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Aims Atrial fibrillation (AF) is associated with significant morbidity but remains underdiagnosed. A 24 h ambulatory electro-
cardiogram (ECG) is largely used as a tool to document AF but yield remains limited.We hypothesize that a deep learning
model can identify patients at risk of AF in the 2 weeks following a 24 h ambulatory ECG with no documented AF.

Methods
and results

We identified a training set of Holter recordings of 7–15 days duration, in which no AF could be found in the first 24 h.
We trained a neural network to predict the presence or absence of AF in the 15 following days, using only the first 24 h of
the recording. We evaluated the neural network on a testing set and an external data set not used during algorithm de-
velopment. In the testing data set, out of 9993 Holters with no AF on the first day, we found 361 (4%) recordings with AF
within the 15 subsequent days of monitoring [5808, 218 (4%), respectively in the external data set]. The neural network
could discriminate future AF with an area under the receiver operating curve, a sensitivity, and specificity of 79.4%, 76%,
and 69%, respectively (75.8%, 78%, and 58% in the external data set), and outperformed ECG features previously shown
to be predictive of AF.

Conclusion We show here the very first study of short-term AF prediction using 24 h Holter monitoring. This could help identify
patients who would benefit the most from longer recordings and proactively initiate treatment and AF mitigation strat-
egies in high-risk patients.
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Graphical Abstract

AF prediction ensemble model derived from 24-hour Holter data.

Keywords Atrial fibrillation • Risk prediction • Deep learning • Holter • Ambulatory monitoring

Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhyth-
mia that affects 46 million individuals worldwide and is associated
with poor clinical outcomes due to increased risk of stroke, acute
coronary events, and heart failure.1,2 Early diagnosis of AF can facili-
tate early treatment and preventative strategies that in turn could
mitigate downstream complications. Previous studies have shown
that a longer duration of monitoring has a higher yield of AF detec-
tion.3,4 Notably, short Holter recordings (24–48 h) although con-
venient and often used for AF screening have a low detection rate.5

Recent research has demonstrated the potential for artificial intel-
ligence (AI) to predict incident AF from the 12-lead electrocardio-
gram (ECG) ranging over a period of months to years.6,7 There is
however no prior work examining the role of AI in predicting AF
in the short-term (days to weeks) from a 24 h Holter (Holter-AI).
Although there are challenges with using Holter recordings due to
less standardized lead placement and a smaller number of leads, am-
bulatory ECG provides longer-duration signals that may offer add-
itional inputs for prediction models.

The current study is the first of its kind, where we used a deep
neural network (DNN) to predict short-term AF occurrence, within
15 days from a 24 h Holter. The study also seeks to explain the ECG

features along with the heart rate (HR) trends and pre-mature atrial
complexes that influence AF risk estimates which are critical in ad-
dressing potential bias and enhancing clinician confidence. Early
short-term prediction of AF can either enable the early initiation
of treatment or recommend the need for longer Holter recordings
to detect incident AF.

Methods

Data sources and study population
We retrospectively collected and de-identified Holter recordings from
six independent diagnostic testing facilities (IDTFs) in the USA,
European Union, South Africa, India, and UK, from 1 January 2019 to
31 August 2021. These were gathered into an internal data set. Of
note, a separate external data set was built from Holter recorded be-
tween 1 January 2018 and 31 August 2021, in two different IDTFs
from the USA.

All recordings corresponded to adult patients. Recordings were pre-
processed using the Cardiologs Holter Platform proprietary algorithm,
re-sampled to 250 Hz, and analysed by an ECG technician. As all IDTFs
did not use the same Holter devices and number of recording leads,
only one lead of the Holter was used for the training and evaluation of
each model, always the same for each IDTF.
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The internal data set was divided into an internal development data
set, consisting of Holter recordings from 1 January 2019 to 30 June
2021 and a testing set, consisting of Holters from 1 July 2021 to 31
August 2021. The inclusion diagram in Figure 1 details the steps for sam-
ple selection. The internal development data set was divided into training
and validation in the following way: Holters presenting AF in the first 24 h
were all included in the training set so as to keep the characteristics of the
validation set consistent with the evaluation setting (24 h of ECG signal
with no AF); all other Holters were assigned to training and validation
in an 80/20 proportion, based on date. The external data set was used
solely for testing, to measure the generalizability of the proposed models.
None of the Holters used for development were included in either test-
ing set.

In particular, for the evaluation sets (validation, internal, and exter-
nal testing), two main criteria were used for the inclusion of the re-
cordings: (i) Holters lasting between 7 and 15 days to reliably assess
whether or not AF was present in the extended recording and (ii)
Holters free from AF event in the first 24 h. We further excluded
Holters with no age and sex information from the internal and exter-
nal testing sets.

Outcome
The primary objective of the study was to test the ability of using a DNN
on 24 h Holters with no documented AF to identify patients likely to pre-
sent with AF in the next 2 weeks using an extended recording. Episodes
of AF were all annotated by ECG technicians. Atrial fibrillation and atrial
flutter are considered indistinct in this study. This choice was motivated
by the common coexistence of these conditions and the similarity in
pathophysiology and treatment.8

Model development and evaluation
We developed different models for predicting the occurrence of AF up
to 15 days. We used a simple model based on age and sex as a baseline.

We then implemented three new models based on different inputs and
finally combined those three models to form a final ensemble model
(Figure 2).

Age and sex model
For reference, we implemented a random forest model using only the
age and sex of a patient.

Age, sex, and pre-mature atrial contraction model
To improve upon the age and sex model, we proposed a stronger
patient-feature model, as a random forest model using the patients
age, sex, and pre-mature atrial contraction (PAC) count from the first
24 h of the recording [age, sex, and pre-mature atrial contraction
(ASP) model]. This was motivated by the relationship that has been
shown between PAC count and AF.9 The Holter data allowed us to
have an accurate estimate of the PAC count for each recording, based
on the analysis by a technician.

Deep neural network for short-term atrial fibrillation
prediction
Heart rate-deep neural network
While the duration of a Holter enables the use of aggregated information
such as PAC count, we leveraged the greater granular information avail-
able in a 24-h ambulatory ECG. To that end, we implemented a neural
network using the instantaneous HR as input, containing both long-term
information like HR variations throughout the day and granular informa-
tion related to the occurrence of PACs and pre-mature ventricular con-
tractions (PVCs). The input to this model is an HR plot (Figure 3). We
split the first 24 h of each recording into two 12 h windows where the
final risk score was an average prediction from the two windows. The
model’s architecture was composed of two modules: (i) a convolutional
neural network (CNN) that outputs a feature map and (ii) a long short-

Figure 1 Patient inclusion diagram. Describes which data are used, which are discarded (no diagnostic,,18 years, Holter of ≤24 h, Holter with
atrial fibrillation in the first 24 h, negative Holter of ,7 days, Holter with persistent atrial fibrillation or no Normal Sinus Rhythm (NSR)).
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term memory network that performs temporal analysis of the feature
map by treating it as a time series.

Beat-deep neural network
This second DNN-based model used the raw ECG data as input. To ef-
fectively utilize a full 24-h recording, we split the signal into sequences of
80 consecutive beats to use as input. The onsets of the beats were auto-
matically computed by the Cardiologs Holter Platform. The model archi-
tecture is composed of two modules: (i) a CNN applied to each beat
independently and (ii) an attention module using as input the features ex-
tracted from the CNN to exploit relationships between different beats
within a sequence. A final fully connected layer was used to predict a
risk score from the average output of the attention module. The final
Beat-DNN prediction for a recording is taken as the average prediction
across all sequences.

Both neural networks were implemented in Keras, with a Tensorflow
(Google, Mountainview, CA, USA) backend. The training set was used for

model development and model selection. Hyper-parameter tuning was
done using the validation set to compare results.

Ensemble model
To aggregate predictions from the different models into a final risk score,
a stacking ensemble approach was used. Notably, this has been shown to
improve performance when combining multiple models.10 The ensemble
model consists of a meta-learner, which takes as input scores from the
Beat-DNN, HR-DNN, and ASP models. The meta-learner chosen for
the ensemble model is a logistic regression classifier.

Model interpretability
To better understand the features contributing to the HR-DNN and
Beat-model outputs, we used visualization tools highlighting regions of
the input signal with a strong positive impact on the predicted score.

Figure 2 Model’s diagram. The first 24 h from a Holter are used to derive inputs for the different models while the following 14 days are used to
assign a label. (A) Patient age, sex, and 24 h pre-mature atrial contraction burden are passed into a random forest classifier to predict an age, sex, and
pre-mature atrial contraction score. (B) A convolutional neural network is used to extract feature maps from a heart rate plot, which are passed into
a long short-termmemory layer as temporal features to predict a heart rate-deep neural network score. (C ) The Holter is split into sequences of 80
consecutive beats which are individually passed into a convolutional neural network for feature extraction. Then an attention layer identifies rela-
tionships between beats within a sequence to predict a score; the average prediction of all sequences is used as the Beat-deep neural network score.
The prediction scores from each model are then passed into a logistic regression classifier to generate a final risk score.
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For the HR-DNNmodel, we used LayerCAM for visualization, a meth-
od that creates a saliency map for a given prediction.11 The saliency map
is created by combining feature maps of the intermediate convolutional
layers and the gradient of the output relative to the feature maps.

For the Beat-DNN model, in order to capture regions around a beat
which were of importance to the model’s prediction, we focused on
Module (i) of the Beat-DNN to consider each beat individually, applying
the guided Grad-CAM visualization method on the final convolutional
layer of the module.12

Statistical analysis
Continuous data are presented as mean values with standard deviations
(SDs). All categorical data are presented as proportions. Model perform-
ance is presented as sensitivity, specificity, positive predictive value (PPV),
and area under the receiver operator curve (AUC). All 95% confidence
intervals (CIs) for sensitivity, specificity, and PPV were computed using
Wilson score intervals. AUC CIs and differences of AUC between mod-
els were calculated using the fast version of Delong’s algorithm.13 We

also provide the P-value of the z-test for comparison of AUCs as defined
by Sun and Xu.13 Age distributions were compared with a Student’s
t-test. A P-value ,0.05 was considered significant. Statistical analyses
and model development were performed using Python 3.8.

Results

Study population
A total of 267 114 patient Holter recordings collected in six different
IDTFs were used to form the training, validation, and internal data sets
using inclusion and exclusion criteria, as specified in Figure 1. About 21
887 other Holter recordings from two independent IDTF were used
to build the external data set. A total of 45 913 patient Holter record-
ings were identified in the internal data set and 5808 recordings in the
external data set after applying exclusion criteria (Figure 1). Among pa-
tients in the internal data set, 35 920 patients were used for model de-
velopment. In the training data set, 1821 (6.1%) patients were

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Population description

Training
(n=29884)

Validation
(n=6036)

Internal test
(n=9993)

External test
(n=5808)

Atrial fibrillation, n (%) 3307 (11.1%) 228 (3.8%) 361.0 (3.6%) 218.0 (3.8%)

Age, n (%) ,65 years 14 758 (49.4%) 3334 (55.2%) 5518 (55.2%) 2951 (50.8%)

≥65 years 11 483 (38.4%) 2702 (44.8%) 4475 (44.8%) 2857 (49.2%)

Missing 3643 (12.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Sex, n (%) Male 10 196 (34.1%) 2265 (37.5%) 3841 (38.4%) 2179 (37.5%)

Female 16 428 (55.0%) 3771 (62.5%) 6152 (61.6%) 3629 (62.5%)

Missing 3260 (10.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Figure 3 Heart-rate plot. A heart-rate plot is a three-dimensional representation of every beat’s instantaneous heart rate during the Holter re-
cording. The x-axis represents time, while the y-axis represents the heart rate in b.p.m.. The z-axis consists of three channels that correspond to each
beats classification of either: normal, pre-mature atrial contraction, or pre-mature ventricular contraction. The onset of the beats and classification
of normal, pre-mature atrial contraction, or pre-mature ventricular contraction were automatically computed by the Cardiologs Holter Platform.
The heart-rate plots cover a 12-h window with a resolution of 36 s per time bin/column and 1 b.p.m./heart rate bin/row. The final input has a size of
1200× 300× 3.
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observed with AF following the first 24 h and an additional 1486
(5.0%) with AF in the first 24 h were included. Following the first
24 h of a recording, we observed 361 (3.6%) patients with AF in the
internal test data set and 218 (3.8%) in the external data set.

The mean age (+SD) of patients in the internal test data set was
58.9+ 17.7 years and 60.5+ 17.8 years for the external data set. Of
note, 61.6% of patients were females in the internal test data set and
62.5% in the external data set. In the internal data set, men had an
average age of 61.2+ 16.5 years and women had 57.5+ 18.3 years.
In the external data set, men had an average age of 62.4+ 16.8 years
and women had 59.4+ 18.3 years. In both test sets, men were sig-
nificantly older than women (P, 0.05). Table 1 includes patient
demographic characteristics for each data set.

Model performance
The AUCs for each of the models are shown in Figure 4. In the internal
testing set, AUC was 0.709 for the age and sex model (95% CI 0.688–
0.730), 0.757 for the ASP model (0.738–0.777), 0.744 for HR-DNN
(0.722–0.766), 0.754 for Beat-DNN (0.731–0.778), and 0.794 for
the ensemble model (0.775–0.813). In the external testing set, AUC
was 0.649 for the age and sex model (0.620–0.677), 0.727 for the
ASP model (0.698–0.755), 0.741 for the HR-DNN model (0.712–
0.770), 0.700 for the Beat-DNN model (0.668–0.731), and 0.758 for
the ensemble model (0.730–0.785), respectively. We observed similar
performances of the ASP, HR-DNN, and Beat-DNN models when
evaluating individually, except for the HR-DNNmodel on the external
test set, however, noticed a significant improvement in performance
after ensembling scores from each of the models (Table 2). We also
observed significantly higher performances for all proposed models
compared with the age and sex model (Table 2).

With an operating point calculated using the F2 score on the
validation set, the sensitivity, specificity, PPV, and negative predictive

value of the ensemble model were 75.9% (71.2–80.0%), 69.0%
(68.1–69.9%), 8.4% (7.5–9.4%), and 98.7% (98.4–99.0%) in the in-
ternal testing set and 78.0% (72.0–83.0%), 58.2% (56.9–59.4%),
6.8% (5.9–7.8), and 98.5% (98.1–98.9%) in the external testing set,
respectively. Performance of each model in both test data sets is pro-
vided in Table 2.
While we did notice a significant drop in the performances in the

external data set, we still observe a significant improvement in the
ensemble model compared with the age and sex model.

Sub-group analysis
Results of the internal testing set across sub-groups defined by age
and sex for each of the models are shown in Table 3. We observed
a significant improvement in AUC across each sub-group for the en-
semble model compared with the age and sex model (see
Supplementary material online, Table S1). We also observed a small
but significant improvement in the performances in the female sub-
group and the below 65 years sub-group.

Model interpretability
Heart rate plot model interpretability
The saliency map allows us to locate regions of the HR input having a
strong positive impact on the predicted score. Among patients with a
high likelihood of AF, the most salient features appear to be regions
with high volumes of PACs. An example of a Holter with a high pre-
dicted score and PAC count is shown in Figure 5.

Beat-deep neural network interpretability
With the Grad-CAM visualization method, we observed the import-
ance of the P-wave morphology for the model’s predictions as illu-
strated in the different examples shown in Figure 6.

Figure 4 Receiver operating characteristic curves for each of the models on the internal and external test sets.
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Discussion
To the best of our knowledge, we describe the first short-term AF
prediction system based on a 24-h ambulatory ECG. Using a deep
learning-based meta-model, we showed good performances (AUC
0.79) that were comparable with AF risk score performances on long-
term prediction.14 The association of different models taking advan-
tage of specific structure from an ambulatory ECG (HR-DNN,
Beat-DNN, and PAC count) allowed the final ensemble model to per-
form significantly better than an age- and sex-based model. We also
observed that this model performed better in the age group of ,65
years and women sub-groups. Using visualization methods, the model
decisions were found to be partially based on some previously known
risk factors, PAC burden, and P-wave morphology.
Atrial fibrillation is an evolutive disease with a progression from

asymptomatic atrial cardiomyopathy to overt or silent paroxysmal
then persistent and ultimately permanent AF.15 For this reason, it is im-
portant to find a way to predict it before the first episode or between
unrecognized episodes. From the pathophysiological perspective, three
classical factors are known to play a role in the genesis of AF, namely the
substrate, autonomous nervous system, and triggers. Notably, all these
factors can be evaluated on a Holter ECG. Dilatation and progressive
fibrosis of the atrium preceding AF episodes may be reflected
within various degrees of changes within the P-wave morphology.
Abnormalities in the sympathovagal balance can be determined through
the assessment of the HR and its variability. PACs that serve as trigger
AF have also been shown to be correlated by their number and coupling
intervals to the long-term risk of AF.16

While a 12-lead ECG gives immediate access to spatial cardiac infor-
mation on a short period, 24 h Holter includes a specific temporal com-
ponent that offers additional inputs for models. We used those
specificities of a 24 h ambulatory Holter to develop our models. In
the ASPmodel, we use the PAC count assessed on a 24 h period which
has been identified as a predictor of future AF.17 The 24-h HR plot pro-
vides information on HR variation over the whole period which can re-
flect HR variability, known to contain information about future AF.18

The Beat-DNNapproach focuses on the components of the ECG signal
itself that have been shown to impact AF risk including P-wave morph-
ology,19 PR interval,20 or other signal-related features like QT interval.21

We observed differences in some models’ performance between
the external and internal data sets which can be linked to the follow-
ing reasons: First, the baseline age and sex model lower performance
on the external data set can be explained by a different distribution of
age, both for men and women, between the internal and external
data sets, which makes age less indicative of AF in the external testing
set. The Beat-DNN model also presents a performance discrepancy
between data sets. One hypothesis for this behaviour is the fact that
centres used in the external data set have not been used in model
development. Therefore, factors such as device and lead placement,
which have an impact on the ECG signal, can have an impact on the
generalizability of a signal-based model. Finally, the ensemble model,
leveraging the other models, shows reduced performance on the ex-
ternal data set due to the drop of performance in some of these in-
dividual components.
It is well understood that AF is a leading cause of stroke with a sub-

stantial morbidity and mortality. Identifying patients at risk is critical
to guide anti-coagulation therapy.
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After a stroke, it is crucial to identify the aetiology and so an AF
diagnosis can lead to anti-coagulation in order to prevent another
stroke. It is even more important to have a rapid diagnostic after a
transient ischaemic attack where the risk of recurrent stroke is
8.0% at 7 days, 11.5% at 1 month, and 17.3% at 3 months after
a transient ischemic attack.22

Concerning stroke primary prevention, from the contradictory
results of the recent Strokestop23 and Loop24 studies, it is not clear
today if large screening of patients to identify those at risk of stroke is
beneficial. We have developed a model which, from a 24 h Holter,
intends to identify patients more likely to present AF in a short-term.
This may have several clinical implications, which could include
recommending an extended Holter or monitoring with a higher ex-
pected yield. If and when proven effective, additional short-term risk
prediction of AF may allow for early intervention and mitigation
strategies.

To alleviate the black-box effect of neural networks, we sought to
visualize regions in the different inputs that have a high impact on the
network’s decision using saliency maps. Those methods revealed that
the two DNN-based models rely, at least partially, on features pre-
viously studied (PAC count, P-wave morphology) to reach a decision.
Theremay however be some subtle changes in the signal or in the HR

plot which are unrecognizable by the human eye that deep learning
may consider and that still remains to be explained in the future.
The primary goal of our research is to improve the yield of AF de-

tection in a population indicated for ambulatory monitoring.
Extended Holter can be burdensome for patients and costly for hos-
pitals. The 24-h Holter recordings are still widely used when AF is
suspected.5 If a high risk of AF in a short-term can be inferred
from this recording, an extended Holter could be selectively pro-
posed to those high-risk patients, optimizing the monitoring re-
sources and avoiding unnecessary long recording for probable
negative patients. Moreover, in a context of race against time in
the secondary prevention of stroke, a short-term prediction tool
used over a short duration record could impact clinical decisions.5

In the future, this model could be adapted to different modalities
also using ECG with a limited number of leads like smartwatches,
hand-held devices, or similar wearables.
Our study presents several limitations. First, this study is a

retrospective one involving previously collected Holter record-
ings and would need to be complemented by a prospective valid-
ation study to confirm the performances of the developed
ensemble model. Second, as Holters were coming from various fa-
cilities across different geographies (USA, Europe, UK, India, and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Sub-group analysis (internal data set)

AF rate (%) Age and sex Beat-DNN HR-DNN ASP Ensemble
AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Age (years) ,65 1.70% 0.799 (0.758–0.839) 0.812 (0.771–0.854) 0.824 (0.786–0.862) 0.842 (0.812–0.873) 0.867 (0.836–0.897)*

≥65 5.97% 0.520 (0.485–0.556) 0.652 (0.619–0.685) 0.612 (0.576–0.647) 0.623 (0.591–0.655) 0.674 (0.643–0.706)*

Sex Female 2.86% 0.731 (0.704–0.759) 0.776 (0.743–0.808) 0.777 (0.749–0.804) 0.786 (0.761–0.811) 0.821 (0.797–0.846)*

Male 4.82% 0.652 (0.619–0.685) 0.712 (0.675–0.748) 0.691 (0.654–0.729) 0.706 (0.673–0.738) 0.747 (0.714–0.780)*

*P, 0.05 for comparison of AUC between ensemble model and age and sex model.

Figure 5 Heart rate-deep neural network interpretability. Saliency map overlaid on a heart-rate plot of the first 15 h of a true-positive Holter
(a Holter with atrial fibrillation predicted from the first 24 h and atrial fibrillation documented within 2 weeks after). The highlighted areas indicate
regions of the input that influence the prediction. The saliency map activations focus predominantly on regions with high density of pre-mature atrial
contractions.
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South Africa), the lack of attached clinical data makes it difficult to
ensure that the data present the necessary diversity and absence
of bias which are expected for an AI tool validation. Third, there is
a performance difference between the external and internal data
sets, which should lead to additional work to improve generaliz-
ability. Fourth, even if we ensured that no ECG used for testing
of the neural network was used during training, due to the
de-identified nature of the Holter recordings, it is still possible
that a patient corresponding to a recording in the testing
set also contributed to a recording involved in the training set.
However, the probability for a patient to have multiple extended
Holter is very low. Finally, our classification of positive or negative
Holter for AF is based on a continuous recording of only 15 days.
Despite being certain of the presence or absence of AF during this
period, it is possible that the patient could have presented with AF
outside of the recorded window.

Furthermore, the DNNs proposed in this study present sev-
eral limitations. First, Beat-DNN lacks a global view of the
Holter. To aggregate the predictions from each local strip, we
took the average, which valued each region of the signal with
the same importance. Methods such as multiple instance learning,
which has proved successful in identifying discriminating areas of
pathophysiology slides, could help improve Beat-DNNs perform-
ance by focusing on higher salient periods of the ECG.
Furthermore, Beat-DNN and HR-DNN relied on the beat

morphology and characteristics of the HR independently, which
may have limited each model’s ability to leverage relationships
between these aspects of the signal. Further work is needed
on how to exploit these features together in a single model.
Finally, contrary to 12-lead ECG, lead placement for ambulatory
ECG is not standardized, which could impact Beat-DNN’s
ability to generalize due to variability. Exposing Beat-DNN to
more training data from different centres could improve
generalizability.

Conclusion
In conclusion, our results suggest that a deep learning model
using a 24-hour Holter recording can be used to identify patients
at risk of developing short-term AF. Future studies will be needed
to confirm if this early detection helps optimize resources
towards the length of additional monitoring and improve
patients’ outcomes.

Supplementary material
Supplementary material is available at European Heart Journal – Digital
Health.

Figure 6 Beat-deep neural network interpretability. Saliency maps are given for four Holters (A–D). For each of them, three samples are shown
corresponding to median, first, and last quartile of prediction scores of the recording’s samples. All 80 beats of each sample are plotted in black. The
saliency map averaged across the 80 beats is shown in vertical lines (in red). For all recordings, the P wave is the main region of importance. Holters
(C ) and (D), respectively, are true negative (Holter with no atrial fibrillation predicted from the first 24 h and no atrial fibrillation observed within the
2 following weeks) and false negative (Holter with no atrial fibrillation predicted from the first 24 h and atrial fibrillation observed within the 2 fol-
lowing weeks), showing low prediction scores and a normal P wave with a single mode on which the network focuses. On the contrary, Holters (A)
and (B), respectively, are true positive and false positive, showing high prediction scores with characteristics of a bifid P-wave. For these recordings,
the model focuses on the two modes of the P waves. These examples highlight the importance of the P-wave morphology for the Beat-deep neural
network predictions.
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