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Simple Summary: Ovarian cancer has a heterogeneous response to treatment, and relapse may vary
considerably. Different studies investigated the role of radiomics in ovarian cancer. However, many
of them were performed in a single center, and solid external validation of findings is still missing.
We used a multicentric database of high-grade serous ovarian cancer to build predictive radiomic
and deep-learning models for early relapse and BRCA mutation, validating them in a different set
of cases coming from other institutions. In our multicentric dataset, representative of a real-life
clinical scenario, we could not find a good radiomic predicting model for PFS and BRCA mutational
status with both traditional radiomics and deep learning methods. This study highlights that to
implement the radiomics approach in clinical routine, we still need standardization of acquisition
protocols, validation of harmonization method and radiomic pipelines, other than robust, prospective,
multicentric, external validations of findings.
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Abstract: Purpose: Build predictive radiomic models for early relapse and BRCA mutation based on
a multicentric database of high-grade serous ovarian cancer (HGSOC) and validate them in a test set
coming from different institutions. Methods: Preoperative CTs of patients with HGSOC treated at
four referral centers were retrospectively acquired and manually segmented. Hand-crafted features
and deep radiomics features were extracted respectively by dedicated software (MODDICOM) and
a dedicated convolutional neural network (CNN). Features were selected with and without prior
harmonization (ComBat harmonization), and models were built using different machine learning
algorithms, including clinical variables. Results: We included 218 patients. Radiomic models showed
low performance in predicting both BRCA mutation (AUC in test set between 0.46 and 0.59) and
1-year relapse (AUC in test set between 0.46 and 0.56); deep learning models demonstrated similar
results (AUC in the test of 0.48 for BRCA and 0.50 for relapse). The inclusion of clinical variables
improved the performance of the radiomic models to predict BRCA mutation (AUC in the test
set of 0.74). Conclusions: In our multicentric dataset, representative of a real-life clinical scenario,
we could not find a good radiomic predicting model for PFS and BRCA mutational status, with
both traditional radiomics and deep learning, but the combination of clinical and radiomic models
improved model performance for the prediction of BRCA mutation. These findings highlight the
need for standardization through the whole radiomic pipelines and robust multicentric external
validations of results.

Keywords: ovarian cancer; radiomics; computed tomography; machine learning

1. Introduction

Ovarian cancer (OC) is the fifth deadliest cancer among women [1], and high-grade
serous epithelial cancer is the most common histological subtype [2]. Magnetic resonance
imaging (MRI) is the best technique to distinguish between benign and malignant le-
sions, and radiomics is a field of research in this setting [3]. Still, CT is the preoperative
staging technique for OC following European Society of Urogenital Radiology (ESUR)
guidelines [4]. Standard treatment for OC is primary cytoreductive surgery combined
with platinum-based chemotherapy [5], independently from individual prognostic fac-
tors. The follow-up scheme is also similar for all patients [6]. The main genetic alteration
considered is BRCA 1–2 mutation, associated with a better prognosis [7] and may benefit
from introducing PARP-inhibitor drugs in maintenance therapy [8]. However, OC has a
heterogeneous response to treatment, and relapse time may vary considerably [9]. In this
context, it may be critical to identify patients at high risk of recurrence.

Radiomics is an innovative method to extract quantitative data about microscopic
characteristics of tissues from clinical images; these data can be combined with clinical,
genomic, proteomic and other information to build new models and biomarkers to predict
specific targets, such as diagnosis, treatment response, survival or genomic and proteomic
alterations [10]. In the classical radiomics approach, the “hand-crafted features” derive
from predefined mathematical formulas based on intensity, shape and texture of a region
of interest identified in radiological images [11]. The radiomic features are then fed into
machine learning models, mainly random forests and support vector machine [12]. Deep
learning has allowed the extraction of “deep features” using convolutional neural networks
(CNN) without any predefined external imposition, investigating a much higher number
of features and opening new horizons for image analysis. Describing radiomics and deep
learning methods and pipelines is beyond the scope of this paper, but different reviews are
available in the literature.

Recently, some studies have investigated the radiomic approach in ovarian cancer,
discovering a correlation with metastatic [13] and lymph node [14] involvement using
regularized logistic regression models, residual tumor after surgery by means of Kaplan-
Meier analysis [15], progression-free survival (PFS) using Cox proportional hazards and
logistic regression models [15–19], overall survival (OS) [20], genetic mutations including
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BRCA [17,21] and proteomic profile [22] of the tumor. However, almost all these studies
were performed in a single center, many had small datasets, and robust external validation
of findings is still missing.

Since radiomic features can be affected by variations among scanners and acquisition
parameters, different harmonization methods have been proposed in the literature to
obtain more reproducible radiomic features. The harmonization methods can be classified
into image domain and feature domain approaches [23]. ComBat harmonization is a
feature domain method, initially proposed in genomics, that has recently been applied in
radiomics [24,25]. ComBat method was specifically developed to address the so-called batch
effect, which is typical in genomics and refers to the generic difficulties of analyzing samples
derived from different laboratories. Similarly, the numerical value of radiomic features
conveys different information, as they are affected by the variation in image acquisition
parameters. By realigning feature values among centers, ComBat harmonization allows
for the pooling of data from different centers without losing statistical power caused by
center variability.

Our study aims to create a multicentric database of high-grade serous ovarian cancer
to build predictive radiomic models for early relapse and BRCA mutation and to validate
them in a different set of cases coming from different institutions. We also wanted to
investigate a deep learning approach for the same outcomes.

2. Materials and Methods
2.1. Patient Selection

The first group of patients came from IEO, Milan (Group 1); the study population was
previously investigated in Rizzo et al. [18].

We collected patients from three Italian centers:

• Fondazione Policlinico Gemelli, Rome (Group 2);
• Policlinico Umberto I, Rome (Group 3);
• Ospedale Centrale, Bolzano (Group 4).

The inclusion criteria were:

− Availability of a pre-treatment contrast-enhanced CT study of at least abdomen and
pelvis in portal-venous phase;

− Surgery for staging or complete debulking;
− Diagnosis of high-grade serous ovarian cancer.

Exclusion criteria were:

− CT slice thickness >5 mm;
− Surgery performed in another center;
− Other histologies of ovarian cancer;
− Previous history of malignancy.

2.2. Image Acquisition

We retrospectively extracted DICOM files of preoperative CT scan from each center’s
respective Picture Archiving and Communication System (PACS). We considered only the
post-contrast portal-venous phase. All images had a slice thickness of 1–5 mm, and all
manufacturers (GE Medical Systems, Siemens, Philips, Toshiba, Hitachi) were included.

All participant centers are referral hospitals highly specialized for the treatment of
ovarian cancer; not all exams were performed in those centers, but most of them were
collected from many different smaller hospitals where the diagnosis was performed; when
CTs were diagnostic and were not older than two weeks, scans were not repeated. Because
of that, the acquisition parameters differed among CTs even in the same center. We decided
not to select exams based on acquisition parameters to reflect the real-life scenario. However,
we included only those exams where soft tissue kernel reconstruction was unavailable.
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2.3. Clinical Data

Clinical data were age, preoperative CA-125, FIGO stage, BRCA status and PFS,
defined as radiologic or biochemical progression.

2.4. Image Segmentation

For Group 1, the image segmentation methodology was described in the previous
paper [18].

For Groups 2, 3 and 4, manual segmentation of the entire primary tumor (Gross Tumor
Volume, GTV) for each patient was performed using ITK-Snap [26] (Figure 1).
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Figure 1. An example of segmentation of tumor volume using ITKsnap.

For all groups, GTV was the abnormal ovary or the mass in the pelvis when ovaries
were no more distinguishable. The segmentation was drawn on each slice where the tumor
was present to include the whole tumor with particular attention to excluding vascular and
intestinal structures. The segmentations were performed by two radiologists with three
years of experience in gynecologic radiology; all segmentations were checked by a third
radiologist with ten years of experience in gynecologic imaging and with specific expertise
in segmentation in radiomic studies.

2.5. Study Design

We developed models for predicting 1-year PFS and BRCA mutation from hand-
crafted radiomic features or deep learning features. In particular, the hand-crafted radiomic
features were fed into machine learning models, while deep learning features were extracted
using CNN to develop a deep learning model. For the classification of 1-year PFS, we
denoted patients with 1-year relapse as belonging to class 1 (cases) and patients without
1-year relapse as belonging to class 0 (controls). For the classification of BRCA mutation,
we denoted patients with BRCA 1–2 mutations as belonging to class 1 (cases) and patients
without BRCA 1–2 mutations or with variants of uncertain significance (VUS) as belonging
to class 0 (controls).

The training set used to train the models included the patients from Group 1 and
Group 2. The testing set used for external validation included the patients from Groups 3
and 4.

2.6. Radiomic Feature Extraction and Analysis

Radiomic and statistical analyses were performed in RStudio (R version 4.4.1) and
using Python 3.7.
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Handcrafted radiomic features were extracted for all groups from the GTV using
an open-source R library called MODDICOM (https://github.com/kbolab/moddicom,
accessed on 29 March 2022), implemented for radiomic features extraction by the Radiomics
Research Core facility of the Fondazione Policlinico Universitario “A. Gemelli” IRCCS,
Rome, Italy [27]. The computation of the radiomic features is fully compliant with the
recommendations of the Image Biomarker Standardization Initiative [28].

A total of 217 radiomic features were extracted for each GTV. Features belonged to
three different families: statistical, morphological, and textural features.

To evaluate feature heterogeneity among centers, an analysis of reproducibility of
the radiomic features against the image acquisition parameter given by the slice thickness
and the CT scanner manufacturer was performed using a two-way ANOVA. This analysis
excluded unreproducible features that presented significantly different means due to
different slice thickness and manufacturer (false discovery rate corrected p value < 0.05).
The smaller set of reproducible features was used for the first analysis.

Moreover, as a sensitivity analysis, the ComBat harmonization [29] method was
applied to all 217 radiomic features using the ez.combat R package, available on the Compre-
hensive R Archive Network (CRAN). Then, a new two-way ANOVA was performed, and
no unstable features were found. This allowed us to use all features for additional analysis
and compare it with the first analysis based on reproducible features only.

Following the reproducibility analysis or the sensitivity analysis, we conducted a
further feature selection on the training set to reduce the number of radiomic features
included in the modeling process and prevent overfitting. First, we performed a univariate
analysis with the Wilcoxon–Mann–Whitney statistical test to consider only features that
showed a statistically significant difference in the two classes (i.e., 1-year PFS as yes/no and
BRCA mutation as present/absent), with a significance level set to 0.05. Then, we removed
the multicollinearity between the features included in the models by computing the Pearson
cross-correlation coefficient. We set a threshold of 0.9 to exclude highly correlated features.

2.7. Radiomic Models

Radiomic models were obtained using radiomic features only. In addition, clinical–
radiomic models were generated combining radiomic features and relevant clinical vari-
ables. For the classification of 1-year PFS, we included age, family history of ovarian or
breast cancer, residual tumor. For the classification of BRCA mutation, we considered age
and family history of ovarian or breast cancer.

Different machine learning models were developed using the radiomic features and
clinical data of the training set in Python 3.7. These models include a penalized logistic
regression with L2 penalty, random forest, Support Vector Machine (SVM) implemented
in the standard scikit-learn package, XGBoost using the XGBoost package. Fine tuning
of the hyper-parameters was performed with a randomized grid search using a 5-fold
cross-validation (CV).

For each developed model, we computed the area under the curve (AUC) of the
receiver operating characteristic (ROC) in each of the five CV folds. We computed the
training set’s mean AUCs over the five CV folds. Then, the models were applied to the
external validation cohort and the AUC of the ROC was computed.

2.8. Deep Learning Model

As a second approach, we adopted the 2D-CNN built by Lombardo et al. [30], which
showed high performance in tumor classification. Image pre-processing was conducted in
Python 3.7, while the 2D-CNN was implemented in Tensorflow 2.4.0. Training and testing
were performed on a single graphics processing unit (GPU), a NVIDIA Quadro RTX 5000
with 16 GB of memory.

The CNN is defined by three 2D-convolutional blocks, two fully connected layers, one
dropout layer and an output layer. Every convolutional block consists of a convolutional
layer, a max-pooling layer and a parametric rectified linear unit (PReLu) activation function.

https://github.com/kbolab/moddicom
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Unlike the 2D-CNN experiment in Lombardo et al., which used as input the axial slice
with the highest number of tumor voxels, we decided to use every axial slice presenting
tumor voxels as input. Before data augmentation, CT images were isotropically resampled
to a 1 × 1 × 1 mm3 grid using linear interpolation and masked using binary masks
isotropically resampled to a 1 × 1 × 1 mm3 grid using nearest neighbor interpolation.
The re-sampled masked CTs cropped to a dimension of 256 × 256 were used as input to
the networks.

Data augmentation was performed by applying random cropping with a central
random shift and reducing the images to 128 × 128.

For the 1-year relapse classification, the learning rate was set at 10-3 and batch size
at 64. For the BRCA classification, the learning rate was set at 10-3 and batch size at 16.
We imposed weight decay at 10-4 and dropout rate at 25% for both endpoints to reduce
overfitting. Networks weights and biases were optimized using the Adam algorithm [31].
The loss function used was the binary cross-entropy. Hyper-parameters were searched
using a manual grid search and were chosen as the ones providing the highest 5-fold
cross-validation mean AUC. The CNN was trained for 200 epochs with early stopping by
setting a patience of 50 epochs.

The five best models from the 5-fold cross-validation were applied to the external
validation cohort for each classification problem. We averaged the five predictions resulting
from the five best models to obtain a single prediction for each slice. We performed
bootstrap resampling of the slices of the patients in the test set containing the tumor with
100 iterations and computed the median AUC.

3. Results

A total of 218 patients were recruited. Clinical data are summarized in Table 1.

Table 1. Clinical information of included patients.

KERRYPNX Group 1
(n = 101)

Group 2
(n = 51)

Group 3
(n = 32)

Group 4
(n = 34)

Age (Mean; Min-Max) 53; 36–76 58; 41–81 63; 29–86 58; 31–83

Family history of ovarian/breast cancer
0 49 (48.5%) 31 (60.8%) 25 (78.1%) 49 (48.5%)
1 52 (51.5%) 20 (39.2%) 7 (21.9%) 52 (51.5%)

Pathological stage
1 0 (0%) 0 (0%) 4 (12.5%) 1 (2.9%)
2 11 (10.9%) 0 (0%) 4 (12.5%) 2 (5.9%)
3 66 (65.3%) 38 (74.5%) 22 (68.8%) 21 (61.8%)
4 24 (23.8%) 9 (17.7%) 2 (6.2%) 10 (29.4%)

NA 0 (0%) 4 (7.8%) 0 (0%) 0 (0%)

Residual tumor
0 74 (73.3%) 41 (80.4%) 23 (71.9%) 24 (70.6%)
1 27 (26.7%) 10 (19.6%) 9 (28.1%) 14 (29.4%)

BRCA
0 63 (62.4%) 29 (56.9%) 4 (12.5%) 21 (61.8%)
1 38 (37.6%) 19 (%) 4 (12.5%) 12 (35.3%)

NA 0 (0%) 3 (%) 24 (75%) 1 (2.9%)

Recurrence
0 58 (57.4%) 41 (80.4%) 29 (90.6%) 20 (58.8%)
1 43 (42.6%) 10 (19.6%) 3 (9.4%) 14 (41.2%)

For the prediction of 1-year relapse, the training set for building the models presented
a proportion of 34% for 1-year relapse, while the test set for external validation showed a
ratio of 26% (p > 0.05).
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The patients with missing information regarding the BRCA mutation were excluded
from the analysis. For the prediction of the BRCA mutation, the training set for building
the models presented a proportion of 38% for the BRCA mutation, while the test set for
external validation showed a ratio of 40% (p > 0.05).

3.1. Radiomic Feature Analysis and Selection

The reproducibility analysis performed with the ANOVA on the 217 original radiomic
features found 71 reproducible features. ComBat was applied to 217 patients due to
missing information about the manufacturer for one patient. The analysis of reproducibility
performed with ANOVA on the 217 harmonized features obtained from the application of
ComBat showed that all 217 features were reproducible (Figure 2A,B).

For the 1-year relapse classification problem following ANOVA without harmo-
nization, the univariate analysis retained 16 features, while the final set of selected un-
correlated features included 6 features belonging to the statistical and textural families
(namely ‘F_stat.kurt’, ‘F_stat.min’, ‘F_cm_merged.joint.max’, ‘F_rlm.r.perc’, ‘F_szm.lze’,
‘F_szm.z.perc’).
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included slices; WMW: Wilcoxon–Mann–Whitney; PCC: Pearson cross correlation; NN: neuralnetwork).

For the 1-year relapse classification problem based on the features harmonized with
ComBat, the univariate analysis retained 83 features, while the final set of selected uncorre-
lated features included 17 features belonging to the statistical and textural families (namely
‘F_stat.min’, ‘F_stat.max’, ‘F_stat.range’, ‘F_cm.diff.avg’, ‘F_cm.diff.entr’, ‘F_cm.inv.diff.norm’,
‘F_cm.inv.var’, ‘F_cm.corr’, ‘F_cm_merged.joint.max’, ‘F_cm_merged.joint.entr’, ‘F_cm_2.5D.
joint.entr’, ‘F_cm_2.5D.energy’, ‘F_cm_2.5D.corr’, ‘F_cm.2.5Dmerged.info.corr.1′, ‘F_rlm.glnu.
norm’, ‘F_rlm.r.perc’, ‘F_szm.z.perc’).

For the BRCA classification problem following ANOVA without harmonization, the
univariate analysis retained six features, while the final set of selected uncorrelated features
included three textural features (namely ‘F_rlm.r.perc’, ‘F_szm.lze’, ‘F_zsm.z.perc’).

For the BRCA classification problem based on the features harmonized with Com-
Bat, the univariate analysis retained 59 features, while the final set of selected uncorre-
lated features included eight textural features (namely ‘F_cm.diff.avg’, ‘F_cm.diff.entr’,
‘F_cm.inv.var’, ‘F_cm.corr’, ‘F_cm_2.5D.corr’, ‘F_rlm.r.perc’, ‘F_szm.lzhge’, ‘F_szm.z.perc’).

The list of names of the selected radiomic features is available in the supplementary
material (Table S1).



Cancers 2022, 14, 2739 9 of 16

3.2. Radiomics and Deep Learning Models

For the 1-year relapse classification, radiomics and clinical–radiomic models were
trained on 218 patients and six and nine features using non-harmonized data, respectively.
In general, models performed poorly on training and test sets. For the radiomic models,
the highest five-fold cross-validation AUC was estimated as 0.63 using XGBoost, while
the highest test set AUC was estimated as 0.56 using Random Forest and XGBoost models
(Table 2). The model performance did not improve when including the clinical variables in
the clinical–radiomic models (Table 3). When applied to harmonized data (217 patients,
17 and 20 features for the radiomic and clinical–radiomic models, respectively), the model’s
performances were generally slightly worse when compared to the non-harmonized data
(Tables 2 and 3).

Table 2. Results of the models developed for the 1-year relapse classification. Mean AUC of the 5-fold
cross-validation (CV) obtained during model training and AUC of the test set for the analysis without
or with ComBat harmonization are reported.

No Harmonization (ComBat) Harmonization (ComBat)

Model Training Set
5-Fold CV AUC Test Set AUC Training Set

5-Fold CV AUC Test Set AUC

Penalized Logistic Regression 0.56 0.48 0.51 0.46
Random Forest 0.62 0.56 0.60 0.48

XGBoost 0.63 0.56 0.61 0.52
SVM 0.56 0.55 0.56 0.45

2D-CNN 0.61 0.5 - -

Table 3. Results of the clinical–radiomic models developed for the 1-year relapse classification. Mean
AUC of the 5-fold cross-validation (CV) obtained during model training and AUC of the test set for
the analysis without or with ComBat harmonization are reported.

No Harmonization (ComBat) Harmonization (ComBat)

Model Training Set
5-Fold CV AUC Test Set AUC Training Set

5-Fold CV AUC Test Set AUC

Penalized Logistic Regression 0.60 0.61 0.53 0.54
Random Forest 0.61 0.58 0.60 0.48

XGBoost 0.64 0.47 0.60 0.51
SVM 0.57 0.62 0.57 0.59

For the 1-year relapse classification, the deep learning model was trained using 9849 ax-
ial slices and tested with 5473 axial slices. Similar to radiomics models, the 2D CNN
performed had low performance on the training set (average five-fold CV AUC = 0.60) and
test set (AUC = 0.50) (Table 2).

When investigating BRCA classification, the radiomic models built with non-harmonized
data (218 patients, 3 features) produced the highest training set AUC as 0.62 using XGBoost,
while the highest test set AUC was 0.59 using SVM (Table 4). In this case, the inclusion of
the clinical variables in the clinical–radiomic models (218 patients, 5 features) improved the
model performance up to an AUC of 0.75 with the XGBoost in the training set and AUC of
0.74 with the penalized logistic regression in the test set (Table 5). Figure 3 shows the ROC
curve obtained for the best-performing model obtained for the test set. When applied to
harmonized data (217 patients, 8 and 10 features for the radiomic and clinical–radiomic
models, respectively), Random Forest provided the highest AUC both in training and
test sets for the radiomic models (AUC = 0.65 and AUC = 0.50, respectively), while the
model performance improved for the clinical–radiomic models with the highest AUC of
0.76 obtained in training set with XGBoost, and the highest AUC of 0.70 with SVM in the
test set (Tables 4 and 5).
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Table 4. Results of the models developed for the BRCA classification. Mean AUC of the 5-fold
cross-validation (CV) obtained during model training and AUC of the test set for the analysis without
or with ComBat harmonization are reported.

No Harmonization (ComBat) Harmonization (ComBat)

Model Training Set
5-Fold CV AUC Test Set AUC Training Set

5-Fold CV AUC Test Set AUC

Penalized Logistic Regression 0.58 0.57 0.61 0.46
Random Forest 0.61 0.48 0.65 0.50

XGBoost 0.62 0.43 0.64 0.45
SVM 0.61 0.59 0.61 0.46

2D-CNN 0.56 0.48 - -

Table 5. Results of the clinical–radiomic models developed for the BRCA classification. Mean AUC
of the 5-fold cross-validation (CV) obtained during model training and AUC of the test set for the
analysis without or with ComBat harmonization are reported.

No Harmonization (ComBat) Harmonization (ComBat)

Model Training Set
5-Fold CV AUC Test Set AUC Training Set

5-Fold CV AUC Test Set AUC

Penalized Logistic Regression 0.70 0.74 0.69 0.67
Random Forest 0.71 0.63 0.73 0.62

XGBoost 0.75 0.60 0.76 0.64
SVM 0.71 0.70 0.64 0.70
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Figure 3. ROC curve of the best performing model given by the clinical–radiomic model for the BRCA
mutation prediction, obtained by applying the penalized logistic regression to non-harmonized data.

For BRCA classification, the deep learning model was trained using 9589 axial slices
and tested with 3417 axial slices. Similar to the 1-year relapse endpoint, the 2D-CNN did
not provide an accurate prediction, providing a training set AUC of 0.56 and a test set AUC
of 0.48. (Table 4).
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4. Discussion

Radiomics may be seen as a promising tool for personalized medicine. It is non-
invasive and relies on medical images as a source of data already part of clinical practice.
Recently many studies investigated the possibility of radiomics being used to identify
biomarkers in ovarian cancer.

To overcome some limitations of previous studies, we created and used a multicentric
database: this enables us to enlarge the dataset but also gives the possibility to train
the algorithms on real-world data that comprises many different settings that may affect
imaging and features reproducibility; moreover, the multicentric dataset permits to test the
developed models in external cohorts, which is a fundamental step to generalize findings.

We chose to perform the analysis on CTs because it is the most common imaging
method to stage advanced ovarian cancer. We considered only the post-contrast portal-
venous phase because it is the most commonly performed phase for ovarian cancer staging.
Moreover, the signal intensities of CT data given by the Hounsfield units are intrinsically
quantitative and not operator-dependent, thus requiring less complex standardization than
compared to MRI and (US) ultrasound (US) [32,33].

The two outcomes, BRCA mutational status and PFS, were chosen because they are
significant and widely used in clinical practice. BRCA testing is recommended in clinical
practice because patients with that genetic alteration had a better response to platinum-
based therapy and are targetable with PARP-inhibitor agents [7,8]. PFS was chosen as
outcome because identifying those patients with a higher risk of relapse may imply a
stricter follow-up and more prompt intervention [34].

We included in the analysis the GTV because ovarian cancer is highly heterogeneous
and we wanted to include all information contained in the images. This is in accordance
with previous studies that tested radiomic analysis in survival and BRCA prediction.
The inclusion of GTV differed from the original research the CNN comes from. In that
study [30], the single slice with the most extensive area of the tumor was used for the
2D-CNN experiments. We decided to include all slices of the GTV also to develop the deep
learning model because ovarian masses often have cystic components and considering a
single slice may lead to losing many relevant pieces of information. We did not implement
a 3D-CNN due to its computational demand.

In Rizzo et al. [18], which included part of the patients used in the present study, the
addition of a radiomic feature to a clinical model improved the performance in predicting
early recurrence. We used the same outcome (dichotomized 12-month PFS). Still, we
performed a different analysis. First, we extracted the radiomic features again with new
software (MODDICOM) from all GTVs (including Group 1) to extract the same radiomic
features from all groups. Moreover, we added another large group (Group 2) of patients
to the training set because our aim was not to validate a single study but to create a new
model on a larger multicentric dataset.

Meier et al. [17] included 88 patients with high-grade serous ovarian cancer and found
a correlation between texture characteristics of ovarian cancer with PFS. Different from
the present study, they investigated heterogeneity between different tumor sites and not
the primary tumor characteristics. The heterogeneity between different tumor locations
probably reflects the diverse biological characteristics of metastasis, which permits the
tumor to elude the effect of treatments.

Zargari et al. [35] used as outcome for chemotherapy response the PFS at six months;
they dichotomized the outcome as well but chose a different temporal threshold. They
included all tumor volume, including primary and metastatic localizations. They included
103 patients; a correlation between the radiomics model and 6-month PFS was found;
however, they had a monocentric dataset and the predictive value was calculated only by
cross-folded validation. An interesting aspect of this paper is that spatial and frequency
features have almost the same weight in the final model. Our work also included those
kinds of features.
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Wei et al. [16] created a nomogram based on radiomic signature and clinical data that
demonstrated good performance in predicting PFS; they included 142 patients and chose
as thresholds for PFS 18 and 36 months. This was a multicentric study with validation and
test sets. In addition, in this study, they used four different scanners in two institutions but,
contrary to our results, they stated that this had a small impact on the model and results.
Its main limitation is the lack of correlation with the biological interpretation of findings
which were however promising.

Chen et al. [36] also created a mixed clinical–radiomic model that overperformed the
clinical model in predicting PFS; their sample size was quite big (256 patients), but the dataset
was monocentric and the model’s overall performance was moderate (AUC = 0.77). In our
experience, combining radiomic and clinical features improved the results of the models.

The biggest study about radiomics predicting PFS was recently published by
Fotopoulou et al. [15]; this was an external validation of a previously published Radiomic
Prognostic Vector (RPV) [20] which was associated with short OS; the RPV was associated
with the stromal component of the tumor and inversely with DNA damage response. RPV
had already been validated in an external cohort of patients and a biological interpretation
based on genomic data was given. The new external validation confirmed the role of RPV
but the significant outcome was slightly different in the two studies (OS vs. PFS).

Regarding BRCA, to the best of our knowledge, the only study that proposed a
radiomic model with good performance (AUC = 0.82) in predicting BRCA status is that
by Mingzhu et al. [21]. They included different phases of post-contrast CTs in the analysis,
enlarging the set of possibly correlated features. The included patients were 106; the dataset
was monocentric and there was only internal validation.

Using real-world data, our analysis failed to identify a reliable radiomics model that
predicts both early recurrence and BRCA mutation. The performance of both radiomic
and deep learning models showed low discriminative performance even in the training
set, raising concern about the high noise level contained in the dataset. This may depend
on the composition of the dataset: the two centers included in the training set are referral
centers for ovarian cancer. Many patients already had a staging CT when they arrived at
these centers. The included CTs derived from many different smaller centers and image ac-
quisition procedures may have varied widely, affecting radiomics analysis. The acquisition
is the first and fundamental step in radiomic analysis [37] and its variation may affect the
downstream pipeline. This is testified by the high number of features excluded because they
are unstable and would be in accordance with previous findings [38]. In Rizzo et al. [18],
many features were excluded because of reproducibility and redundancy. In addition, other
image acquisition parameters or reconstruction settings that were not considered in this
study may affect the reproducibility of radiomic features among different centers.

We decided to introduce ComBat harmonization before feature selection and machine
learning modeling to mitigate features’ lack of reproducibility given to differences among
centers. However, the performance did not improve, suggesting that the standard ComBat
method could not harmonize the data among the different centers based on the information
provided by slice thickness and manufacturer.

For radiomics models, we eliminated highly correlated features as commonly per-
formed when developing predictive models in radiomics studies to reduce overfitting.
We trained the models considering all reproducible features to understand if a too re-
strictive feature selection caused the model’s poor performances. However, as expected,
performances were even worse (not shown in the results section), including collinear and
redundant features.

The combination of radiomic and clinical variables produced clinical–radiomic models
that improved model performance to predict BRCA mutation. We obtained promising
results with an AUC of 0.74 for the testing set when using non-harmonized data.

Using a different statistical methodology, we also applied deep learning to test
if artificial intelligence would overcome the difficulties of the traditional radiomic ap-
proach. In classification analysis, Sun et al. [39] found that deep learning provided slightly
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better results when predicting axillary lymph node metastasis. For survival analysis,
Wang et al. [40] extracted deep learning features using a deep learning network and used
them as input for a Cox-PH model. They found a moderate performance of the deep
learning model in predicting 3-year PFS. Different from theirs, our deep learning model did
not overperform the other traditional models. Our deep learning approach was exploratory
and we adopted the simple CNN architecture from Lombardo et al. [30] to minimize the
number of model parameters and reduce overfitting due to the relatively small sample
size available for training. Transfer learning strategies may help addressing the problem
of limited data for deep learning models [41]. Furthermore, the same issues of image
standardization may have affected both traditional radiomic models and deep learning.

Our findings underline the limitations of radiomics: reproducibility of features and
models among different centers is low, affected by many technical variables that may
change between different scanners; the reproducibility of findings of different studies
is low too, lacking in literature a real independent validation of any published model;
Furthermore, the biological interpretation of radiomics findings is weak in many studies
on this field, and recent works suggested that biological correlation with radiomic features
is not mandatory [42]. Standardization protocols were proposed to overcome these limits
of the radiomic approach, such as IBSI [28], but probably standardization of other pipeline
steps is necessary. Nevertheless, our study showed that the inclusion of relevant clinical
variables could improve model performance in predicting BRCA mutation.

A limitation of this study is its retrospective nature, with all possible selection bias.
Another limitation is the heterogeneity of the included images, which, conversely, reflects
the real-world application of radiomics studies. A different harmonization method than the
ComBat harmonization used in this study may improve the reproducibility of the radiomic
features and produce radiomic models able to predict the considered outcomes [23]. In
addition, feature selection was performed on the whole training set, while incorporating
the feature selection process in each fold of the cross-validation may have better tested
the generalization capabilities of the optimized hyperparameters. We did not include
any explainability method about the deep learning method. Moreover, we included in
the analysis only primary tumors, while other recent papers [19,22,43,44] suggested the
importance of inter-site tumor heterogeneity in predicting ovarian cancer behavior.

5. Conclusions

In our multicentric dataset, representative of a real-life clinical scenario, we could not
find a good radiomic predicting model for PFS and BRCA mutational status with both
traditional and deep radiomics. However, the inclusion of relevant clinical variables in
combined clinical–radiomic models slightly improved model performance for the predic-
tion of BRCA mutation. This study highlights that to implement radiomics approaches
in clinical routine, we still need standardization of acquisition protocols, validation of
harmonization method and radiomic pipelines, other than robust, prospective, multicentric,
external validations of findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112739/s1, Table S1: List of names and characteristics
of the selected radiomic features.
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