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a b s t r a c t 

How spontaneously fluctuating functional magnetic resonance imaging (fMRI) signals in different brain regions relate to behaviour has been an open question for 
decades. Correlations in these signals, known as functional connectivity, can be averaged over several minutes of data to provide a stable representation of the 
functional network architecture for an individual. However, associations between these stable features and behavioural traits have been shown to be dominated 
by individual differences in anatomy. Here, using kernel learning tools, we propose methods to assess and compare the relation between time-varying functional 
connectivity, time-averaged functional connectivity, structural brain data, and non-imaging subject behavioural traits. We applied these methods to Human Con- 
nectome Project resting-state fMRI data to show that time-varying fMRI functional connectivity, detected at time-scales of a few seconds, has associations with 
some behavioural traits that are not dominated by anatomy. Despite time-averaged functional connectivity accounting for the largest proportion of variability in the 
fMRI signal between individuals, we found that some aspects of intelligence could only be explained by time-varying functional connectivity. The finding that time- 
varying fMRI functional connectivity has a unique relationship to population behavioural variability suggests that it might reflect transient neuronal communication 
fluctuating around a stable neural architecture. 
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Significance statement 

Complex cognition is dynamic and emerges from the interaction 
between multiple areas across the whole brain, i.e. from brain net- 
works. Hence, the utility of functional MRI to investigate brain 
activity depends on how well it can capture time-varying network 
interactions. Here, we develop methods to predict behavioural 
traits of individuals from either time-varying functional connec- 
tivity, time-averaged functional connectivity, or structural brain 
data. We use these to show that the time-varying nature of func- 
tional brain networks in fMRI can be reliably measured and can 
explain aspects of behaviour not captured by structural data or 
time-averaged functional connectivity. These results provide im- 
portant insights to the question of how the brain represents in- 
formation and how these representations can be measured with 
fMRI. 

. Introduction 

The emergence of large-scale distributed networks in spontaneous
rain activity as measured by functional magnetic resonance imaging
fMRI) is a widely-studied phenomenon ( Biswal et al., 1995 ; Fox and
aichle, 2007 ). These networks have been consistently identified us-

ng cross-regional temporal correlations – referred to as functional con-
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ectivity (FC) ( Damoiseaux et al., 2006 ; Smith et al., 2013 ; Hipp and
iegel, 2015 ). Typically, FC is estimated by averaging over several min-
tes of data (e.g. across a scanning session, for each pair of regions) to
rovide a stable representation of the functional network architecture
or an individual ( Finn et al., 2015 ). This time-averaged FC has previ-
usly been associated with mental performance ( Hampson et al., 2006 ;
asson et al., 2009 ) and, more generally, to widespread behavioural
henotypes ( Smith et al., 2015 ). However, there is evidence that some
f these associations are to a large extent driven by structural differences
etween subjects ( Bijsterbosch et al., 2018 ; Llera et al., 2019 ). We hy-
othesised that, while time-averaged FC might to some extent be domi-
ated by structural information, the temporal deviations of FC might be
ess so, and could thereby have a distinct relationship with behaviour.
his would provide evidence that time-varying FC from fMRI can reflect
omentary neuronal communication fluctuating around a stable func-

ional architecture, and might be related to dynamic elements of cog-
ition such as attention and thinking ( Smallwood and Schooler, 2015 ;
ucyi, 2017 ). 

While there is clear evidence that electrophysiologically-derived FC
elates to momentary mental states ( Palva and Palva, 2012 ; Hipp et al.,
011 ; O’Neill et al., 2017 ; Quinn et al., 2018 ), whether dynamic changes
n fMRI-derived FC reflect distinct and transient patterns of communica-
ion between neuronal populations is still controversial ( Gratton et al.,
018 ). In the absence of stimuli, measures of ongoing behavioural out-
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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uts or any ground truth, discerning whether time-varying FC carries
iological meaning in the resting state is indeed not straightforward
 Lurie et al., 2020 ; Kucyi et al., 2018 ). One possibility is to use indirect
ehavioural correlates, for example, by assessing the extent to which
C prior to task onset influences task performance ( Sadaghiani et al.,
015 ), quantifying how the execution of a task induces differences in
ubsequent resting-state FC ( Waites et al., 2005 ), or using a low de-
anding task with well-defined behavioural information as a surrogate

f actual resting-state ( Kucyi et al., 2017 ). However, these are normally
ubtle effects, and other researchers have reported little or no differ-
nces in FC between task and rest ( Hampson et al., 2006 ; Gratton et al.,
018 ). 

Here, we take a different route, by relating time-varying FC to pop-
lation variability in behavioural traits. For this purpose, we imple-
ented a framework to predict subject behavioural traits from either

ime-varying FC, time-averaged FC, or structural data. Critically, this
as done in such a way that the prediction could be abstracted from the
ery distinct nature of the features used to represent each of the three
odalities, allowing us to compare their relative and unique contribu-

ion to the prediction in an unbiased manner. Using different groups
f behavioural traits, we used this approach to explore the relationship
etween population behaviour, time-averaged FC and time-varying FC,
fter accounting for the explanatory power of the structural connectivity
eatures. We reasoned that if fMRI time-varying FC represents biologi-
ally meaningful communication between neuronal populations, then it
hould be capable of accounting for aspects of the subjects’ behavioural
henotypes not explained by the time-averaged FC or the structural in-
ormation. We found that this was the case, particularly for the traits
hat are generally related to intelligence. 

To measure time-varying fMRI FC, we used a state-based model
here each state is associated with a specific pattern of FC
 Vidaurre et al., 2017 ), such that instantaneous changes in FC mani-
est as a change of state. This approach is based on a version of the
idden Markov model (HMM) that, in comparison to previous versions
f the HMM used on fMRI ( Vidaurre et al., 2017 ; Stevner et al., 2019 ;
aldassano et al., 2017 ; Shappell et al., 2019 ; Zhang et al., 2019 ),
mphasises changes in FC over changes in amplitude. To model each
ubject, the HMM uses a temporally-organised mixture of (quasi-) sta-
le FC patterns in the form of region-by-region covariance matrices.
his is an appropriate choice to compare time-varying FC with time-
veraged FC, since time-averaged FC is also based on region-by-region
ovariance matrices. To model structural variability, we used fractional
nisotropy (FA; Basser and Pierpaoli, 1996 ), mean diffusivity (MD;
asser et al., 1994 ) and voxel-based morphometry (VBM; Ashburner and
riston, 2000 ). 

. Results 

In this section, we first summarise the basic steps of the analysis,
hich are presented in more detail in Methods, and then go on to show

hat there are aspects of behaviour that are uniquely expressed in both
ime-averaged and time-varying FC. We also show how each of these
epresentations explicitly relate to each other, and to the structural data,
n terms of their relation to behaviour. Overall, these analyses suggest
hat time-averaged and time-varying FC can indeed reflect separate as-
ects of brain activity. 

.1. Functional representations of the data 

We used 1003 subjects’ resting-state fMRI data with TR = 750ms from
he Human Connectome Project (HCP; Smith et al, 2013b ), where each
ubject underwent four 15-min sessions (two per day). We used a data-
riven parcellation obtained through spatial independent component
nalysis (ICA), and extracted 50 components ( Beckmann et al., 2009 ).
he time series of these ICA components were then standardised sepa-
ately for each session. 
2 
We considered two different FC-related representations of the data.
he first representation is a time-averaged FC model, where we repre-
ented each subject as one (50 by 50) Pearson’s correlation matrix across
ll ICA component time series ( Smith et al, 2013 ). Because the time se-
ies have unit-variance, these correlation matrices are equivalent to the
orresponding covariance matrices. 

The second representation corresponds to a time-varying FC model,
here the ICA time series were fed to a hidden Markov model (HMM),
hich we first ran at the group level – i.e. on the concatenated time

eries for all subjects. The HMM represents the data as (i) a collection of
tates, each represented by a certain probability distribution; (ii) time
eries of state activation probabilities, one per state and time point, re-
erred to as state time courses; and (iii) a transition probability matrix
ontaining the probability of switching from one state to another within
 session ( Vidaurre et al, 2017 ; Vidaurre et al, 2018 ); see Methods and
ig SI-1 for an illustration. As opposed e.g. to Vidaurre et al. 2017 or
aker et al. 2014 , which represented states using ordinary Gaussian dis-
ributions, here we implemented an HMM designed to emphasise peri-
ds in time with distinct FC (also see Fig SI-2 for a graphical, exem-
lary comparison). Specifically, each HMM state is represented by a
ovariance matrix across ICA components, so changes of state activa-
ions within session –expressed by the state time courses– correspond
o modulations of covariance above and beyond the average covariance
r FC. In this model, the state-specific covariances and transition prob-
bility matrix are estimated at the group level, whereas the state time
ourses are subject-specific ( Vidaurre et al, 2017 ). Akin to the procedure
nown as dual regression in ICA ( Nickerson et al., 2017 ), we then per-
ormed a process of dual-estimation to obtain subject-specific versions of
he group-level HMM in order to get a fuller subject-specific description
f time-varying FC, where each subject has their own set of state-specific
ovariances (i.e., FC matrices), transition probability matrix, and state
ime courses. 

We trained the models with eight states, without optimising for
his number; previous work, however, suggested that the relations to
ehaviour are relatively robust across a reasonable range of states
 Vidaurre et al., 2017 ). As often occurs with other models where the es-
imation depends on an optimisation process, the inference of the HMM
an potentially produce different solutions depending on the initialisa-
ion ( Vidaurre et al, 2019 ). Thus, in order to ensure that our conclusions
ere robust, we conducted five repetitions of the inference. 

.2. Prediction of behavioural variability 

From the two functional representations just described, and the three
onsidered anatomical descriptors (FA, MD, and VBM), we went on to
ssess how each of these can predict the considered behavioural traits.
ithin a 10-fold cross-validation scheme that respected the family struc-

ure of the HCP data ( Winkler et al., 2015 ) by never splitting families
etween folds, we predicted a number of behavioural traits within six
ifferent groups of variables: demographic, cognitive, affective, person-
lity and sleep-related (Table SI-1). The word “behavioural ” is used here
n a general sense, even though we included demographic and life-factor
raits that are not purely behavioural. 

For predicting behaviour, we used an approach based on distance
atrices (DM) and cross-validated, motion-corrected kernel ridge re-

ression (KRR; Saunders et al, 1998 ; Schölkopf and Smola, 2001 ;
e et al., 2020 ). Specifically, we computed ( N by N ) distance matri-
es (DM), where N is the number of subjects and where the distances
re calculated to capture how different a specific representation is be-
ween each pair of subjects. Overall, there is one representation for the
ime-averaged FC (i.e. the FC time-averaged network matrix), five rep-
esentations for the HMM-based FC (i.e. one per repetition of the HMM
nference), and one representation for each of the structural information
easures (FA, MD, VBM); this yielded one time-averaged-FC-DM, five
MM-DMs (one per repetition of the inference), and three structural-
Ms (FA-DM, MD-DM and VBM-DM). Therefore, whereas the approach



D. Vidaurre, A. Llera, S.M. Smith et al. NeuroImage 229 (2021) 117713 

Fig. 1. Prediction scheme using representations in terms of distance matrices (DM). On top, cross-validated prediction from the structural information; at the bottom, 
structure-deconfounded prediction from the dual-estimated HMM, which contains information of time-varying FC. The CV-deconfounded residuals represent the traits 
after discounting the influence of the structural information. An analogous procedure is used for the time-averaged FC 
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o compute the distances is specific to each modality, all modalities end
p being reduced to the same format (a DM); see Methods for details
bout how the pairwise distances for each modality were computed. The
otivation of the KRR approach is two-fold. First, because the prediction

s based exclusively on distances, we can decide on a sensible distance
easure to use between different representations, instead of manually
eciding what features to use to represent a representation. This offers
 clean solution to the problem of how to make predictions using a com-
lex object like an HMM, which it is not obvious how to convert into a
ector of representative features; instead, using an appropriate measure
o quantify how different two HMMs are is relatively straightforward.
econd, having all types of representation (time-averaged FC, HMM or
tructural) in the same format (a DM) makes it easier to compare the ex-
lanatory power of each modality in predicting the subject traits, which
therwise could be heavily dependent on their specific parameterisa-
ion. See Methods for a mathematical description of KRR. 

With the goal of exploring the influence of the structural informa-
ion on the functional representations, we ran the predictions on the
ncorrected behavioural traits, as well as on the behavioural traits after
egressing out (deconfounding) the structural (FA, DM or VBM) infor-
ation; see Methods for details. A scheme of the prediction procedure

s illustrated in Fig. 1 for the dual-estimated HMMs: on top, the pre-
iction from the structural information; at the bottom, the subsequent
tructure-deconfounded estimation from the dual-estimated HMM. The
stimation for the time-averaged FC is analogous. 
3 
.3. Time-varying FC explains distinct aspects of behaviour 

Taking into account the structural information, we next show that
ime-varying FC contains information from some behavioural traits that
s not contained in the time-averaged FC, and vice versa that the time-
veraged FC is a better predictor than the time-varying FC representa-
ion for other behavioural traits. 

Fig. 2 shows a comparison of the prediction performances between
he HMM representation and the time-averaged FC representation for
he six behavioural groups listed in Table SI-1. This is presented for
oth the structure-deconfounded (i.e. for FA, MD and VBM; see above
or details about deconfounding) and the non-deconfounded case. The
op panels present the cross-validated explained variance ( r 2 , computed
rom Pearson’s correlation) for the HMM and time-averaged FC repre-
entation; statistical significance through Bonferroni-corrected Student’s
-tests is indicated by colour. Note that although the predictions are
ot very high ( Kong et al., 2019 ; Pervaiz et al, 2020 ), several are still
ignificant. The middle panels reflect the difference between the two
which is positive when the HMM representation is a better predic-

or and negative otherwise; and the bottom panels contain an average
f these differences per behavioural group. Statistical significance of
hether one representation has a higher r 2 than the other across traits

s indicated within the bottom panels ( ∗ < 0.05; ∗ ∗ < 0.01; permutation
esting) for each behavioural group. Note that, as mentioned above, in
he case of the HMM there are five different predictions per trait, one
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Fig. 2. Explained variance r 2 (in terms of squared Pearson’s correlation) for the prediction of behavioural traits using the time-averaged-FC-DM and the HMM-DMs. 
In the top panels, r 2 values (upwards for the HMM and downwards for the time-averaged representation; lighter colours represent statistically significant predictions 
and darker non-significant; Bonferroni-corrected Student’s t-tests); in the middle panels, difference between the HMM and the time-average FC representations; in the 
bottom panels, the average differences aggregated by behavioural group ( ∗ and ∗ ∗ reflect statistical significance for significance levels of 0.05 and 0.01; permutation 
testing). 
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er run of the HMM inference; therefore, also, there are five predic-
ion differences between the HMM and the time-averaged representa-
ion per trait, and five dots per trait in the middle panels. As observed,
here is considerable variability in which type of representation (HMM-
r time-averaged-FC-based) represents the traits better. Also, structure-
econfounding affects the prediction accuracy considerably, confirm-
ng previous studies on the influence of the structural information on
C-based predictions ( Bijsterbosch et al., 2018 ; Llera et al., 2019 ). In
his regard, Fig SI-3 shows the loss of accuracy in percentage after cor-
ecting for the structure for each modality, grouped by behavioural
roup. As observed, the time-averaged representation is more affected
y the corrections than the HMM-based representation. For reference,
ig SI-4 shows the (uncorrected) explained variance by each structural
epresentation. 

From this analysis, two conclusions are apparent. First and most im-
ortantly, that the behavioural groups are well separated by which rep-
esentation is more effective in predicting them, with intelligence being
articularly well predicted by the HMM representations. Second, that
orrecting by the structural information improves the relative perfor-
ance of the HMM-DM compared to the time-averaged-FC-DM (see also

ig SI-3). 
4 
.4. Changes in variance and amplitude of the signal do not explain 

ehaviour 

In order to investigate the possibility that the predictions are pri-
arily driven by within-session changes in the variance or amplitude of

he signal instead of FC, we ran two additional varieties of the HMM.
hese will be compared with the FC-based version of the HMM used
hroughout the paper –here referred to as FC-HMM–, where each state
s parametrised as a Gaussian distribution with zero mean and a full
ovariance matrix. In the first of the new varieties, referred to as mean-
MM, the states where characterised by Gaussian distributions with dis-

inct patterns of signal amplitude (encoded in the mean parameter), and
 common full covariance matrix shared across states. In the second, the
ar-HMM, the states were characterised by Gaussian distributions with
 diagonal covariance matrix and zero mean, modelling just variance
nd not actual covariance between regions. In these models, the FC was
ot allowed to vary between states. Furthermore, while the mean-HMM
akes into consideration the time-averaged FC through the shared co-
ariance matrix, the var-HMM does not model FC at all. Fig. 3 presents
he explained variance of the FC-HMM versus the explained variance
f each of the other two HMM varieties. As observed, the explained
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Fig. 3. Behavioural explained variance r 2 (defined as squared Pearson’s correlation) by the FC-based HMM model (which is the type of HMM used throughout the 
paper, Y-axis) vs (i) the mean-HMM, a type of HMM with one shared covariance matrix and one “mean ” parameter per state that models changes in amplitude (top 
row; X-axis), and (ii) the Var-HMM, a type of HMM with state-specific variance parameters, i.e. with no cross-region covariances (bottom row; X-axis). 
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ariance for FC-HMM is consistently superior, highlighting the impor-
ance of accounting for time-varying FC above and beyond changes in
mplitude and variance. Note that, although these models differ on the
umber of parameters and their complexity (which in principle could in-
uence the quality of the predictions) here we are abstracting ourselves

rom these differences by performing the predictions on the base of DMs
nly. This means that the KRR models have always the same number of
arameters regardless of the modality (see Methods) 

.5. Time-varying FC is more dissimilar to the structural information than 

ime-averaged FC 

Through their differences in prediction accuracy of traits, we have
nvestigated the amount of information contained in either the time-
veraged or the time-varying FC representations with respect to be-
aviour. A complementary question is to what extent, specifically, do
hese brain representations contain similar or different information
bout behaviour. That is, if two representations are very similar with
espect to a given behavioural group, that means that they represent
imilar information about that specific aspect of behaviour; if they are
ery dissimilar, it means that their information about the behavioural
roup is mostly non-overlapping. 

For each group of behavioural traits (see Table SI-1), we correlated
he trait predictions between each pair of brain representations: time-
veraged FC, each of the three structural measures, and each of the five
MM runs for the three HMM configurations described in the previous

ection (i.e. FC-HMM, which is the main model used throughout this
5 
tudy; mean-HMM, which only models the amplitude; and var-HMM,
hich models changes in variance). In the spirit of the Representation

imilarity Analysis literature ( Kriegeskorte et al., 2008 ), this procedure
roduced a (no. of brain representations by no. of brain representations)
imilarity matrix per behavioural group, capturing how correlated the
rediction of the behavioural traits was between each pair of represen-
ations. 

Fig. 4 A presents the corresponding similarity matrices, for each be-
avioural group. The five matrices have some common patterns but
ome differences are also apparent. The most relevant pattern here is
hat, in all cases, the structural representations were much more related
in terms of explaining behaviour) to the time-averaged FC than to the
C-HMM representations, confirming that time-varying FC is more un-
elated to the structure than time-averaged FC. This is further explored
n Fig. 4 B, where we show the probability density of the correspond-
ng correlations in terms of explaining behaviour between the struc-
ural representations on the one hand and either the FC-HMM (blue)
r the time-averaged FC (red) representations on the other hand. The
robability densities of the correlations were estimated by bootstrap-
ing ( Efron and Tibshirani, 1986 ). As observed, the differences are large
nd significant (p < 0.001, bootstrap-based testing). We can also observe
hat the five FC-HMM representations are more consistent in explain-
ng the demographic traits (i.e. the correlation between HMM runs is
igher) than they are in the other behavioural groups, and they are also
ore related to the time-averaged FC representation for this behavioural

roup than for the others. The latter point can be seen in Fig. 4 C, which
hows the probability density of correlations (estimated by bootstrap-
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Fig. 4. A. How similar are the different representations in explaining behaviour? Similarity matrices (in terms of Pearson’s correlation) capturing how similar 
the prediction of behavioural traits was between each pair of representations are shown for each of the five behavioural groups: time-averaged FC, HMM-based 
representations including time-varying FC (FC-HMM; used throughout the paper), HMM representations including only changes in amplitude (mean-HMM) or 
variance (var-HMM), and structural (FA, MD and VBM). B. Distribution densities (obtained via bootstrapping) of between-modality correlations (in terms of explaining 
behaviour) show that the time-averaged FC representation is more related to the structural representations than the time-varying FC (p < 0.001, bootstrap hypothesis 
testing). C. The correlations between the time-varying and the time-averaged FC representations are higher for the demographic traits than for the other behavioural 
groups (p < 0.001, bootstrap hypothesis testing). 
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ing) between the FC-HMM and the time-averaged FC in terms of how
hey explain each behavioural group. The larger similarity for the de-
ographic group is apparent. The other two types of HMM estimations,
aving fewer parameters and without capturing any information about
ime-varying FC, are in general more similar across runs and quite differ-
nt from the FC-HMM, indicating that the FC-HMM approach is unlikely
o be purely driven by changes in amplitude. In terms of the structural in-
ormation, MD and FA are fairly similar to each other for all behavioural
roups, but their similarity to VBM varies according to the behavioural
roup (highest for intelligence and sleep; lowest for demography). 

Altogether, this analysis revealed clear differences and similarities
etween the different neuroimaging representations in terms of explain-
ng behaviour, and provides further evidence that time-varying FC is
ore unrelated to the anatomy than the time-averaged FC. 

.6. Reproducibility of DMs 

The reproducibility of the estimation of both the representations and
he behavioural predictions can be relevant in terms, for example, of a
6 
linical application. In the previous section, we have considered how dif-
erent estimations of the various representations differ in their relation
o behaviour. Here, we analyse another aspect the representations’ re-
roducibility: how robust are these representations, per se, across scan-
ing sessions. 

The HCP data contains four sessions per subject, with the first two (1
nd 2) being acquired on one day and the last two (3 and 4) on the fol-
owing day. In order to further quantify the reproducibility of the estima-
ions, we estimated separate time-averaged FC and (FC-)HMM models
or the first day and for the second day, i.e. for sessions 1 and 2, and then
or sessions 3 and 4. We also estimated models for the first session of the
ay, and then separately for the second session of the day. For each of
hese two half-split estimations, (HMM- or time-averaged FC-related),
e then computed DMs. Fig. 5 presents a quantitative assessment of the

eproducibility of the estimations in terms of how similar their respec-
ive DMs were across half-splits of the data. Here, the dots represent a
easure of distance between one pair of subjects. 

As expected, the reproducibility within day is considerably larger
han between days for both types of representation. Importantly, the
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Fig. 5. Reproducibility of the estimations between the first and the second day of scanning (top), and between the first session and the second session of each day 
(bottom), for the HMM (left) and the time-averaged FC representation (right). Each dot corresponds to an element of the DM, i.e. a distance measure between a pair 
of subjects, and the colour reflect the density of dots. For each panel, the correlation between the DMs (i.e. across dots) is reported as a Pearson’s correlation r . 
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ime-averaged FC description (being a simpler quantity to estimate)
xhibits in general a higher between-session reproducibility than the
MM representation ( Vidaurre et al. 2019 ). This can be due to the time-
veraged FC not just being a simpler quantity to estimate, but also to
he HMM being potentially better able to capture session-specific infor-
ation thanks to its time-resolved nature. 

. Discussion 

In resting state fMRI, the quantification of time-varying functional
onnectivity (FC) has elicited considerable interest and controversy: that
s, to what extent can we measure and interpret within-session changes
n the patterns of FC between areas? Whereas many studies rely on the
verage magnitude of activation that is evoked by a task or stimulus,
C is a second-order statistic and therefore is harder to estimate accu-
ately. Similarly, it is unclear whether FC can reflect changing patterns
f communication between distant neuronal populations, and therefore
e meaningful for investigating cognition. Even though the total amount
f between-subject variability attributed to stable subject FC features
i.e. that do not change within session and are preserved for each sub-
ect across sessions) is considerably higher than the within-session vari-
bility (i.e. that change within a session; Gratton et al., 2018 ), here
e show that fMRI-derived FC indeed contains both stable and time-
arying behaviourally meaningful information, and that time-varying
C can explain behavioural variability that is less likely to be mediated
y structural connectivity and other anatomical features. This suggests
7 
hat time-varying FC may represent meaningful neuronal dynamics re-
ated to certain aspects of behaviour. As a consequence, the study of FC
uctuations remains promising for the understanding of transient cog-
ition. 

To answer this question, it is informative to disentangle the different
echanisms by which time-varying FC computed from fMRI data could

e non-informative: first, the characterisation of time-varying FC may
e limited by fundamentally technical issues; second, the actual amount
f information contained in the time variations, when assessed unbias-
dly, may be negligible; and third, even if we can prove that there is
on-negligible information in time-varying FC that can be reliably quan-
ified, it may still not be cognitively significant. We argue that certain
echnical limitations do not apply to all methods of estimating time-
arying FC equally. In the case of the HMM, for example, the technical
imitation of having a statistically unstable estimation due to limited
mounts of data (e.g. when using sliding windows) is overcome by us-
ng large amounts of data in the estimation of each state through the
bility to pool over all the data from repeated visits to the state (on
verage, 125h per state in the present data set). 

It has been shown that the time-averaged (subject-specific) FC fea-
ures represent most of the variance in fMRI data ( Gratton et al., 2018 ).
owever, the fact that time-varying FC explains considerably less vari-
nce does not necessarily mean that time-varying FC is deficient in ex-
laining behavioural traits. We consider that discussing the physiologi-
al relevance of a brain representation in terms of explained variance (of
he data) is not appropriate for two reasons: (i) that “physiological rele-
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ance ” must be connected to a specific scientific question – e.g. relevant
o the study of attention; and (ii) that, provided such a question, there
s not prior evidence that the most informative aspect of the signal (for
hat question) is the one that explains the most variance in the data. For
xample, in the context of prediction it is a well-known phenomenon
hat the first principal components of the predictor data are not nec-
ssarily the most explanatory to predict the target variable ( Frank and
riedmann, 1993 ). As an example closer to neuroscience, electrophys-
ological signals hold most of their variance at lower frequencies. In
omparison, only a small fraction of variance is contained e.g. in the
amma frequencies ( > 40 Hz). These, however, have been demonstrated
o be essential to behaviour ( Jensen et al., 2007 ). In summary, the argu-
ent that there is considerably more variability in the between-subject

han in the within-subject differences cannot be used to claim the lack
f biological relevance of these features. 

.1. Relation to previous work 

Some of the conclusions of this study relate to the recent work from
iégeois et al. (2019) , who found, in fMRI, that the autoregressive model
which linearly represents how on average the signal at time point t de-
ends across regions on the signal at time point t -1) was often more
xplanatory of behavioural variability than the standard time-averaged
C estimation. Because the autoregressive model is known to describe
he dynamics of the signal well ( Liégeois et al., 2017 ), the conclusion
f this study was that the dynamic aspects of the data can often explain
ehaviour better than (average) instantaneous fMRI correlations. Crit-
cally, there is a conceptual distinction between a model of the mul-
ivariate dynamics of the system (as captured by the autoregressive
odel) and time-varying FC (as captured by the HMM) that is impor-

ant to the message of this study. Specifically, while both the HMM and
he autoregressive model can capture time-varying FC, the autoregres-
ive model also captures other elements such as spectral information
 Vidaurre et al., 2016 ), while the HMM captures aspects of the data that
he autoregressive model does not explicitly account for, such as the
dentification of time-resolved transient events. Therefore, the autore-
ressive model is not able to answer our question, which is focussed
pecifically on FC: i.e., do variations over time in the fMRI FC have bio-
ogical significance above and beyond the temporally averaged FC, and
lso the structural information? This question is important as it speaks to
he extent to which FC can represent instantaneous neural communica-
ion. These questions require a model that explicitly considers variations
round the time-averaged FC in a way that is not mixed with these other
lements. The version of the HMM used here is one way to achieve this,
ut not the only one. Other data descriptions capturing related or dif-
erent aspects could also be considered, such as those based on signal
vents ( Allan et al., 2014 ) or quasi-periodic patterns ( Thompson et al.,
014 ). 

It is worth noticing that, in accordance with the growing
ody of work on predicting behavioural traits from functional
onnectivity on the HCP data, the predictions were modest; see
mith et al. (2016) , Kong et al. (2019) , Greene et al. (2018) and
ervaiz et al. (2020) among many others. However, these are still clearly
ignificant ( Smith et al, 2014 ; Vidaurre at al., 2017 ), allowing us to dis-
ntangle the time-varying from the time-averaged FC behavioural rele-
ance in terms of trait prediction. Future work will aim at replicating
hese results on the UK Biobank, where higher prediction accuracies
ave been observed ( Pervaiz et al., 2020 ). 

.2. Limitations and open questions 

It is also important to appreciate that neither the HMM nor other
ommonly used time-varying FC estimators are explicitly biophysical
odels. Decisions about the appropriate number of states and other pa-

ameters are useful insofar as they affect the extent to which we can
ddress the specific question at hand. For example, estimating more
8 
tates will offer a more fine-grained representation of the data, which
ight be necessary in certain applications but cannot be interpreted as
ore or less faithful to the biology. In general, different parametrisa-

ions just offer different perspectives of the data, and, assuming model
dentifiability, the HMM is not more or less valid than other models. We
lso acknowledge that, while the version of the HMM used in this work
s designed to emphasise time-varying FC, it could also be sensitive to
hanges in amplitude ( Duff et al., 2018 ). However, we have explicitly
ested that a version of the HMM only based on changes in amplitude is
nable to explain behaviour to the same extent, emphasising the impor-
ance of time-varying FC. Other aspects of the data that can influence
he HMM estimation are long-range temporal dependencies, which are
ot explicitly modelled by the HMM ( Shappell et al., 2019 ). A quantita-
ive assessment of the long-term dependencies in the data and how they
ffect the HMM estimation will be subject of future work. 

An important methodological consideration is that, even though all
he representations are unbiasedly compared at the level of prediction
ecause of their common DM representation, our analysis still depends
n the choice of how to compute the distances. For example, in this
tudy we used a Kullback-Leibler divergence approximation to compute
istances between HMM representations ( Do, 2003 ; see Methods). Al-
ernatively, one could compute differences purely based on the tempo-
al aspects of the model (e.g. the transition probability matrix) or its
patial properties. Related to this point, the merits of kernel-based ap-
roaches come at the expense of neuroanatomical interpretation: since
e no longer have one regression coefficient per spatial area, but one

egression coefficient per subject (see Methods), and given also that the
istances matrices (on which the prediction is based) are computed in
n unsupervised fashion, it is not straightforward to see which areas
ave actually driven the prediction. Future work will address these ques-
ions, including how to compute between-model distances as part of the
rediction and in an interpretable manner, so that the most predictive
eatures of the models are identified in a data-driven way. 

One aspect to consider about models for which inversion does not
ave a mathematically closed formulation (as is the case of ICA and the
MM among many others – but not of Pearson’s correlation or the au-

oregressive model) is the fact that, every time we estimate the model,
e might get a slightly different description of the data insofar as the

stimation has a random seed (see for example Fig. 4 ). Even though the
MM inference is relatively stable on this data set ( Vidaurre et al, 2017 ),

hat is not guaranteed to be the case always. Again, these are not bio-
hysical models, so all estimations are theoretically valid as far as they
re considered as what they are: data-driven descriptions. Although
here exist statistical testing approaches available to combine across es-
imations so that statistical power is boosted ( Vidaurre et al., 2019 ), in
his work we have analysed each estimation separately to ensure the
omparability of the results. 

A further caveat is that the ICA maps are known to contain im-
ortant subject-specific differences that can be relevant to behaviour
 Bijsterbosch et al. 2018 ). These differences were not considered in this
aper, as we estimated both time-varying and time-averaged FC using
nly the ICA time series. In future work, we will study the combination
f these analyses with techniques that are more suitable to account for
his information ( Harrison et al., 2015 ). 

Finally, it is worth noting that, to be conservative, we have per-
ormed the (group-level) HMM estimation within the cross-validation
oop. However, since the HMM estimation is completely unsupervised
nd does not make any use of the labels, it would have been also correct
o obtain the (dual-estimated) HMMs prior to, and outside of, the pre-
iction cross-validation loop. Whether or not this is acceptable to do de-
ends on the practicalities of the application. For example, if we wish to
redict whether a new subject is going to develop a disease in the future
iven their brain data, it would not be a problem to rerun, on the entire
ata set (i.e. including the new subject), an unsupervised dimensional-
ty reduction algorithm (like the HMM) before doing the prediction as
ar as such algorithm is unsupervised. Doing this would not make a di-
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gnosis any less valid – only perhaps slower. But sometimes we would
ot have access to the original data at the time of prediction, in which
ase a proper validation of the method would need to cross-validate the
MM estimation as we did here. 

In summary, this study presents methods to use different sources
f brain data and/or models for prediction, in a way that makes com-
arisons possible in terms of their explanatory power of behavioural or
linical variables. Using this method, we have shown that time-averaged
nd time-varying FC explain distinct aspects of behaviour, above and be-
ond the behavioural variability expressed on the considered structural
rain data. 

. Methods 

We provide some details on preprocessing, the nature of the hidden
arkov model estimation and its different varieties, the computation of

he distances between each pair of subjects for each of the considered
easures or subject variables, and the use of kernel regression to test the

elation between imaging and non-imaging variables, how we accounted
or the structural information and the influence of motion. 

.1. Preprocessing 

We used the “minimal preprocessed ” data from the HCP. Since
he preprocessing of this data has already been described in detail
 Smith et al., 2013b ), we will provide an overview here. Structured
rtefact removal using independent component analysis (ICA) and FIX
 Griffanti et al., 2014 ) removed more than 99% of the artefactual ICA
omponents in the data set. No low-pass temporal filter was used, and
nly minimal high-pass filtering was applied (cutoff= 2000s), essentially
emoving the linear trends of the data. Since ICA-based methods have
een shown to better characterise the signal than other data-driven ap-
roaches such as k-means (in particular on the HCP data; Bzdok et al.,
016 ), we used group spatial-ICA to obtain a “parcellation ” of 50 com-
onents that covers both the cortical surfaces and the subcortical areas
without using global signal regression). This parcellation was then used
o project the fMRI data into 50-dimensional time series. These time se-
ies were finally standardised separately for each scan, subject and ICA
omponent.. 

.2. An FC-focused hidden Markov model 

The hidden Markov model (HMM) is a probabilistic framework used
o model time series using a finite number of recurring patterns that suc-
eed each other in some order ( Rabiner, 1989 ). The key assumptions of
his approach are: that the data can be reasonably represented using a
iscrete number of probabilistic models; that occurrence of these mod-
ls is exclusive – i.e. the state time courses’ summation across states is
ne for each time point; and that we can reasonably model the states
ynamics by a Markovian process – i.e. that the probability of a state
eing active depends purely on the data and which state is active in the
revious time point. 

Each of these patterns or states are an instantiation of a certain prob-
bility distribution. The HMM is generic in the sense that it can accom-
odate different state probability distributions, depending of the type of
ata we are processing and the features that we wish to model. A suitable
tate choice for fMRI data is the Gaussian distribution ( Vidaurre et al.,
017 ), where each state, indexed by k , is modelled by a certain "mean
ctivity " parameter 𝜇k and a covariance matrix Σk . Let x t be the data at
ime point t – i.e. the value of the ICA time courses at t . The probability
ensity function that describes x t , assuming that state k is active at time
 , is given by 

 𝝅− 𝑱 ∕2 ||𝚺𝒌 
||1∕2 exp − ( 𝒙 𝒕 − 𝝁𝒌 ) 𝚺−1 

𝒌 
( 𝒙 𝒕 − 𝝁𝒌 ) ′

2 
, 

here J is the number of brain regions (here ICA components), | Σk |
s the determinant of the state-specific covariance matrix Σ and exp
k 

9 
s the exponential function. Here, Σk represents the covariance of the
esiduals, i.e. after subtracting the mean parameter 𝜇k to the signal. 

In this paper, each state is parametrised as Gaussian distribution with
o mean parameter. Note that the interpretation of Σk as FC is not anal-
gous to what is typically referred to when time-varying FC is assessed
sing sliding-window analysis ( Thompson and Fransson, 2018 ). This is
ecause, as opposed to sliding windows, in this type of HMM the mean

k is also allowed to be time-varying. Therefore, in order to focus the
MM decomposition on the FC changes, and in order to make the HMM
stimation more comparable to standard analyses of time-varying FC,
e enforced 𝜇k = 0, by describing the probability density function for

tate k as 

 𝝅− 𝑱 ∕2 ||𝚺𝒌 
||1∕2 exp − 𝒙 𝒕 𝚺−1 

𝒌 
𝒙 𝒕 

′

2 
, 

here Σk represents state-specific FC. In this model, Σk is assumed to
e distributed as a Wishart distribution. Note that this is equivalent to
aving each state being Wishart distributed. Importantly, this model
arries information of both time-averaged FC and time-varying FC. 

Another important element of the HMM, also estimated from the
ata, is the transition probability matrix (TPM), which encodes the prob-
bility of transitioning from one state to another at any time point. Prac-
ically speaking, the TPM serves two purposes: it identifies the transi-
ions that are more probable, and it regularises the state switching to
inimise the amount of spurious transitions. In particular, whenever
e have a more persistent (temporally regularised) solution, the diago-
al elements will be comparably larger than the off-diagonal elements
f the TPM. 

The estimation of the HMM, carried out through a procedure
f Bayesian variational inference ( Wainwright and Jordan, 2008 ;
idaurre et al., 2018 ), was first computed at the group level, such that

he state probability distributions were shared across subject – though
he state time courses and the time spent in each state were subject-
pecific. 

Next, we computed subject-specific HMMs using a process that
e refer to as dual-estimation (in analogy to dual-regression in ICA;
eckmann et al., 2009 ). To do this, we simply used the subject-specific
tate time courses to compute a subject-specific estimation the states;
hen, based on these state estimations, we recomputed the state time
ourses and the TPM for each subject. In order to make cross-validated
ehavioural predictions (see below), we followed the conservative pro-
edure of estimating the group-level HMM only on the cross-validation
raining sets, so that, afterwards, we could obtain the dual-estimated
MMs on both the training and testing sets. 

.3. The HMM contains time-averaged FC information 

The HMM contains information not just on time-varying FC (how FC
hanges within each session), but also regarding the time-averaged FC
the subject-specific FC information that remains stable across sessions
or each subject). This is because it is possible to fully reconstruct the
ime-averaged FC estimation from the dual-estimated HMM simply by
omputing a weighted average of the states’ covariance (FC) matrices for
ach subject, where the weights are given by the fractional occupancies
nd the fractional occupancies are defined as the total proportion of
ime spent at each state for every given subject ( Baker et al., 2014 ). 

Given N subjects and K states, the group level HMM estimation rep-
esents some of the subject-specific time-averaged (or static) FC (avFC)
nformation, according to the following expression: 

vF C 𝒊 ≃ avFC 

𝑯 𝑴 𝑴 𝒈 𝒓 𝒐 𝒖 𝒑 

𝒊 
= 

∑
𝒌 

𝒘 

𝒊 
𝒌 
𝚺𝒌 , 

here i indexes subjects and 𝒘 

𝒊 
𝒌 

represents the fractional occupancy
or subject i and state k (i.e. the total time spent on that state for that
ubject). Given that the number of states is lower than the number of
ubjects ( K < N ), this is an approximation, and therefore there is some
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ime-averaged FC information that is not captured by the HMM. Like-
ise, the HMM has information (for example in the TPM) that is not

aptured by a standard time-averaged FC estimation; formally, we refer
o this differential information as time-varying FC. 

As opposed to the group level estimation, the dual-estimated HMM
stimation captures all the time-averaged FC information 

vF C 𝒊 = avFC 

𝑯 𝑴 𝑴 𝒅 − 𝒆 
𝒊 

= 

∑
𝒌 

𝒘 

𝒊 
𝒌 
𝚺𝒅 − 𝒆 
𝒌 

, 

here d-e denotes dual-estimated. This is because: 

vFC 𝑯 𝑴 𝑴 𝒅 − 𝒆 
𝒊 

= 
∑
𝒌 

𝒘 

𝒊 
𝒌 

𝐬𝐮 𝐦 𝒕 𝒈 
𝒊 
𝒕 𝒌 

𝒙 𝒕 𝒙 
′
𝒕 

𝐬𝐮 𝐦 𝒕 𝒈 
𝒊 
𝒕 𝒌 

= 1 
𝑻 

∑
𝒌 

∑
𝒕 

𝒈 𝒊 
𝒕 𝒌 

𝒙 𝒕 𝒙 
′
𝒕 

= 1 
𝑻 

∑
𝒕 

𝒙 𝒕 𝒙 
′
𝒕 
𝐬𝐮 𝐦 𝒌 𝒈 

𝒊 
𝒕 𝒌 

= 1 
𝑻 

∑
𝒕 

𝒙 𝒕 𝒙 
′
𝒕 
= avF C 𝒊 , 

here 𝒈 𝒊 
𝒕 𝒌 

is the probability for subject i to be in state k at time point t ,

u m 𝒌 𝒈 
𝒊 
𝒕 𝒌 

= 1 by the definition of a probability, and 𝒘 

𝒊 
𝒌 
= 

1 
𝑻 

∑
𝒕 

𝒈 𝒊 
𝒕 𝒌 

. 

.4. The HMM contains time-varying FC information 

We have established that the HMM contains some time-averaged FC
nformation. But, to which extent does the HMM capture time-varying
C information, above and beyond the time-averaged FC? 

As a sanity check, in Fig. SI-5 we show that the time-averaged FC
ontains information that is essentially uncorrelated to the FC temporal
ariability. To compute a measure of the extent to which there is time-
arying FC for each pair of regions, we first constructed an instantaneous
stimate of FC at each time point, using a weighted sum of the dual-
stimated HMM states’ FC, weighted by the assigned HMM state prob-
bilities at that time point. We then took the variance of these instan-
aneous estimates of FC across time to produce a (regions-by-regions)
atrix of estimated FC temporal variability for each given subject. We

hen compared this to the time-averaged FC, confirming that these are
nrelated. 

.5. Other HMMs with no time-varying FC information 

Previously, we have shown that the dual-estimated HMMs contain
ll the information there is about time-averaged FC. Having K FC de-
criptions per subject instead of one, plus a TPM ruling the transitions
etween these states, it is apparent that the HMM contains additional
nformation beyond time-averaged FC. An important question is then
hat that additional information represents. There are three possible

ources of variability: actual within-session changes of FC (i.e. time-
arying FC), within-session changes in the variance of the signal, and
stimation noise. By meaningfully relating the HMM information to be-
aviour above and beyond the influence of time-averaged FC (see be-
ow, and Results) we can rule out the possibility that the HMM extra
arameters are purely noise-driven. However, given that both variances
nd correlations (i.e. FC) are part of the state descriptions, there is no
traightforward analytical way to disambiguate how much these two el-
ments drove the inference of the HMM. In order to prove the relevance
f pure time-varying FC in the HMM estimation, we obtained alternative
MM estimations where the states are purely derived by changes in the
ariance of the signal. The probability density function of this model is
iven by 

𝒋 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 √ 

2 𝝅 𝝈2 
𝒋 𝒌 

exp 
− 𝒙 2 

𝒕 𝒋 

2 𝝈2 
𝒋 𝒌 

⎞ ⎟ ⎟ ⎟ ⎠ 
, 

here 
∏
𝒋 

( ⋅) represents multiplication across regions, 𝝈2 
𝒋 𝒌 

is the variance

or region j and state k , and 𝒙 𝒕 𝒋 is the value of the signal for region j at
ime point t . 

The fact that HMM using full covariances matrices can explain as-
ects of behaviour that this model was unable to explain (see Fig. 4 )
10 
uggests that there is relevant information in the HMM that is not re-
ated to changes in variance. 

Even though the mean parameter of the Gaussian distribution (which
eflects the amount of activity of each state with respect to the average
ignal) was not included in the model in the first place, we estimated
 third HMM model where the states were solely defined by the mean,
.e. without state-specific covariances – and with a shared, global co-
ariance. The purpose of this analysis is to rule out the possibility that
his type of information, though not explicitly included in the HMM
escription used here, permeated the state covariance matrices and de-
ermined the HMM inference. The probability density function of this
odel is given by 

 |𝚺|1∕2 exp − ( 𝒙 𝒕 − 𝝁𝒌 ) 𝚺−1 ( 𝒙 𝒕 − 𝝁𝒌 ) ′

2 
, 

ith one single covariance matrix 𝚺 shared across states. Note that this
odel holds important similarities with ICA, in the sense that each state

r component is represented by a map of activation. Again, as reflected
n Fig. 4 , this model is less predictive of behaviour. 

.6. Measures of structural variability 

We applied independent component analysis (implemented by the
elodic tool in FSL; Jenkinson et al., 2012 ) on the fractional anisotropy

FA), mean diffusivity (MD), and voxel-based morphometry (VBM) val-
es for each subject across the whole brain (2mm resolution); resulting
n 50 independent components of FA, MD, and VBM variability across
ubjects. 

In more detail, the structural T1 weighted data was preprocessed us-
ng the computational analysis toolbox (CAT) − 12 ( Nenadic et al., 2015 ),
hich extends the SPM’s VBM pipeline ( Ashburner and Friston, 2000 ).
efore grey matter volume estimation, all participants’ T1 images were
ffinely aligned, segmented, normalized, and bias-field-corrected, yield-
ng images containing grey and white matter segments and CSF. DARTEL
 Ashburner, 2007 ) was then used to normalize all images to a standard
rey matter template provided by CAT-12. Subsequently, all grey mat-
er volumes were smoothed with a 9.4 mm FWHM Gaussian smoothing
ernel (sigma = 4 mm). The diffusion weighted data was preprocessed
sing the DTIFIT routine from FSL ( Jenkinson at al., 2012 ) in order to
xtract FA and MD. More details about structural preprocessing can be
ound in Llera et al. (2019) . 

.7. Measuring dissimilarities between subjects 

The kernel-based prediction algorithm employed in this paper is
ased on distance matrices (DM) containing the dissimilarities between
ach pair of subjects within the geometrical space defined by each type
f representation (see Fig. 1 ). As mentioned, the main purpose of this
pproach here is to abstract ourselves from the specifics of each repre-
entation (e.g. time-averaged or time-varying FC) and their complexity,
o that the prediction is made in a comparable fashion. Furthermore,
here is not a straightforward way to unwrap the parameters of an HMM
odel into a vector of predictive features, so that a standard regression
odel can be applied. Because it is possible to compute distances be-

ween HMM models more straightforwardly, a kernel-based approach is
 more natural way to make predictions in this case. 

We next detail how to compute DMs in the spaces defined by the
ifferent imaging-based modalities: time-varying FC, time-averaged FC,
nd structural. 

We first discuss the HMM model, which, as discussed above, contains
nformation about both the time-averaged FC and time-varying FC. In
articular, we computed the symmetric Kullback-Leibler divergence be-
ween each pair of (dual estimated) subject HMMs, denoted as M 

1 and
 

2 . 

is t 𝑯 𝑴 𝑴 

(
𝑴 

1 , 𝑴 

2 ) = 0 . 5 KL( 𝑴 

1 ||𝑴 

2 ) + 0 . 5 KL( 𝑴 

2 ||𝑴 

1 ) , 
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here KL( M 

1 || M 

2 ) represents the standard (non-symmetric) Kullback-
eibler divergence between probabilistic models M 

1 and M 

2 . More
pecifically, the Kullback-Leibler divergence represents how much in-
ormation a probability distribution contains in relation to a second
eference probability distribution. Whereas the Kullback-Leibler diver-
ence has a closed form for various well-known distributions (e.g. the
aussian distribution), this is not the case for more complex probability
istributions such as the one represented by the HMM. For this reason,
e adapted the mathematical approximation proposed by Do (2003) for
iscrete state distributions to the Gaussian case: 

𝐋 ( 𝑴 

1 ||𝑴 

2 ) = 𝐬𝐮 𝐦 𝒌 

(
𝝂𝒌 𝐊𝐋 

(
𝑷 1 

𝒌 
, 𝑷 2 

𝒌 

)
+ 𝝂𝒌 𝐊𝐋 

(
𝑮 

1 
𝒌 
, 𝑮 

2 
𝒌 

))
, 

here 𝑷 𝒊 
𝒌 

represents the (Dirichlet-distributed) probabilities of transi-
ioning from state k to any of the other states according to model i (i.e.
he k -th row of the TPM); 𝑮 

𝒊 
𝒌 

is the state Gaussian distribution for state
 and model i ; and 𝜈k is a factor representing the weight of state k in
 

1 (see below). Given the initial probabilities 𝜋1 of the HMM state time
ourses for model M 

1 (which are computed from the data together with
he TPM), 𝜈 can be numerically computed such that it meets the follow-
ng necessary criteria (see Do, 2003 ): 

𝑷 1 = 𝝂, 

lim 

 →∞
𝝅1 𝑷 1 

𝒏 = 𝝂, 

The expressions for 𝐊𝐋 ( 𝑷 1 
𝒌 
, 𝑷 2 

𝒌 
) and 𝐊𝐋 ( 𝑮 

1 
𝒌 
, 𝑮 

2 
𝒌 
) are standard and

an be found elsewhere ( MacKay, 2003 ). The code to compute the sym-
etric Kullback-Leibler divergence between two HMM models is pro-

ided in 1 . Note that these expressions require the states to be matched
etween HMM models; i.e. the first state of 𝑴 

1 must correspond to
he first state of 𝑴 

2 . This is guaranteed here by the fact that the dual-
stimated HMMs are derived from the same group-level HMM. 

The second type of DM corresponds to the time-averaged FC. To keep
he comparisons fair, and in line with the approach taken for the time-
arying FC, we described the time-averaged FC by fitting a Gaussian
istribution per subject. Given that the time series were standardised for
ach subject (i.e. they are demeaned and have variance equal to 1.0), the
esulting Gaussian distributions only contain a covariance matrix that is
athematically equivalent to using a Pearson’s correlation matrix. The

ime-averaged FC’s DM was computed using the symmetric Kullback-
eibler divergence between each pair of the subject-specific Gaussian
istributions, 

is t 𝑯 𝑴 𝑴 

(
𝑮 

1 , 𝑮 

2 ) = 0 . 5 KL( 𝑮 

1 ||||𝑮 

2 ) + 0 . 5 KL( 𝑮 

2 ||||𝑮 

1 ) . 

Note that, because this way we are taking into account the non-
uclidean geometry of the covariance matrices, this approach is mathe-
atically more principled and therefore statistically more efficient than
sing correlations across the off-diagonal elements of the FC matrices
as is more commonly done in the literature). 

Finally, the third type of DM is computed from the structural in-
ormation, using the three considered structural measures: FA, MD and
BM. As discussed earlier, we have 50 ICA components for each mea-
ure, so the data consist of 50 weights per subject in each case. Given
hat there is no specific geometrical constrain on these values, we just
sed Euclidean distances between each pair of subjects in order to esti-
ate the corresponding DMs. 

.8. Predicting subject traits using kernel ridge regression 

Our goal is to capture the relationship between the representations of
he brain imaging data (time-varying FC, time-averaged FC, and struc-
ural information) and subject traits. One way to achieve this is by re-
ressing a set of nonlinear mappings of the imaging-derived features
1 https://github.com/OHBA- analysis/HMM- MAR/blob/master/utils/math/ 
mm _ kl.m p

11 
nto the behavioural traits, e.g.: 

 𝒊 = 𝜙
(
𝑴 𝒊 

)
𝜷 + 𝒆 𝒊 

here 𝒚 𝒊 is the ( N by 1) behavioural trait of subject i , and 𝜙( 𝑴 𝒊 ) is a
onlinear function that operates on a representation 𝑴 𝒊 of the brain
maging data. To implement this regression model, we need to specify
he choice of the function 𝜙( 𝑴 𝒊 ) and also the imaging-derived features
t should operate on – a not straightforward task. 

An alternative and simpler approach to working with this regres-
ion model is to take advantage of the so-called kernel trick, whereby
redictions of an out-of-sample subject’s behavioural trait, �̂� 𝒊 , are made
o depend on a kernel function without the need of manually defining
( 𝑴 𝒊 ) ( Schölkopf and Smola, 2001 ). Specifically, we use kernel ridge
egression (KRR), which is formulated as 

̂ 𝒊 = 𝒚 𝜶, 

here 𝜶 is a ( N by 1) vector of KRR weights, and 𝒚 represent the
bserved ( N by 1) vector of values of the behavioural trait from
he training CV-fold. As shown in the mathematical derivations by
aunders et al. (1998) , we can make use of the kernel trick to estimate
as 

= ℎ ( 𝐻 + 𝜆 𝐼 ) −1 , 

here 𝜆 is a regularisation parameter. As with other kernel-based ap-
roaches, such as the support vector machine or Gaussian processes,
RR works on a ( N by N ; where N is the number of subjects) kernel
atrix H , which is computed by applying some kernel function on the

orresponding DM. Here, we chose a Gaussian radial basis function ker-
el, parametrised by a radius parameter 𝜏 ( Hastie et al., 2001 ): 

 1 , 2 = 𝑒 − (τ Dis t 1 , 2 ) 2 , 

here Dis t 1 , 2 is the distance between the representation for two differ-
nt subjects within the training CV-fold, and 𝐻 1 , 2 is the corresponding
lement of the kernel matrix. That is, once we have computed the corre-
ponding DM, the KRR approach does not need to consider where these
istances come from. The choice of the Gaussian kernel function is moti-
ated by the fact that it generalises well to most domains, given its lack
f strong assumptions ( Schölkopf and Smola, 2001 ). On these grounds,
 is a (1 by N ) vector containing the result of applying the Gaussian ker-
el to the N distances between each of the subjects in the training set
nd subject i in the test CV-fold. 

In summary, the KRR formulation (also benchmarked in a neu-
oimaging context against deep learning methods by He et al., 2020 )
s equivalent to having a nonlinear prediction using an explicit nonlin-
ar function 𝜙( 𝑀 𝑖 ) , but without having to directly design, use, or even
now, such function; instead, we only need to specify a distance measure
etween the representations (e.g. of the HMMs, the structural images,
r the time-averaged FC matrices) and a valid kernel function. The code
or KRR, which uses a nested cross-validation loop to select both 𝜆 and
, is provided in 2 . 

.9. Accounting for brain structure in the predictions 

A central goal of this paper is to assess how the predictive power
f the time-averaged and time-varying FC representations relates to the
natomy. For this purpose, we used cross-validated KRR to estimate FA-,
M- and VBM-based predictions for each behavioural trait, using their

espective DMs. That is, we estimated regularised KRR coefficients on
he training folds and applied them on each testing fold, in turn, to even-
ually produce an ( N by 1) vector of predicted traits for each behavioural
ariable and structural modality. Then, we computed the correspond-
ng residuals as the difference between the predicted and the empirical
2 https://github.com/OHBA- analysis/HMM- MAR/blob/master/utils/ 
rediction/predictPhenotype _ CVHMM.m 

https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/math/hmm_kl.m
https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/prediction/predictPhenotype_CVHMM.m
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raits, and used these as FA-, MD- or VBM-deconfounded behavioural
raits in the subsequent time-averaged-FC-based and HMM-based pre-
ictions. Cross-validation-based deconfounding was chosen because it
s less aggressive and biased than standard deconfounding ( Snoek et al.,
019 ). 

.10. Motion correction 

Since motion is known to influence both the estimation of time-
arying FC and the prediction of behavioural variables, we used FIX
nd confound regressors at the level of the individual subject time se-
ies ( Smith et al., 2013b ). Furthermore, we included the derived motion
arameters as confounds in the KRR prediction in order to also control
or between-subject differences in motion. 
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