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Abstract: The relationship between gut microbiota and neurodegenerative diseases is becoming
clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity
and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a
fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due
to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review
was to identify those bacteria that could have connection with the mentioned disease (ALS) and to
analyze the benefits produced by administering polyphenols. Therefore, an extensive search was
carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and
EBSCO database on research carried out on cell, animal and human models of the disease. Thereby,
after selecting, analyzing and debating the main articles on this topic, the bacteria related to the
pathogenesis of ALS have been identified, among which we can positively highlight the presence
mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio
fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively
for the disease. In addition, most of these bacteria are associated with molecular changes also linked
to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of
these three ALS models were assessed, many of them show positive results that could improve the
prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are
the polyphenols considered to show the most promising results as a therapeutic alternative for ALS
through changes in microbiota.

Keywords: amyotrophic lateral sclerosis; polyphenols; microbiota

1. Introduction

Neurodegenerative diseases involve several disorders that are characterized by a
progressive loss of neurons in different regions of the central nervous system and the brain.
Currently, the most prevalent diseases are possibly Alzheimer’s disease (where the neurons
that die are the pyramidal neurons of the hippocampus) and Parkinson’s disease (where
the neurons of the substantia nigra are affected). Motor neuron diseases (MND) include
a wide and heterogeneous group of clinical entities that are characterized by progressive
degeneration, especially motor neurons. The most common clinical phenotype is amy-
otrophic lateral sclerosis (ALS), described for the first time by Jean-Martin Charcot in 1869,
which can be classified as familial ALS with a genetic component and representing 10% of
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cases [1], or sporadic ALS, which represents 90% of the remaining cases and does not show
any conventional hereditary pattern [2]. The majority of patients are aged between 50 and
75 years when diagnosed and, despite the disease currently being classified as a rare disease,
it is estimated that approximately 400,000 patients will be diagnosed with ALS in the whole
world by 2040 [3]. ALS is outlined due to its severity with life expectancy, which is between
three and five years in the majority of patients. This is due to the quick progressive death of
motor neurons. Depending on the kind of motor neuron that is initially altered, the patient
can be diagnosed with bulbar onset ALS when affecting first-order motor neurons and
spinal onset ALS when the neurons that are affected are second-order motor neurons [4].
Motor neurons go from the brain to the spinal cord and muscles throughout the body
and they establish the necessary communication between the brain and the voluntary
muscles. Their deterioration and gradual death lead to a loss in muscular functioning,
and voluntary and involuntary muscle paralysis [5]. As a result, patients show progres-
sive difficulty in speaking, swallowing and finally breathing, resulting in death [6]. This
neuronal death is etiologically related to excess glutamate and mitochondrial alterations
that cause neurodegeneration [7–9]. Glutamate is the main neurotransmitter of the central
nervous system (CNS) and is essential for neuronal synapses, yet it is toxic for neurons
when found in high concentrations [10]. High levels of glutamate have been observed
in the serum of ALS patients [11], which is positively correlated with the severity of the
disease [12]. Nonetheless, the role of the γ-aminobutyric acid (GABA) neurotransmitter
also seems relevant for the etiopathogenesis of the disease, as the receptor block mainly
induces temporary muscle hyperexcitability and motor deficits that are associated with
moderate loss of motor neurons [13]. Therefore, the balance between the excitatory activity
of glutamate and the inhibitory activity of GABA largely depends on the viability of the
motor neuron. Regarding energetic alterations, the mitochondrion is a vital organelle of the
cell with multiple functions. It is the main source of ATP, maintaining calcium homeostasis
and taking part in its signaling. Thus, malfunctioning mitochondria affect neurons, espe-
cially motor neurons [14,15]. In this sense, in the alteration of mitochondrial energy balance,
as evidenced in ALS patients, the alteration has an important role in the metabolism of
tryptophan based on catabolism and activation of the kynurenine pathway. Said pathway
is the de novo NAD+ synthesis associated with cell energy, repairing and fatigue, which
explains that the dysregulation of this metabolism is related to the risk of developing
neurodegenerative diseases [16], and especially in ALS [17,18]. Thus, it seems relevant
to have adequate levels of tryptophan, a precursor of serotonin, as according to several
authors enhancing the serotonergic pathway is a therapeutic alternative for the disease. In
SOD1 rodents (G86R), a transgenic model of ALS, serotonin levels are lowered in the brain
stem and spinal cord before motor symptoms appear. In addition, there is an important
atrophy of serotonin-containing neuronal cell bodies alongside neuritic degeneration at the
onset of the disease [19]. Furthermore, serotonergic denervation leads to a loss of control
on the inhibition of glutamate release, thus increasing its levels in the synaptic cleft, and
identifying the importance of the serotonergic system at a neuroprotective level [20]. On
the other hand, there has been evidence that there is a link between neurotoxicity due to
high levels of heavy metals and the disease [21].

In relation to these neurotransmitters associated with the disease, certain strains
of bacteria play an essential role as they can modulate the production of GABA and
glutamate [22] or serotonin [23]. This gives us an idea of how important human microbiota
is for brain activity, as it is comprised of billions of bacteria that reside on or inside the
body [24].

The human body, including the intestine, skin and other mucous membranes, are
colonized by many microorganisms collectively known as a microbiome [24]. This popula-
tion of microorganisms has a direct impact on both health and the disease. In particular,
conclusions have been reached in recent years on how gut microbiota is essential for mul-
tiple functions of the host, such as circadian rhythm, metabolism or immunity [25]. Gut
microbiota is very important for brain activity [26], as a direct connection can be estab-
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lished to it, represented by what is known as the gut–brain axis. The importance of the
gut–brain axis has been highlighted in recent years with regard to the progression of the
disease. This axis is characterized by representing a bidirectional communication system,
as intestinal functions are controlled by the autonomic and enteric nervous systems [27].
Thus, alterations in the axis have been related to depression [28], anxiety [29], ischemic
stroke [30] and symptoms of autism spectrum disorder [31]. Furthermore, currently there
is a clear consensus on the impact that these alterations have on the development of the
most prevalent neurodegenerative diseases, such as Parkinson’s disease [31], Alzheimer’s
disease [32] or multiple sclerosis [33].

Therefore, the objective of our narrative review was to identify those bacteria that
could have connection with the mentioned disease (ALS) and to analyze the benefits
produced by administering polyphenols. In this sense, an extensive search on the PubMed
and EBSCO database was carried out, selecting the most relevant articles published between
2005 and 2020 on research carried out on cell, animal and human models of the disease,
using key words, such as microbiota, polyphenols and amyotrophic lateral sclerosis. Based
on the obtained papers, a selection was finally analyzed as indicated in Figure 1.
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2. Gut Microbiota and ALS

There is a diversity of microbial communities in the whole gastrointestinal tract that
has a fundamental role in human health. Gut microbiota is made up of microorganisms,
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mainly bacteria, archaea, fungi and viruses, which are found colonized in the intestine of
the human body. Their main role is to maintain homeostasis and its influence on systemic
immunity [35]. Bacteria make up 95% of living cellular organisms in the gut microbiota
and all of them have different functional capacities and require different nutrients to
survive [36]. There are up to 55 phyla of bacteria and 18 of archaea, although only 8 phyla
of bacteria have been identified, of which 90% are Firmicutes and Bacteroidetes, while
10% are made up of Actinobacteria and, to a lesser extent, Proteobacteria, Verrucomicrobia
and Cyanobacteri [37]. Due to new technologies, the Human Microbiome Project has been
developed, which has added 900 sequences that are a reference in the bacterial genome [38].
Nonetheless, the human microbiome composition varies in each individual depending on
eating habits, age, coevolution of intestinal microbes with the host, the environment and the
microbial ecosystem including three main domains: bacteria, archaea and eukaryotes [37].
Furthermore, microorganisms that live in the gastrointestinal tract synthesize and modify
the metabolites produced by the host, and create new metabolites from compounds in
the diet, some of which are beneficial and others harmful to a person’s health [39]. In
this sense, microorganisms produce short-chain fatty acids (SCFA) and branched chain
fatty acids (BCFAs) throughout the fermentation process. Some functions of these fatty
acids are, on the one hand, to intervene when differentiating and dividing enterocytes
and, on the other hand, maintain and regulate mineral balance, favoring the absorption of
magnesium, calcium and iron [40]. Due to all these functions, the role of gut microbiota
in physiology has been given great importance, therefore it can be considered as another
human organ [41]. It was originally established that the brain was only regulated by the
central nervous system (CNS) [42], yet, as previously mentioned, there is recent scientific
evidence of bidirectional communication between the intestine and the brain through gut
microbiota, therefore microbiota influences the brain’s physiology. In this sense, alterations
of the microbiota have been described in patients with Parkinson’s disease, Alzheimer’s
disease or multiple sclerosis (MS) [43]. These alterations are related both to aetiology
and pathogenesis [44,45]. Several preclinical and clinical studies have indicated that gut
microbiota, due to the fact that it maintains physiological homeostasis, can significantly
interfere with brain functions and cognitive systems in human beings [46].

Dysbiosis is a state when the gut microbiota is abnormal, [47] where microbial diversity
is reduced and there are pathogenic strains or a loss of beneficial strains [48], leading to an
intestinal imbalance in the properties and/or functions of gut microbiota. This is due to
being exposed to different factors, such as stress, eating habits, drugs (mainly antibiotics)
and some toxins and pathogens. These changes create a predisposition in the host to
develop certain medical conditions, such as allergies, obesity, intestinal inflammation,
diabetes, cancer, atherosclerosis and neurodegenerative diseases. There are two pathways
involved in communication between gut microbiota and the CNS: the vagus nerve and
the transmission of molecules through the vascular system and the blood–brain barrier
(BBB) [49]. Healthy elderly people do not show changes in the diversity of gut microbiota.
Studies conducted on centenarians have outlined the importance of microbial diversity
to have good health when older [50]. On the other hand, dysbiosis has been observed in
neurodevelopmental disorders, for instance autism, and neurodegenerative diseases, such
as Alzheimer’s disease, Huntington disease and Parkinson’s disease [51].

In terms of ALS, there is evidence that intestinal dysbiosis is present, and an increase
in intestinal permeability in SOD1 (G93A) rodents [52]. This permeability is influenced
by low levels of bacterial products as butyrate and SCFA, indeed, increasing these fatty
acids results in intestinal integrity improvement, microbial homeostasis and extended
life expectancy [53]. The increase in permeability in the intestinal epithelium in ALS is
related to dysbiosis, with its consequential systemic dissemination, causing an immune
system response that stimulates the action of macrophages and dendritic cells in the
production of proinflammatory cytokines, which in turn activate adaptive immune cells
that alter immune homeostasis [36]. In terms of bacteria, in the first stage of the disease it
has been shown how dysbiosis is characterized by a significant reduction of Butyrivibrio
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fibrisolvens and Firmicutes (they produce butyrate), and a decrease in the expression of
the protein involved in tight and adherents junctions, with the consequential increase
in the permeability of the intestinal epithelium. We must also add an increase in the
number of abnormal Paneth cells that are specialized intestinal epithelial cells whose
main functions are to detect microbes and secrete antimicrobial peptides, therefore directly
influencing the intestinal environment [54]. A significant increase has also been observed
in the Dorea bacterial genus that is characterized by having harmful microorganisms, and
in Anaerostipes; and a significant decrease in the Prevotella genus and in some genera of
the Lachnospiraceae family, which, on the contrary, are characterized by being comprised
of microorganisms that are beneficial for ALS patients. It is important to outline that a
decrease in the relation of the Firmicutes/Bacteroidetes phyla has been observed, causing
an increase in Bacteroidetes phylum in ALS [55], as also described in the study conducted by
Rowin et al. (2017) [56], and associated with a poor quality gut microbiota in babies and the
elderly [57]. Furthermore, there is evidence about how there are clear differences between
healthy people and patients with the disease, mainly characterized by a low abundance of
yeasts and a high abundance of Escherichia coli and Enterobacteriaceae in ALS [58]. The
study conducted by Zhai et al. (2019) proves how beneficial microorganisms from the
Faecalibacterium and Bacteroides genera are reduced in ALS patients [59]. This dysbiosis is
already observed in SOD1 (SOD1-Tg) transgenic mice prone to ALS in a presymptomatic
stage, while the exacerbation of symptoms has been associated with the presence of
Ruminococcus torques bacteria that is linked to neurodegeneration. On the contrary, the
presence of Akkermansia muciniphila is related to a symptomatic improvement and a possible
increase in motor neurons and survival as a result of a rise in nicotinamide [60], which is
also associated with motor and functional improvements in ALS patients [61].

Regarding the direct relation of bacteria with pathogenic mechanisms of the disease,
again Akkermansia muciniphila is outlined due to its capacity to increase GABA/glutamate
ratios in the hippocampus [62]. In addition, evidence shows that some species of Lac-
tobacillus and Bifidobacterium segregate GABA, being the GABA system one of the main
mechanisms of brain chemistry modulation by intestinal bacteria [63]. In particular, the
Lactobacillus species: L. rhamnosus and L. brevis, and Bifidobacterium dentium, increase the
GABA neurotransmitter [64–66]. On the other hand, gut microbiota interferes in the pro-
duction of neuroactive metabolites, specifically neurotransmitters and neuropeptides, thus
influencing brain functions. In this sense, Bifidobacterium infantis bacteria increase the levels
of tryptophan in plasma, therefore affecting the central transmission of serotonin [67],
and increasing the synthesis of SCFAs that also have neuroactive properties as a result of
bacterial fermentation [63].

All of this evidence displays a clear relation between bacterial composition and the
development of neurodegeneration, regardless of the region of the brain or type of neuron
affected. In this sense, it was maybe Fang P. in 2016 who reviewed this problem in depth
for the first time [68]. This was followed by work in the same line with reviews from
Spielman LJ et al., 2018; Castillo-Álvarez F et al., 2019 or Roy Sarkar et al., 2019 [49,69,70].
In relation to ALS, the review by Wright et al. in 2019 pointed out that dysbiosis was
the etiological cause of the disease, based mainly on the absence of bacteria that produce
butyrate in studies with animal models [71]. The review by McCombe PA et al., 2019 also
indicated dysbiosis as an important pathogenic mechanism in ALS [36], although accepting
the limitation of the work due to the lack of published studies. Based on these studies,
later reviews indicate the possibility that improving microbiota can be beneficial for ALS
patients. Thus, studies that analyze the impact of microbiota transplantation to improve
neurological disorders, [72] or the importance of diet factors in neurodegeneration [73] are
outlined. It is especially in relation to the latter and once the main bacteria associated with
ALS have been identified, we believe that it would be interesting to analyze the impact that
antioxidants in the diet could have.
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3. Diet, Polyphenols and Neuroprotection. The Effect on Gut Microbiota

Gut microbiota is modulated by diet. Therefore beneficial bacteria are increased
with nutrients, including wholegrain oats that increase the number of Bifidobacterium
(in particular Bifidobacterium adolescentis), the production of SCFAs and the levels of the
neuroactive substance GABA [74]. Several studies conclude that there is a high alteration
in gut microbiota with regard to whether an individual follows a diet rich in fiber or
rich in food of animal origin. There is evidence showing that when a diet rich in fiber is
followed, the amount of Prevotella spp. increases. On the other hand, when a diet rich
in food of animal origin or saturated fat is followed for a long period of time, Bacteroides
rise. Following a diet rich in fiber has been observed to produce an increase in colonic
fermentation, leading to a reduction in pH from 6.5 to 5.5, thus favoring butyrate being
produced by Gram-positive bacteria and decreasing the growth of Bacteroides spp. [75].
Additionally, different studies show that diets rich in fiber and polyphenols have an
important role as bacteria growth inhibitors of the Bacteroides, Clostridium and Staphylococcus
genera, therefore outlining the role of polyphenols in the diet. In fact, recent research has
concluded that there is a direct and positive correlation between the rise in Lactobacillus and
Prevotella and the consumption of fruit and vegetables rich in polyphenols [76]. Further
evidence also shows how incubating probiotic bacteria (specifically Bifidobacterium) with
polyphenols produce SCFAs [77].

Gut microbiota variations caused by taking probiotics, prebiotics, antibiotics and
other treatment can be useful to treat some medical conditions. Within the Firmicutes
phylum, the bacteria that are most used as a probiotic are Lactobacillus, Bifidobacterium and
some yeasts. In general, these bacteria are added to food, such as yogurt, soy yogurt or
are directly ingested through food supplements. There are well-established prebiotics,
such as galactooligosaccharides, fructooligosaccharides and inulin, but there are also other
putative prebiotics, such as some oligosaccharides, polyphenols, resistant starch, algae and
seaweeds, and intestinal metabolites of the host, among which SCFAs are found that can be
applied with the aim of selectively and/or differentially affecting beneficial bacteria within
the gastrointestinal environment [78,79]. As a result, the use of probiotics and prebiotics
must be considered as a good strategy to modulate the gut–brain axis through changes in
gut microbiota composition. In this sense, apart from the well-established prebiotics or the
SCFAs, the role of polyphenols is also outlined, as ingesting them could represent a key
factor in preventing neurodegenerative diseases such as ALS [63]. Polyphenols are bioactive
chemical substances that are found in food, mainly fruit and vegetables [80]. In terms of
classifying phenolic compounds, they are divided into two main groups: flavonoids and
non-flavonoids [81]. There are different subclasses in the flavonoid group, the most relevant
are: flavonols, flavones, flavanols, flavanones, isoflavones and proanthocyanidins [82–84].
Quercetin stands out among flavonols and it is mainly found in vegetables, such as onion,
broccoli and spinach, and green tea, wine and some red fruits [85–87]. Apigenin and lutein
stand out among flavones, mainly found in celery and parsley [88], and baicalin, produced
by Scutellaria baicalensis [89]. The most relevant compounds of flavanols are catechins, of
which epigallocatechin gallate (EGCG) is highlighted. It is found in large quantities of
green tea and black tea leaves, and some nuts, apples, grapes, dark chocolate and red
fruits [90,91]. In the subgroup of flavanones, naringin and hesperidin mainly stand out,
and they can be found in citric food and tomatoes [92,93]. In terms of isoflavones, daidzein,
genistein and glycitein are highlighted, mainly found in soya, green peas and pulses
food [91,94]. Proanthocyanidins are found in red fruits, black grapes and pomegranate,
outlining cyanidin as a compound [80,92]. Non-flavonoid substances are divided into
phenolic acids, lignans, stilbenes and curcuminoids, among others [83]. Phenolic acids
are divided into benzoic acids, in which gallic acid is found in tea leaves and fruit, such
as cranberries, grapes and strawberries; and cinnamic acids, being caffeic acid the most
relevant one, which is found in coffee [95]. Lignans contain enterodiol and enterolactone
that are mainly present in fruit and vegetables, like pumpkin, and some seeds, such as flax
seed, sesame seed and pumpkin seed. Stilbenes, such as resveratrol and pterostilbene, are
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found in grapes, cranberries and red fruits [96]. In terms of curcuminoids, curcumin stands
out originating from rhizome of turmeric [97].

Among the health benefits that polyphenols display, their role in improving brain
functions is especially significant by means of their neuroprotective activity [98,99], as
they prevent neuroinflammation, maintain brain homeostasis and promote cognitive func-
tions [100,101]. In relation to this neuroprotection, many polyphenols act as prebiotics as
the levels of inflammation are reduced and they contribute to maintaining gut health. This
action is due to the fact that they are capable of inhibiting the growth of gut pathogens and
stimulating the growth of beneficial bacteria [102]. This causes an impact on the improve-
ment of neuroprotection in neurodegenerative diseases. In this neuroprotective activity,
microbial metabolites of polyphenols show protective effects against overproduction of
nitric oxide, such as inflammatory cytokines (IL-6 and TNF-α) in BV-2 microglia [103]. This
fact confirms what is described by Gasperotti et al. (2015). This author explains that after
inoculating a group of mice with a combination of 23 primary polyphenol metabolites,
10 reached the brain, among which gallic acid and caffeic acid stood out. Therefore, it
seems evident that the brain is a target organ for metabolites resulting from the degra-
dation of polyphenols [104]. In addition, the metabolism of polyphenols depends on the
initial levels of certain bacterial populations. In particular, consuming sour cherries rich in
anthocyanins and flavonoids leads to opposite responses depending on the initial levels
of Bacteroides. Therefore, individuals with a high content of Bacteroides respond with a de-
crease in Bacteroides and Bifidobacterium, and an increase in Lachnospiraceae, Ruminococcus
and Collinsella. On the other hand, individuals with low levels of Bacteroides respond with
an increase in Bacteroides, Prevotella and Bifidobacterium, and a decrease in Lachnospiraceae,
Ruminococcus and Collinsella [105]. Ingesting polyphenols modifies microbiota, but micro-
biota also enhances the effects of polyphenols and modifies them by producing metabolites
that improve the prognosis of neurodegenerative diseases. In this sense, different authors
have studied said beneficial effects. This is the case of the study by Ho et al., who stated
that a rich preparation in flavanols with an α-synuclein reducing activity (which is the
key neuropathological hallmark) improved the generation and bioavailability of microbial
metabolites of phenolic acid derived from flavanols that have bioactivity to interfere with
the incorrect folding or inflammation of α-synuclein [106]. Another example is found
with Wang et al. who demonstrated that after administering polyphenolic extracts of
grape seeds in mice, they were able to observe how microbiota modified the production
of phenolic acids and improved their bioavailability in the brain. Two of these phenolic
acids (3-hydroxybenzoic acid and 3-(3-hydroxyphenyl) propanoic acid) strongly interfered
with the assembly of β-amyloid peptides and, thus, neurotoxic β-amyloid aggregates [107].
Finally, Sun et al., in the study on APP/PS1 mice (Alzheimer’s disease models), observed
that administering curcumin tended to improve spatial learning and memory abilities,
and reducing the amyloid plaque load in the hippocampus. These improvements were
attributed to changes in the microbiota (an alteration of the relative abundance of bacterial
taxa, such as Bacteroidaceae, Prevotellaceae, Lactobacillaceae and Rikenellaceae families,
and Prevotella, Bacteroides and Parabacteroides genera), but also metabolites derived from
curcumin with neuroprotective effects for the disease [108]. All these studies demonstrate
the interaction between microbiota and polyphenols, generating a beneficial tandem in
different neurodegenerative diseases. This is why we believe it is important to study this
relationship in ALS patients, after treatments with polyphenols that benefit the microbiome
and the production of neuroprotective metabolites in the pathology.

4. Polyphenols, Microbiota and ALS

In terms of the neuroprotective effect of ALS, after an individual analysis of the
polyphenols highlighted in the previous classification was carried out, not all of them
have shown improvements in the disease in cellular, animal or human models. However,
many of them could offer interesting therapeutic options to treat neurodegeneration of the
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disease. In this study, the beneficial effects of the main polyphenols in gut microbiota and
the possible effects in ALS are shown.

4.1. Flavonoids
4.1.1. Quercetin

Quercetin has been observed to influence bacterial flora as it inhibits the growth of
Enterococcus [109] and increases Akkermansia muciniphila [110], which is a bacterium that
has been positively correlated to improvements in ALS [60]. Quercetin supplementation
has also shown to boost populations of Bacteroides, Bifidobacterium and Lactobacillus that
are related to GABA synthesis and that are found to be lower in ALS patients [111].
In terms of its metabolism, quercetin is a polyphenol that needs to be metabolized to
be absorbed. The Eubacterium ramulus and Clostridium orbiscindens bacteria have been
shown to intervene in the degradation of this substance, especially in the large intestine.
Concentrations of Fusiobacteriaceae and Enterobacteriaceae are directly related to quercetin,
inhibiting its degradation by other bacteria. In addition, the amount of Sutterellaceae
and Oscillospiraceae is negatively related to the concentration of quercetin [112]. These
bacteria have not been related to improvements in ALS patients in previous studies, despite
improvements evidenced by the use of this polyphenol. There are mutated forms of the
SOD1 protein in familial ALS, they do not fold correctly and are aggregated in motor
neurons. Several authors have researched the role of some polyphenols regarding the
production of these aggregates. Philbert et al. could verify in vitro how quercetin, quercetin-
3-β-d-glucoside (Q3BDG) and, to a lesser extent, EGCG, decreased incorrect folding and,
therefore, aggregation induced by hydrogen peroxide in mutated SOD1 protein (A4V
SOD1), by means of a direct quantifiable interaction between the three polyphenols and
A4V SOD1 [113]. This gives rise to a decrease in toxicity mediated by SOD1 fibrils, showing
the great potential that this flavonoid has against A4V SOD1 mutant fibrillation [114].
Finally, quercetin has shown to decrease neuronal damage induced by aluminum, a metal
that is precisely linked to the pathogenesis of several neurodegenerative diseases [115].

4.1.2. Catechins

Green tea polyphenols have been shown to have benefits for human health as a result
of interacting with gut microbiota. The polyphenols found in tea are epicatechin gallate,
EGCG, epigallocatechin, catechin, epicatechin and gallocatechin that inhibit the growth
of pathogenic bacteria, such as Listeria monocytogenes, Helicobacter pylori, Salmonella ty-
phimurium, fungi from the genus Candida, Staphylococcus aureus, Escherichia coli and Pseu-
domonas aeruginosa [116]. Among these, evidence obtained with EGCG stands out, which
has been related to modifications in the composition of gut microbiota, by promoting a
significant increase in Verrucomicrobia and Actinobacteria, and a significant reduction in
Deferribacteres and Proteobacteria [117]. In addition, its combinations with other polyphe-
nols manage to change bacterial flora. In the study carried out by Most, et al. (2017), it
was concluded that supplementation for 12 weeks with the combination of EGCG and
resveratrol caused alterations in gut microbiota in obese men, leading to a decrease in
Bacteroidetes and Faecalibacterium prausnitzii [118]. Furthermore, its synergistic effect with
probiotic bacteria stands out. Banerjee, et al. (2019) concluded, after analyzing encapsula-
tion of probiotic bacteria alongside a formula rich in polyphenols characteristic of black
tea, white tea, green tea and Thai herbal extract, how this formulation causes an increase
in the probiotic effect of these bacteria [77]. Regarding the relation to the disease, EGCG
manages to extend life expectancy in ALS animal models [119] due to the protective effect
of motor neurons as a result of regulating glutamate levels [120]. This activity seems to
be due to inhibiting β-sheet folding that leads to mutations in the SOD1 protein [121], or
the increase or improvement of the brain-derived neurotrophic factor (BDNF) obtained
in animal models after administering EGCG [122]. These benefits could also be linked
to the role of polyphenols in green tea in gut microbiota. In this sense, there has been
evidence on how increasing the population of Oscillospira [123] could promote muscular
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improvement in these patients, due to the positive relation of these bacteria with an increase
in lean mass [124,125] that has been deteriorated throughout the progression of the disease.
Additionally and importantly, there has been recent evidence that administering green tea
significantly increases the growth of Akkermansia muciniphila [126]. Thus, it is interesting
how Akkermansia muciniphila is positively associated with Verrucomicrobia, hence promot-
ing its increase can also raise that of Verrucomicrobia, which is also correlated with lower
inflammation as serum and tissue levels of inflammatory cytokines and chemokines, such
as TNF-α, IL-1α, IL-6 or IL12A, are reduced [127]. In terms of Actinobacteria, their increase
is associated with improvements in depression in an inflammation model of depression.
The majority of patients with ALS suffer from depression [128], which also significantly
influences the progression of the disease [129].

4.1.3. Naringin and Hesperidin

Naringin and hesperidin could also be therapeutic alternatives to reduce inflamma-
tion and oxidation in neurodegenerative diseases. These antioxidants are mainly found in
oranges and have shown positives changes in gut microbiota. In the study conducted by
Fidélix et al. (2020), an increase in Lactobacillus spp., Bifidobacterium spp. and Akkermansia
spp. was obtained after administering orange juice [130]. On the other hand, hesperidin
raises the proportion of Lactobacillus/Enterococcus [131] and Akkermansia muciniphila [132].
The metabolism of both polyphenols in the intestine depends on the level of conjuga-
tion of sugar fractions that are eliminated by bacteria in the intestine. Naringin and
hesperidin practically reach the colon intact, after the enzymes secreted by gut microbiota
act (α-rhamnosidase and β-glucosidase), resulting in the formation of their aglycones,
hesperetin and naringenin [133]. Regarding the direct impact of neurodegeneration, these
compounds have been shown to be able to cross the blood–brain barrier, so they can have
neuroprotective and neuromodulating actions in different pathologies of the brain [134].
The neuroprotective effects of naringin have been evidenced in the study by Gopinath
et al., where a modulation in the expression of metalloproteases was verified after motor
alteration caused by 3-nitropropionic acid. Naringin has been shown to have an anti-
inflammatory effect on the brain by decreasing the expression of nuclear factor-kappa
B and the glial fibrillary acidic protein [135]. This activity could explain the great ben-
efits observed in diseases such as Alzheimer’s disease and Parkinson’s disease, among
others [136]. As regards the neuroprotective potential in ALS, naringin shows positive
effects in terms of the aggregation of mutant SOD1 [137,138]. The group of Srinivasan
described with quantum chemistry and molecular mechanic calculations how naringin
had a strong affinity for mutant SOD1, thereby preventing the formation of toxic aggre-
gates [137]. Joining naringin to the mutated protein occurred due to the OH groups it
presents, causing an increase in electrostatic attraction with residual fragments of the mu-
tated protein. In this sense, Zhuang et al. confirmed by means of molecular simulation that
naringin binds to SOD, being able to stabilize the SOD1 dimer and inhibit the aggregation
of this protein [138]. Hesperidin also displays positive results when inhibiting mutant
SOD1 [139]. As previously indicated, hesperidin increases the proliferation of some species
of Lactobacillus and Bifidobacterium. This is associated with a lower loss of motor neurons
due to a rise in the secretion of GABA [131]. The proliferation of Bifidobacterium could
be beneficial for the disease as it promotes the secretion of serum tryptophan [140] and,
therefore, of serotonin, which, alongside the production of SCFA through fermentation
with Bifidobacterium, generate a neuroprotective effect [63].

4.1.4. Genistein

In terms of isoflavones, there is evidence in animal models that genistein has neuro-
protective properties for ALS, as it eliminates the production of proinflammatory cytokines
and improves gliosis in the spinal cord. Additionally, it improves the viability of motor
neurons in animal models, therefore, the effects are expected to be equally beneficial in
human ALS models [141]. Regarding its role in gut microbiota, this seems beneficial. It has
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been observed how an increase in several bacterial strains of Lactobacillus spp. is achieved,
which are also associated with a 30% rise in SCFA [142]. In addition, the production
of microorganisms of the Clostridium coccoides–Eubacterium rectale group, Lactobacillus–
Enterococcus group, Faecalibacterium prausnitzii subgroup and Bifidobacterium genus was
stimulated in postmenopausal women [143,144]. The latter has also been seen to increase
in the study conducted by Nakatsu et al., (2014) [145]. An increase in the proportion of
Firmicutes/Bacteroidetes seems to be produced in obese men [146].

4.1.5. Proanthocyanidins

Akkermansia muciniphila is especially relevant due to the association with specific
benefits in ALS, as they are part of the beneficial intestinal flora. Proanthocyanidins favor
growth and this process is related to a decrease in obesity and metabolic syndrome [147].
In addition, consuming anthocyanins promotes a significant rise in Actinomycetales, Bi-
fidobacteriacae, Coriobacteriaceae and the proliferation in Bifidobacterium spp., which is
highly efficient as a probiotic; while inhibiting the growth of Bacteroides and Clostridium
histolyticum that are shown to be pathogenic for humans [40,148]. The increase in Bifi-
dobacterium and Lactobacillus seems interesting [149] as it can be related to benefits in ALS
patients due to the fact that high levels of SCFA are generated with a neuroprotective
effect [77]. In this sense, diets enriched with whole cranberry powder and fractions rich in
polyphenols not only modify gut microbiota, but also improve fecal SCFA and branched
chain fatty acids [150].

4.1.6. Baicalin

Baicalin is the main component of the anti-inflammatory herb Scutellaria baicalensis and
displays interesting properties to improve gut microbiota, mainly because it increases the
population of species of bacteria that produce SCFAs, which was associated with improve-
ments in the abnormal metabolism of glucose and lipids caused by high-fat diets [151].
This beneficial impact could be due to its biotransformation, by the gut microbiota, into
baicalein, which has stronger bioactive effects than baicalin itself [152].

All these main results of the interaction between flavonoids and microbiota changes
are resumed in the next table (Table 1).

Table 1. Flavonoids effects on intestinal microbiota.

Flavonoid Microbiota Change Study Population Author, Year

Quercetin
↓Enterococcus spp. Bacterial culture with Broth medium Firrman, et al. (2016) [81]

↑Akkermansia muciniphila Wistar rats Etxeberria, et al. (2015) [82]
↑Bacteroides spp.

↑Bifidobacterium spp.
↑Lactobacillus spp.

Female C57BL/6 mice Lin et al. (2019) [83]

EGCG

↑Verrucomicrobia
↑Actinobacteria Male C57BL/6N mice Ushiroda et al. (2019) [89]

↓Bacteroidetes Overweight and obese men and
women Most, et al. (2017) [90]

↑Akkermansia muciniphila Male C57/BL6 mice Jeong et al. (2020) [98]

Naringin & Hesperidin

↑Bifidobacterium spp.
↑Akkermansia spp. Female volunteers Fidélix et al. (2020) [102]

↑Lactobacillus spp. Female volunteers Fidélix et al. (2020) [102]
Male Lewis rats Estruel-Amades et al. (2019) [103]

↓Enterococcus spp. Male Lewis rats Estruel-Amades et al. (2019) [103]

Genistein

↑Lactobacillus spp. In vitro ecosystem with vessels De Boever et al. (2000) [114]

↑Bifidobacterium spp. Postmenopausal Caucasian women Bolca et al. (2007) [115]
Postmenopausal women Clavel, et al. (2005) [116]

↑Firmicutes/Bacteroidetes Male subjects Fernández-Raudales et al. (2012) [118]

Proanthocyanins

↑Bifidobacteriaceae
↑Coriobacteriaceae

↑Bifidobacterium spp.
↓Bacteroides spp.
↓Prevotella spp.

↓Clostridium histolyticum

Systematic review of clinical trials Saez-Lara et al. (2015) [120]

Effects of the main flavonoids on the intestinal microbiota. EGCG: Epigallocatechin-3-gallate.
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4.2. Non-Flavonoids
4.2.1. Gallic Acid

Among non-flavonoids are phenolic acids, where gallic acid stands out due to its
great anti-inflammatory activity in the intestine [153]. This molecule has many therapeutic
possibilities that still need to be researched. In this sense, we can predict that interesting
results in the therapeutic treatment in ALS patients can be achieved, due to the fact that
this has been observed in Wistar rats that were induced with neurodegeneration by toxicity
caused by aluminum (AlCl3), and how they protect motor neurons from the toxicity
caused by this metal. This benefit occurs by improving the antioxidant status and by
preventing glutamate excitotoxicity [154], which could be mediated by the production of
quinolinic acid after degradation of tryptophan through the kynurenine pathway [155].
With relation to microbiota, gallic acid increases probiotic bacteria such as Proteobacteria
and Prevotellaceae, and decreases some pathogenic species, mainly in the phyla Firmicutes
and Proteobacteria [153]. Regarding metabolites derived from microbiota activity, gallic
acid has been observed to increase the production of anti-inflammatory metabolites, such
as SCFA in the colon [156].

4.2.2. Caffeic Acid

Caffeic acid has been identified as an antioxidant molecule able to rescue motor neuron-
like cells (NSC-34) that express mutated SOD1 associated with ALS [157]. This makes it
one of the best polyphenols to fight against the disease. In fact, caffeic acid phenethyl
ester has been seen to slow down the disease, by mitigating neuroinflammation and motor
neuron death associated with the clinical pathology of ALS in SOD1 mice (G93A) [158].
In addition, it particularly acts as a neuroprotector to stop the activity of glutamate as
it suppresses the accumulation of endogenous ROS and restores the potentiality of the
mitochondrial membrane, activating the antioxidant enzyme system by increasing the
levels of SOD activity and modulating the rise in intracellular activity [159]. In terms
of whether these benefits to treat the disease could be linked to changes in microbiota,
it is possible that they can, as caffeic acid included in the diet drastically increases the
levels of Akkermansia bacterium in mice with colitis. This is associated with a decrease in
inflammation mediated by the NF-κB pathway [160]. Furthermore, caffeic acid seems to
inhibit the rise in Ruminococcaceae, where the Ruminococcus genus is found to be related
to ALS (in particular Ruminococcus torques) [161].

4.2.3. Resveratrol

Within stilbenes, resveratrol has a wide spectrum of therapeutic effects for health
despite its limited bioavailability. Its antioxidant and anti-inflammatory effects stand out
as they modulate the levels of proinflammatory cytokines (IL-6, IL-16, IL-1β and TNF-α),
which gives it great properties as an antiaging and neuroprotective molecule [100]. In
terms of its impact and relation to microbiota, there is evidence on how mice treated with
this polyphenol show a considerable alteration in the composition of microbiota, character-
ized by enriched Bacteroides, groups Lachnospiraceae NK4A136, Blautia, Lachnoclostridium,
Parabacteroides and Ruminiclostridium 9, collectively known as RSV microbiota [162], and
Butyrivibrio fibrisolvens [163] being lower in ALS patients. As is the case with other polyphe-
nols, gut microflora contributes to the metabolism of resveratrol. Bacteria are capable
of converting this molecule into dihydro-resveratrol by means of different reactions. A
part of dihydro-resveratrol is absorbed and the other is metabolized in conjugated forms
(monosulfate and monoglucuronide) that can be easily eliminated in the urine. Slackia equo-
lifaciens and Adlercreutzia equolifaciens are the main intestinal bacteria involved in reducing
resveratrol [164]. These processes related to microbiota can be linked to protecting the body
against neurodegeneration, as some bacteria increased due to resveratrol are lower in ALS,
as is the case of Akkermansia muciniphila. A diet with a strict calorie intake and especially
supplemented with the antioxidant resveratrol has been seen to increase the levels of Akker-
mansia muciniphila [165]. It is precisely administering resveratrol that attenuates dysbiosis
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through rises in these bacteria [166]. These results support those obtained in cell and
animal models of the disease. On a cell level, resveratrol, alongside caffeic acid, phenethyl
ester and aescultein, are what show the best performance when rescuing primary motor
neuron cultures after trophic factor withdrawal [157]. This protective role is confirmed
in vitro, as an increase in cell viability is caused by activating sirtuin 1 [167,168]. In fact, this
viability compared to that which riluzole obtains is much higher, as the viability of the drug
is practically non-existent [169]. These findings were confirmed in SOD1 (G93A) animal
models. Conservation and survival of the spinal motor neuron function was observed,
which is associated with a higher expression and activation of sirtuin 1 and AMPK, which
means there is an energy improvement in the mitochondria [170]. All of this evidence
shows that it is possibly one of the most promising polyphenols as an alternative treatment
for patients with ALS, even though bioavailability should be improved, perhaps through
nanoencapsulation technology with liposomes.

4.2.4. Pterostilbene

An important stilbene is pterostilbene due to its important therapeutic properties.
This antioxidant has already been related to ALS improvements due to the effects in
animal models where an increase in functionality and survival of motor neurons has been
observed [171]. In relation to bacterial microbiota, pterostilbene intake produces a very
healthy microbial profile, characterized by an increase in the Verrucomicrobia phylum.
However, there is more, as an increase in the Akkermansia and Odoribacter genera has also
been observed [172]. Additionally, changes in microbiota also have an impact on intestinal
metabolism that would lead to neuronal improvements. In this sense, it has been shown
how pterostilbene has an activity on monoamine oxidases (MAO), which is responsible
for the local regulation of serotonin. This neurotransmitter is deficient in ALS and, when
pterostilbene is in contact with the gastrointestinal tract, MAOB is inhibited, leading to an
increase in serotonin [173].

4.2.5. Curcumin

Curcumin belongs to the group of curcuminoids and is a natural phenol derived from
Curcuma longa, which has received a lot of interest from the scientific community due to its
potential medicinal effects. These effects include anti-inflammatory and neuroprotective ac-
tivity by directly or indirectly eliminating free radicals. In particular, curcumin significantly
eliminates the activity of superoxide dismutase (SOD), which is completed by its ability
to stimulate innate immune cells that avoid SOD1 protein folding [174]. Curcumin has
also shown to have an indirect antioxidant action to increase plasma catalase activity [175].
Therefore, this means it is a good candidate to treat neurodegenerative diseases [38]. It
could be especially efficient to treat ALS as there is evidence that curcuminoids attenuate
the expression of COX-2 induced by ROS in ALS. Furthermore, they improve the symptoms
of neurological damage caused by heavy metal intoxication linked to ALS [176]. This has an
impact on the progression of the disease. We observed that daily intake of 600 mg curcumin
reduces the progression of the disease, in parallel with metabolic improvement and a
decrease in oxidative damage [177]. In order to obtain bioactive products of curcumin, bio-
transformation by the human intestinal microflora is necessary. Bidirectionally, curcumin
has been shown to have beneficial effects on gut microbiota by increasing the number of
bacterial families, including Prevotellaceae, Bifidobacterium, Lactobacilli, Bacteroidaceae
and Rikenellaceae; and reducing the number of proinflammatory bacterial families, such
as Enterobacteriaceae and Enterococcus [178,179]. In this sense, there is evidence on how
curcumin derivatives (an aggregate with silver), which gives it greater photostability, in-
hibited the growth of Escherichia coli in vitro [180]. When analyzing the impact of curcumin
by means of these microbial changes, we can observe that it increases Prevotellaceae and
Bifidobacterium, decreased in the most prevalent neurodegenerative diseases such as Parkin-
son’s disease, and yet it decreases enterobacteria [181] that are higher in ALS (in particular
Escherichia and Enterobacter) [58]. These changes could mean there is a higher secretion of
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GABA [63] and tryptophan [140] that, as already indicated, have neuroprotective effects
in ALS patients [77]. Furthermore, after ingesting curcumin, an increase in the Bacteroides
genus is also observed [182], which is lower in ALS patients [58,59]. After the analysis,
administration benefits are the most evident and we believe that it should be considered as
one of the best alternatives to treat the disease. This is why we consider that new studies
should be conducted with ALS patients to objectively assess the scope of these clinical
improvements.

All these main results of the interaction between non-flavonoids and microbiota
changes are resumed in the next table (Table 2).

Table 2. Non-flavonoids effects on intestinal microbiota.

Non-Flavonoid Microbiota Change Study Population Author, Year

Galic acid ↑Proteobacteria
↑Prevotellaceae Male BALB/c mice Pandurangan et al. (2015) [125]

Caffeic acid
↑Akkermansia muciniphila Female C57BL/6 mice Zhang et al (2016) [132]

↓Ruminococcaceae Male Wistar rats Zhang et al (2017) [133]

Resveratrol

↑Bacteroides spp.
↑Lachnospiraceae NK4A136

↑Blautia spp.
↑Lachnoclostridium spp.
↑Parabacteroides spp.
↑Ruminiclostridium 9

C57BL/6J mice Wang et al. (2020) [134]

↑Butyrivibrio fibrisolvens Thin-tailed Han cross-bred ewes Ma et al. (2015) [135]
↑Akkermansia muciniphila Obese men with metabolic syndrome Walker et al. (2018) [137]

Pterostilbene
↑Verrucomicrobia

↑Akkermansia muciniphila
↑Odoribacter spp.

Zucker (fa/fa) rats Etxeberria et al. (2017) [144]

Curcumin

↑Bifidobacterium spp.
↑Lactobacillus spp. C57BL/10ScSn (wildtype) mice Bereswill et al. (2010) [150]

↓Enterobacteria C57BL/10ScSn (wildtype) mice Bereswill et al. (2010) [150]
↑Bacteroidaceae
(Bacteroides spp.)
↑Rikenellaceae

C57BL/6 mice Shen et al. (2017) [151]

↓Escherichia coli In vitro study with E. coli Abdellah et al. (2018) [152]

Effects of the main non-flavonoids on the intestinal microbiota.

5. Conclusions

There is currently a general consensus on the benefits and therapeutic potential of
polyphenols when treating neurodegenerative diseases. Many of the improvements occur
through the activity of these antioxidants on gut microbiota, by decreasing the bacteria
that are pathogenic and increasing those that are beneficial. Consequently, they generate
metabolites and neurotransmitters that protect neuronal activity. In the specific case of ALS,
Figure 2 shows all these changes, analyzed throughout our work. Based on these alterations,
all the studies reviewed in this article related to ALS conclude that polyphenols are a
therapeutic alternative to improve prognosis. However, quercetin naringin, hesperidin,
genistein, cyanidin and gallic acid have not been directly related to improvements in the
disease, although they do achieve effects in the microbiota, which are promising.

In terms of antioxidants that have been used successfully in ALS, it is worth highlight-
ing EGCG that achieves protective motor neuron effects associated with regulating the level
of glutamate, thus avoiding misfolding of the SOD1 protein. In addition, it is interesting to
review the benefits obtained when combined with resveratrol or probiotic bacteria, as they
have also been associated with increases of Akkermansia muciniphila. Resveratrol precisely
manages to improve the disease at the cellular, animal and human level, which is com-
pleted with a very beneficial impact on gut microbiota, enriching it with anti-inflammatory
bacteria, among which Akkermansia muciniphila stands out. In relation to curcumin there
have been very good results in ALS patients in reducing high oxidative stress, acting in
various molecular mechanisms involved in excess oxidation. In addition, it improves gut
microbiota and, in particular, bacteria that have been altered in ALS, such as Escherichia,
Enterobacter, Clostridium and Bacteroides.
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Based on these conclusions, Figure 2 summarizes the benefits of the main polyphenols
in the pathogenesis of the disease. Specifically, we highlighted the benefits of resveratrol,
EGCG and curcumin, which are shown to be particularly relevant in the studies analyzed.

Despite these findings, studies related to the benefits of polyphenols in gut microbiota
of ALS patients are still at a very early stage. It is necessary to delve into the results
analyzed in our review in order to establish all molecular mechanisms that antioxidants
may use, which could clarify our knowledge on the pathogenesis of the disease and
augment current treatments.
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