); initiators, such as caspase-9, which 
cleave and activate other caspases (von Roretz et al., 2013), 
and effectors, such as caspase-3, which cleave various sub-
strates and decompose cell structure or inactivate enzymes 
(Kang et al., 2010; Wirawan et al., 2010). As an “executioner” 
protease, caspase-3 plays an important role in apoptosis 
(Compton and Cidlowski, 1986; Adrain et al., 2001; Slee 
et al., 2001). Previous studies have shown that caspase-de-
pendent apoptosis occurs during adipose-derived stromal 
cell differentiation into neurons (Lu et al., 2012). Therefore, 
in this study, we investigated caspase-dependent apoptosis 
during adipose-derived stromal cell differentiation into as-
trocytes.

Materials and Methods
Extraction and culture of adult adipose-derived stromal 
cells
Volunteers were 13 healthy adults, aged 20–35 years, from 
the Physical Check-up Center, Kailuan General Hospital, 
Tangshan, Hebei Province, China. Needle aspiration was 
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used to extract abdominal subcutaneous adipose tissue of 
adult volunteers without endocrine or hematological diseas-
es. 10–30 mL adipose tissue was collected each time. Written 
informed consent from the volunteers was obtained. The 
protocol was approved by the Medical Ethics Committee of 
Kailuan General Hospital of Hebei United University, China.

Based on the method of Ye et al. (2010) and other exper-

imental protocols, 0.1% collagenase type I (Solarbio, Bei-
jing, China) was added, and the tissue was placed in a 37°C 
water bath for digestion for 1 hour and then centrifuged at 
1,000 r/min for 5 minutes. Supernatant was aspirated out. 
The undigested tissues and the underlying cells were stirred 
to mix, and then filtered through a 100-mesh sieve. The sam-
ples were centrifuged at 1,000 r/min for 5 minutes, and the 

Figure 1 Changes in cell morphology before and after ADSC induction (inverted phase contrast microscope).
(A) Primary ADSCs cultured for 24 hours. Cells (arrow) are triangular (× 100). (B) ADSCs at the third passage at 7 days. Cells were fusiform and 
formed a whorl pattern (× 40). (C) At 48 hours, cell bodies of ADSCs (arrow) were polygonal, with a surrounding halo. The nucleus was large and 
oval-shaped, and slender protrusions with many branches extended out (× 100). (D) At 7 days, refractivity of cell bodies was further enhanced, 
and there were many slender protrusions around cell bodies, forming a meshwork (× 100). (E) At 14 days, cell morphology showed no significant 
changes compared with 7 days (× 100). (F) At 21 days, cell processes became shorter and fewer (× 100). ADSCs: Adipose-derived stromal cells.

Figure 3 Positive expression rate of glial fibrillary acidic protein 
(GFAP), caspase-3 and caspase-9 in adult adipose-derived stromal 
cells differentiated at different time points 
(immunocytochemistry).
Data were expressed as mean ± SD. Differences were compared using 
one-way analysis of variance followed by Student-Newman-Keuls test. 
Experiments were repeated in triplicate. *P < 0.05, vs. previous time 
point. 

Figure 4 Survival rate of adult adipose-derived stromal cells 
differentiated at different time points assessed with MTT.
Data were expressed as mean ± SD. Differences were compared using 
one-way analysis of variance followed by Student-Newman-Keuls 
test. Experiments repeated in triplicate. *P < 0.05, vs. previous time 
point. MTT: 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 
bromide.
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supernatant was removed. The remaining cell pellet was seed-
ed into culture flasks at a density of 8 × 103/cm2 and placed 
in a 37°C, 5% CO2 humidified incubator. The culture me-
dium was replaced after 48 hours to remove residual eryth-
rocytes and non-adherent impurities. The culture medium 
was replaced every 2–3 days. About 10–14 days after the cells 
reached 90% confluence, trypsin-ethylenediaminetetraacetic 
acid was used for digestion, and cells were passaged at a 1:2 
ratio. Morphological changes in cells were observed using an 
inverted phase contrast microscope (Olympus, Tokyo, Japan).

Adult adipose-derived stromal cell differentiation into 
astrocytes
Passage 3–6 adipose-derived stromal cells, in good condi-
tion, were digested with trypsin-ethylenediaminetetraacetic 
acid and slides were prepared. When the cells reached 
70–80% confluence, the medium was removed, inducer was 
added, and morphological changes were observed after 48 
hours and 7, 14 and 21 days under the inverted phase con-
trast microscope. Inducer components: 0.5 mmol/L 3-isobu-
tyl-1-methylxanthine (Sigma, St. Louis, MO, USA), 1 µmol/L 
dexamethasone, 10 µmol/L insulin, 200 µmol/L indometh-

acin, 10 mmol/L hydroxyethyl piperazine ethanesulfonic 
acid (Hyclone, Logan, UT, USA), 2 mmol/L glutamine, 1% 
non-essential amino acids, 0.5% absolute ethyl alcohol, 
10% fetal bovine serum (Hyclone), 100 U/mL penicillin and 
100 μg/mL streptomycin, and 85% high-glucose Dulbecco’s 
modified Eagle’s medium (DMEM) (Hyclone).

Glial fibrillary acidic protein, caspase-3 and caspase-9 
expression in the induced cells
At 48 hours, and 7, 14 and 21 days after induction, cells were 
fixed in 4% paraformaldehyde for 30 minutes, permeabilized 
using 0.1% TritonX-100 for 8 minutes, and incubated with 
3% H2O2 for 10 minutes. Cells were then incubated in work-
ing solutions of primary antibodies–rabbit anti-human glial 
fibrillary acidic protein (1:100; Beijing Biosynthesis Biotech-
nology, Beijing, China), caspase-9 (1:100; Beijing Biosynthe-
sis Biotechnology) and rabbit anti-human caspase-3 mono-
clonal (1:100; Boster, Wuhan, Hubei Province, China) at 4°C 
overnight, and then with goat anti-rabbit IgG-horseradish 
peroxidase (1:50; Beijing Zhongshan Goldbridge, Beijing, 
China) for 30 minutes at 37°C. Labeling was visualized with 
3,3′-diaminobenzidine (Beijing Zhongshan Golden Bridge 

Figure 2 Expression of GFAP, caspase-3 and caspase-9 at various time points after adipose-derived stromal cells differentiation 
(immunocytochemical staining, inverted phase contrast microscope, × 200).
Arrows indicate GFAP-, caspase-3- and caspase-9-positive cells. GFAP: Glial fibrillary acidic protein.
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Biotechnology), and cells were then stained with hematox-
ylin. Immunoreactive cells were counted at high magnifica-
tion (× 100). Five fields were quantified per sample. Three 
samples in each group were observed under the inverted 
phase contrast microscope.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay for cell viability after induction
Adipose-derived stromal cells at passages 3–6 were digested 
and seeded onto 12-well culture plates, and inoculated at a 
density of 1 × 105 cells/well. At 48 hours, and 7, 14 and 21 
days after induction, cells in each well were incubated with 
5 mg/mL MTT (Sigma), 100 μL, at 37°C for 4 hours. The 
liquid in the well was discarded, and 1,000 μL dimethyl sulf-
oxide was added to each well. The plates were then agitated 
at a low speed of 1,000 r/min for 15 minutes. 100 μL aliquots 
of the solutions were transferred to a 96-well plate and the ab-
sorbance at 490 nm was measured using a microplate reader 
(Thermo Scientific, Pittsburgh, PA, USA). The absorbance 
is directly proportional to the number of living cells (Wyllie, 
1980). Each experiment was repeated five times.

Quantification of early apoptotic cells by flow cytometry
The cells induced for 48 hours, and 7, 14 and 21 days were di-
gested and collected. A single cell suspension was prepared at 
a concentration of 1 × 106/mL and centrifuged at 1,000 r/min 
for 5 minutes. The supernatant was discarded, and then 190 μL 
buffer (Invitrogen, Carlsbad, CA, USA) and 10 μL PI dye 
solution (Invitrogen) were added. The samples were protect-
ed from light and quantified by flow cytometry (BD FACS-
Calibur, San Jose, CA, USA) within 1 hour. Each experiment 
was repeated three times.

Ultrastructural characteristics of astrocytes and apoptotic 
cells after induction
The cells induced for 14 days were digested, centrifuged, and 
fixed in 3% glutaraldehyde and 1% osmic acid, followed by 
propionaldehyde dehydration and epoxy resin embedding. 
Cells were sliced using a microtome (Abnova, Walnut, CA, 
USA) and stained with 2% uranyl acetate and lead citrate. 
The ultrastructure of cells was observed and photographed 
with a transmission electron microscope (H7650, Hitachi, 
Tokyo, Japan).

Statistical analysis
All experimental data were analyzed using SPSS 13.0 (SPSS, 
Chicago, IL, USA). Measurement data were expressed as 
mean ± SD. Intragroup differences were compared using 
one-way analysis of variance followed by Student-New-
man-Keuls test. Values of P < 0.05 were considered statisti-
cally significant.

Results
Morphological changes in cells differentiated from 
adipose-derived stromal cells 
Primary cultured adipose-derived stromal cells adhered at 
24 hours, and were observed under the inverted phase con-
trast microscope. Cells had a triangular and short fusiform 

appearance (Figure 1A). After 48 hours of culture, the cells 
had a long fusiform shape, similar to that of the fibroblasts. 
At 7–10 days, a large number of long spindle-shaped cells 
were arranged in a whorl pattern (Figure 1B). When pas-
saged to the third generation, adipose-derived stromal cells 
were almost fusiform. At 24 hours after induction, the cy-
toplasm retracted to the nucleus (Figure 1C). At 48 hours 
after induction, round, polygonal or irregular-shaped cells 
were surrounded by a halo. Parts of cell bodies stretched out 
slender processes and multiple branches. The cytoplasm was 
uniform, the nucleus was oval or round, and nucleoli were 
visible. At 7 days after induction, some of the cells showed 
the shape of typical astrocytes. Simultaneously, cell protru-
sions were more extensive, slender branches increased in 
number and displayed a reticular appearance. The cytoplasm 
was uniform, the nucleus was large, oval or round, and more 
biased towards one side of the cell body. Nucleoli were clear-
ly visible (Figure 1D). At 14 days after induction (Figure 1E), 
cell morphology showed no significant changes from that at 
7 days. At 21 days after induction, the number of cells was 
significantly reduced (Figure 1F). Cells were triangular or 
irregularly shaped, and cell protrusions were shorter and less 
numerous than at 14 days of induction. The nucleus showed 
no significant changes compared with day 14.

Expression of glial fibrillary acidic protein, caspase-3 and 
caspase-9 during adipose-derived stromal cell 
differentiation
At 48 hours of induction, glial fibrillary acidic protein expres-
sion was observed in a part of the cytoplasm by immunocy-
tochemical staining. The number of glial fibrillary acidic pro-
tein-positive cells gradually increased (P < 0.05), and peaked 
at 14 days. At 21 days, there was no significant difference in 
the number of glial fibrillary acidic protein-positive cells com-
pared with 14 days (P > 0.05). Expression of caspase-3 and 
caspase-9 was mainly observed in the cytoplasm. The number 
of caspase-3- and caspase-9-positive cells gradually increased 
over the induction period (P < 0.05; Figures 2, 3).

Cell survival after adult adipose-derived stromal cell 
differentiation
MTT assay showed that the survival rate of cells gradually 
decreased over time: at 48 hours, and 7, 14 and 21 days of 
induction (P < 0.05; Figure 4).

Early apoptosis after adult adipose-derived stromal cell 
differentiation
Flow cytometry revealed that at 48 hours, and 7, 14 and 21 
days after induction, the apoptotic rate was 4.43 ± 0.26%, 
7.80 ± 0.53%, 11.93 ± 0.34% and 14.72 ± 0.43%, respective-
ly. The apoptotic rate gradually increased over time: at 48 
hours, and 7, 14 and 21 days (P < 0.05; Figure 5).

Apoptosis and ultrastructural features of astrocytes 
differentiated from adipose-derived stromal cells 
Under the transmission electron microscope, at 14 days af-
ter differentiation, the cell bodies of astrocytes were round 
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or oval. The membrane surface was not smooth, and there 
were numerous processes. There were varying amounts of 
bundles of fibers, endoplasmic reticulum, lysosomes and 
mitochondria in the cytoplasm. Mitochondrial volume was 
large, and nuclei were oval or irregularly shaped, having 1 or 
2 nucleoli, more euchromatin, and reduced and dispersed 
heterochromatin. The cell bodies of apoptotic astrocytes 
narrowed, processes from the cell membrane were notice-
ably decreased or missing, and the surface was smooth. In 
the cytoplasm, mitochondria exhibited swelling, volume was 
increased, and the cristae were ruptured and vacuolated. 
Nuclei were irregular; the nuclear membranes were wrinkled 
and retracted or even showed karyolysis. Chromatin was 
reduced, but the amount of heterochromatin was increased. 
The nuclear chromatin was condensed, and often accumu-
lated near the edges of the nuclear membrane, with blocky 
or crescent-shaped bodies (Figure 6).

Discussion
Numerous studies have shown that adipose-derived stromal 
cells can successfully differentiate into astrocytes in vitro 
(Safford et al., 2002; Ashjian et al., 2003; Liu et al., 2010; Ou 
et al., 2011b). The induced cells have the typical morphol-
ogy of astrocytes and express specific markers, and have a 
characteristic ultrastructure and electrophysiological prop-
erties (Ou et al., 2011a). However, our previous experiments 
showed that many cells died during adipose-derived stromal 
cell differentiation, and the number of viable cells decreased 
with increasing length of induction (Liu et al., 2010; Ou et 
al., 2011b), thereby limiting further research and hindering 
the application of astrocytes differentiated from adipose-de-
rived stromal cells. Indeed, in the present study, although the 
expression rate of glial fibrillary acidic protein, the specific 
marker of astrocytes, reached a peak of 79.2% at 14 days, the 
number of viable cells had decreased. Therefore, it is neces-
sary to perform further research on the mechanisms of cell 
death during the differentiation of adipose-derived stromal 
cells into astrocytes, and to optimize cell differentiation pro-
tocols to improve the survival rate of astrocytes differentiat-
ed from adipose-derived stromal cells.

Apoptosis is a process of programmed cell death (Wyllie, 
1980; Johansson et al., 2010; Giansanti et al., 2011; Freire, 
2012; Igder et al., 2013; Tognon et al., 2013). Our previous 
studies showed that apoptosis is a major cause of the death 
of neurons differentiated from adipose-derived stromal cells 
(Cai et al., 2011; Lu et al., 2012). As the preferred method 
for early detection of apoptotic cells, Annexin V/PI dou-
ble-staining and flow cytometry can be used to analyze early 
apoptotic cells efficiently (Nicoletti et al., 1991; Grebeňová 
et al., 2004; Samsel et al., 2004; Suárez et al., 2004; Guo et 
al., 2011; Wlodkowic et al., 2013). Therefore, we studied 
cell death rate in the early stage by flow cytometry. The re-
sults demonstrated that the death rate increased over time, 
peaking at 21 days of induction. This further confirmed that 
apoptosis is a major cause of cell death.

Apoptosis includes caspase-dependent apoptosis and 
caspase-independent apoptosis (Liu et al., 2013). In 

caspase-dependent apoptosis, the caspase family is a key 
mediator of cell death. As the preferred method for detecting 
apoptosis (Zhou et al., 2012), transmission electron mi-
croscopy plays a crucial role in its detection (Ji et al., 2011; 
Würstle et al., 2012). Our findings revealed that caspase-de-
pendent apoptosis is a major apoptotic pathway during cell 
differentiation. Furthermore, the numbers of caspase-9- and 
caspase-3-positive cells increased over time and were asso-
ciated with apoptosis of astrocytes differentiated from adi-
pose-derived stromal cells. The expression rate of caspase-9, 
the main initiation factor of apoptosis (Fombonne et al., 
2012; White et al., 2012; Brentnall et al., 2013; Qin et al., 
2013), reached 30.27% at 21 days of induction. However, for 
caspase-3, the rate was 46.47%, significantly higher than that 
for caspase-9, suggesting a significant amplification effect. 
For both caspase-3 and caspase-9, expression is mainly in 
the cytoplasm, especially around the nucleus; however, there 
is no significant expression in the protrusions of the induced 
cells. The expression of caspase-9 was less than the expres-
sion of executioner caspase-3, suggesting an amplification 
effect in the process of induction.

During the differentiation of adipose-derived stromal cells 
into astrocytes, expression of glial fibrillary acidic protein, an 
important marker of astrocytes (Bernal and Peterson, 2011; 
Sokolowski et al., 2011; Yeh et al., 2011; Sukumari-Ramesh 
et al., 2012; Hoppe et al., 2013), is evenly detected in the cy-
toplasm as well as in the protrusions. Glial fibrillary acidic 
protein bundles are evenly distributed in the cytoplasm as 
well as in the cell processes of normal astrocytes differenti-
ated from adipose-derived stromal cells. More organelles are 
observed, including mitochondria, endoplasmic reticulum 
and lysosomes. There is more euchromatin and less heter-
ochromatin in nuclei, and the heterochromatin is dispersed. 
In contrast, in the cytoplasm of apoptotic cells, the mito-
chondria, concentrated around the nuclei, were significantly 
swollen, the cristae were ruptured, and vacuolization was 
observed. The membranes of nuclei were wrinkled, and 
some were fragmented. The chromatin was condensed and 
distributed at the membrane, with a block or crescent shape, 
typical of apoptosis. Finally, cell morphological changes, in-
cluding shrinkage, and a decrease or even disappearance of 
protrusions and microvilli occur.

In summary, adipose-derived stromal cells can differenti-
ate into astrocytes using a chemical inducer mainly consist-
ing of 3-isobutyl-1-methylxanthine. The number of living 
cells decreases over the duration of induction. Caspase-de-
pendent apoptosis is the main pathway of apoptosis during 
induction.
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