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1  | INTRODUC TION

Renal cell carcinoma (RCC) is one of the most lethal urological tu‐
mours, accounting for 2%‐3% of malignancies in the United States.1 

There are many kinds of histologic subtypes, among which clear cell 
RCC (ccRCC) constitutes 70% of RCC.2 While nephrectomy is cura‐
tive method for ccRCC, approximately 30% of patients will relapse 
during the course of disease.3
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Abstract
Nowadays, gene expression profiling has been widely used in screening out prog‐
nostic biomarkers in numerous kinds of carcinoma. Our studies attempt to construct 
a clinical nomogram which combines risk gene signature and clinical features for 
individual	recurrent	risk	assessment	and	offer	personalized	managements	for	clear	
cell renal cell carcinoma. A total of 580 differentially expressed genes (DEGs) were 
identified	via	microarray.	Functional	analysis	revealed	that	DEGs	are	of	fundamen‐
tal importance in ccRCC progression and metastasis. In our study, 338 ccRCC pa‐
tients were retrospectively analysed and a risk gene signature which composed of 5 
genes	was	obtained	from	a	LASSO	Cox	regression	model.	Further	analysis	revealed	
that identified risk gene signature could usefully distinguish the patients with poor 
prognosis	in	training	cohort	(hazard	ratio	[HR]	=	3.554,	95%	confidence	interval	[CI]	
2.261‐7.472, P	<	 .0001,	n	=	107).	Moreover,	 the	prognostic	value	of	 this	gene‐sig‐
nature was independent of clinical features (P	=	.002).	The	efficacy	of	risk	gene	sig‐
nature was verified in both internal and external cohorts. The area under receiver 
operating characteristic curve of this signature was 0.770, 0.765 and 0.774 in the 
training,	 testing	and	external	validation	cohorts,	 respectively.	Finally,	 a	nomogram	
was developed for clinicians and did well in the calibration plots. This nomogram 
based on risk gene signature and clinical features might provide a practical way for 
recurrence	prediction	and	facilitating	personalized	managements	of	ccRCC	patients	
after surgery.
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Currently,	the	American	Joint	Committee	(AJCC)	staging	sys‐
tem	 and	 the	 Fuhrman	 grading	 system	 have	 been	 universally	 ac‐
knowledged for cancer management clinically.4 However, clinicians 
cannot	acquire	accurate	 information	 to	estimate	 recurrence‐free	
survival	 (RFS)	 or	 overall	 survival	 so	 that	 providing	 personalized	
treatment	 for	 ccRCC	 patients	 from	 the	 TNM	 and	 grade	 classifi‐
cation. This could be ascribed to the biological heterogeneity of 
cancer, and therefore, molecular exploration may help clinicians 
precisely make treatment decisions for ccRCC patients accord‐
ing	 to	 risk	 classification	 via	 acquiring	 biomarkers	 for	 prediction	
of recurrence.5 Thus, it is urgent to explore new biomarkers for 
discriminating high‐risk patients who may be inclined to have a 
higher	probability	of	recurrence,	thus	offering	personalized	cancer	
treatment after surgery.

Clear cell RCC is a highly heterogeneous disease, resulting from 
complicated interaction between genetic and environmental fac‐
tors.6 Analysing gene expression profiles of different cancer tissues 
or cells, with different tumour stages, may be helpful for identifica‐
tion of characteristic risk gene signature in cancer. Nowadays, many 
researchers have focused on the gene expression profiles of ccRCC 
and tried to illuminate the underlying mechanism of progression.7 
However, few of them are used clinically. Therefore, identifying a 
more precise and practical risk gene model for predicting prognosis 
is urgently needed.

In the present study, we identified the differentially expressed 
genes between the normal kidney samples and ccRCC tumour 

tissues by gene expression microarray. A risk gene signature that 
can reflect the biological heterogeneity of different ccRCC patients 
and	effectively	predict	clinical	RFS	was	established	via	 integrating	
gene expression profiles with matched clinical patient information. 
Moreover,	we	combined	both	genomic	and	clinical	 features	of	pa‐
tients to construct a nomogram model for more accurate recurrence 
evaluation	and	facilitating	personalized	management	of	ccRCC	pa‐
tients after surgery.

2  | MATERIAL S AND METHODS

2.1 | Study design and ccRCC specimen cohorts

We retrospectively analysed 215 paraffin‐embedded tumour tis‐
sues from ccRCC patients treated at the Sir Run Run Shaw Hospital 
(Hangzhou,	 China)	 between	 January	 2004	 and	 December	 2008.	
Besides, we obtained a total of 123 ccRCC patients with global gene 
expression profiling and detailed clinical information from TCGA da‐
tabase serving as external validation data set (Table 1). Computer‐
generated random numbers were applied to divide 215 specimens 
into a training cohort with a number of 107 samples and a validation 
cohort with a number of 108 samples. Total RNA was obtained from 
clinical	FFPE	samples	by	using	the	QIAGEN	FFPE	RNeasy	kit	(Qiagen	
GmbH).	The	quality	of	RNA	was	tested	by	NanoDrop	2000	spectro‐
photometer	(ThermoFisher	Scientific),	and	total	RNA	was	amplified	
by	Ovation	FFPE	WTA	System	(NuGEN).	The	specific	study	designs	

Variables

Training dataset 
(N = 107)

Testing dataset 
(N = 108)

External validation 
dataset (N = 123)

N% or mean (range)

Gender

Male 73 (68.2) 62 (57.4) 68 (55.3)

Female 34 (31.8) 48 (42.6) 55 (44.7

Age (years)

Male 58.16 (36‐79) 59.88 (37‐ 83) 57.98 (37‐79)

Female 60.61 (39‐82) 61.28 (33‐86) 60.56 (37‐82)

Tumor stage

I 47 (43.9) 55 (50.9) 50 (40.7)

II 14 (13.1) 12 (11.1) 27 (22.0)

III 26 (24.3) 26 (24.1) 28 (22.8)

IV 20 (18.7) 15 (13.9) 18 (14.5

Fuhrman	grade

I 13 (12.1) 3 (2.8) 9 (7.2)

II 57 (53.2) 53 (49.1) 67 (54.6)

III 32 (29.9) 39 (36.1) 32 (26.0)

IV 5 (4.7) 13 (12.0) 15 (12.2)

Lymph node 
invasion

12 (11.2) 9 (8.3) 11 (8.9)

Necrosis 33 (30.8) 44 (40.7) 37 (30.1)

Number of events 48 (44.9) 38 (35.2) 58 (47.2)

TA B L E  1  Patient	characteristics	of	
three cohorts
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were	 shown	 in	 Figure	 1.	 These	 studies	 were	 conducted	 with	 ap‐
proval from the Ethics Committee.

2.2 | Microarray data and differentially expressed 
gene analysis

ccRCC gene expression data (GSE68417) used in this study are 
available on GEO (https:// www.ncbi.nlm.nih.gov/geo/)8. All raw 
data CEL files (Affymetrix Human Gene 1.0 ST Array) were pro‐
cessed under the same chip platform. These raw data files were 
downloaded	 and	 normalized	 by	 using	 a	 robust	 multi‐array	 aver‐
aging	 method	 (expresso(data,bgcorrect.method	 ="rma",	 normal‐
ize.	 method="quantiles",	 pmcorrect.method="pmonly",	 summary.
method=	"medianpolish")).9 A classical criterion of t test was adopted 
to	identify	DEGs	with	a	change	≥twofold,	and	P‐value cut‐off <.01 
was considered to be statistically significant.

2.3 | Gene ontology analysis and Kyoto 
Encyclopedia of Genes and Genomes analysis

The	Database	for	Annotation	Visualization	and	Integrated	Discovery	
(DAVID) was used to conduct the Gene ontology analysis (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG).10,11 We used 

the human genome as the analysis background and defined P < .01 
to be statistically significant.

2.4 | Identification and validation of the prognostic 
gene signature

In order to screen out the risk gene signature, R software (ver‐
sion 3.2.1) and the ‘glmnet’ package were applied to perform 
the LASSO Cox regression analysis in the training data set. The 
LASSO penalty was used to achieve shrinkage and variable selec‐
tion simultaneously, and the optimal values of the penalty param‐
eter lambda were determined through 10 times cross‐validations. 
Genes	 which	 were	 significantly	 correlated	 with	 RFS	 in	 ccRCC	
were screen out based on the optimal lambda value. The risk score 
of each patient was calculated based on the expression level of 
each prognostic mRNA expression and its associated coefficient. 
Then, the patients in each data set were divided into low‐risk and 
high‐risk	 groups	 according	 to	 their	 mean	 risk	 score.	 Finally,	 we	
performed	 the	Kaplan‐Meier	 estimator	 and	 the	 log‐rank	 test	 to	
assess	RFS	differences	between	above	the	low‐risk	and	high‐risk	
groups.

2.5 | Validation of hub gene expression via 
quantitative real‐time PCR

The	 expression	 of	 identified	 hub	 genes	 was	 determined	 by	 qRT‐
PCR.	 Fifty	 normal	 kidney	 samples	 and	 50	 ccRCC	 tumour	 samples	
were obtained from Sir Run Run Shaw Hospital for validation of 
hub genes solely. The mRNA expression levels of risk genes were 
normalized	 to	 an	 internal	 standard	 (glyceraldehyde‐3‐phosphate	
dehydrogenase,	GAPDH).	PCR	primers	used	were	as	follows:	DCN:	
forward,	5 ‐́GACAAGGTCCGCCAGTTTATG‐3 ,́	 reverse,	5 ‐́TCGTCT 
AGTCTCCACTCATTCTG‐3 ;́	FGF2:	forward,	5 ‐́AGAAGAGCGACCC 
TCACATCA‐3 ,́	reverse,	5 ‐́CGGTTAGCACACACTCCTTTG‐3 ;́	STAT6:	 
forward,	 5 ‐́GTTCCGCCACTTGCCAATG‐3 ,́	 reverse,	 5 ‐́TGGATCTC 
CCCTACTCGGTG‐3 ;́	 CD19:	 forward,	 5 ‐́GGCCCGAGGAACCTCTA 
GT‐3 ,́	 reverse,	 5 ‐́TAAGAAGGGTTTAAGCGGGGA‐3 ;́	 MAP4K1:	 
forward,	5 ‐́GTCGTGGACCCTGACATTTTC‐3 ,́	 reverse,	5 ‐́CCTTAA 
AGACTTCCCCATACGTG‐3 ;́	 GAPDH:	 forward,	 5 ‐́AGACAGCCGC 
ATCTTCTTGT‐3 ,́	reverse,	5 ‐́TGATGGCAACAATGTCCACT‐3 .́

2.6 | Statistical analysis

We did a multivariate Cox regression analysis using backward se‐
lection to testify the independent of different indicators; vari‐
ables (P < .05) were remained in the final model for nomogram 
construction.

Our nomogram was generated via rms package in R platform 
and the multivariable Cox regression model. Comparisons between 
the nomogram and other prognostic systems were performed by 
using the rcorrp.cens package in Hmisc in R. Statistical analysis was 
done	in	R	(version	3.2.1)	and	SPSS	(version	22.0).	P‐value <.05 was 
deemed significant.

F I G U R E  1   Study flow

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68417
http://www.ncbi.nlm.nih.gov/geo/)
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3  | RESULTS

3.1 | Identification of DEGs between normal kidney 
samples and ccRCC tumour samples

In the microarray analysis, with the criteria P < .01 and fold control 
(FC)	≥1.5,	580	genes	were	identified	to	be	differentially	expressed	
between 14 normal kidney samples and 29 ccRCC tumour sam‐
ples.	The	volcano	plot	and	heatmap	were	presented	in	Figure	2A	
and 2.

3.2 | Functional enrichment analysis of DEGs and 
selection of risk gene signature

Then, 580 DEGs were put into DAVID for functional analysis. The 
GO analysis, including molecular function, cellular component (CC) 
and	biological	process	(BP),	showed	that	these	genes	were	primarily	

involved in cell adhesion, positive regulation of cell motility and 
WNT	 signalling	 pathway	 (Figure	 2C).	 To	 further	 elucidate	 the	 po‐
tential functional pathways of DEGs, we conducted KEGG pathway 
enrichment	analysis.	B	cell	receptor	signalling	pathway,	NF‐kappa	B	
signalling pathway and WNT signalling pathway were considered to 
be	the	most	significantly	enriched	pathways	(Figure	2D).	LASSO	Cox	
regression was used for further analysis, and 5 of these differentially 
expressed	genes	were	identified	to	be	significantly	related	to	RFS	of	
ccRCC (Table 2). The risk scores of each patient were calculated by 
a formula which was derived from the expression level of five risk 
genes weighted by regression coefficient.

3.3 | To further demonstrate the expression of risk 
genes via RT‐QPCR

To further confirm the expression of identified risk genes from net‐
work‐based	analysis,	RT‐QPCR	assay	of	five	hub	genes	(CD19,	FGF2,	

F I G U R E  2   A, Heatmap of the differentially expressed genes. Clinical ccRCC samples versus normal kidney samples. Red: up‐regulation; 
green: down‐regulation. B, The volcano plot of the differentially expressed genes. C, Gene Ontology analysis and significant enriched GO 
terms related to ccRCC progression. D, Significantly enriched pathway terms related to progression
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MAP4K1,	 DCN	 and	 STAT6)	 were	 performed	 between	 50	 normal	
kidney samples and 50 ccRCC tumour samples. The mRNA expres‐
sion levels of five hub genes were consistent with microarray results 
(Figure	3).	In	conclusion,	these	results	indicated	that	these	five	risk	
genes	 (CD19,	 FGF2,	MAP4K1,	DCN	and	STAT6)	were	 actually	 dif‐
ferentially expressed between normal kidney samples and ccRCC 
tumour samples.

3.4 | Construction and validation of risk gene 
signature score model for predicting RFS of 
ccRCC patients

The 215 patients were randomly divided into training data set 
(n	 =	 107)	 and	 testing	 data	 set	 (n	 =	 108).	 Median	 follow‐up	 was	
61.4	 months	 (IQR	 87.7‐23.1)	 for	 patients	 in	 the	 training	 data	 set	
and	37.1	months	 (IQR	51.7‐25.2)	 for	 those	 in	 the	 testing	data	 set.	
The patients in training data set were divided into low‐risk group 
(n	=	57)	and	high‐risk	group	(n	=	50)	based	on	the	mean	risk	score.	

Patients	 in	the	high‐risk	group	indicated	a	worse	clinical	prognosis	
when	compared	with	 those	 in	 the	 low‐risk	group	 (Figure	4A).	The	
efficacy	of	our	five	gene‐signature	for	RFS	prediction	of	ccRCC	pa‐
tients was further verified in testing data set and external validation 
data set. The same risk gene score‐based classifier was used to clas‐
sify patients in testing data set and external validation data set into 
the high‐risk and the low‐risk groups. Consistent with the results 
described above, patients in the high‐risk group had a significantly 
shorter	RFS	(Figure	4B	and	4).

3.5 | Independence of 5‐gene signature risk score 
model for RFS prediction from clinical features

To determine whether the prognostic value of five gene‐signature 
was independent of patient clinical features, we performed the uni‐
variable	and	multivariate	Cox	regression	analyses	using	RFS	as	the	
dependent variable and five gene‐signature score, age, gender, tu‐
mour stage, grade, lymph node invasion and necrosis as covariates in 

TA B L E  2   mRNA significantly associated with the recurrence‐free survival in Training dataset. T/N: expression in ccRCC samples/
expression in normal kidney samples

Variables Expression(T/N) HR P value Coefficient Description

STAT6 Up‐regulated 4.014 <.0001 1.674 Signal transducer and activator 
of transcription 6

CD19 Up‐regulated 1.817 <.0001 0.749 CD19 molecule

MAP4K1 Up‐regulated 1.802 .004 0.714 Mitogen‐activated	protein	
kinase kinase kinase kinase 1

FGF2 Down‐regulated 1.674 .005 −0.643 Fibroblast	growth	factor	2

DCN Down‐regulated 1.798 .007 −0.756 Decorin

F I G U R E  3  To	further	confirm	the	expression	of	identified	hub	genes	in	clinical	samples:	CD19,	FGF2,	MAP4K1,	DCN	and	STAT6
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each data set. We found that the five gene‐signature was significantly 
related	to	RFS	of	ccRCC	patients	after	adjusting	for	clinical	features	
in	the	training	data	set	(HR	=	2.107,	CI	=	1.689‐2.773,	P	=	.002),	the	
testing	data	set	 (HR	=	2.418,	CI	=	1.683‐3.417,	P < .0001) and the 
external	validation	data	set	(HR	=	2.195,	CI	=	1.645‐2.595,	P < .0001) 
(Tables 3‐5).

Besides, we introduced the stratification based on tumour stage. 
We further stratified ccRCC patients into two subgroups where the 
AJCC	 stages	 I	 and	 II	were	 fictitiously	 described	 as	 an	 early‐stage	
stratum	and	the	AJCC	stages	III	and	IV	as	a	late‐stage	stratum.	Result	
from	Figure	5A‐F	indicated	that	the	risk	gene	signature	still	had	the	
ability to distinguish that the outcome of patients with high‐risk 

F I G U R E  4  Kaplan‐Meier	curves	of	
recurrence‐free survival according to the 
risk gene signature. A, Training cohort 
(n	=	107);	B,	testing	cohort	(n	=	108);	C,	
external	validation	cohort	(n	=	123).	P 
values	and	hazard	ratios	were	calculated	
by using the unadjusted log‐rank test. 
HR	=	hazard	ratio

TA B L E  3   Univariable and multivariable Cox regression analysis of risk gene signature and other clinical features in training dataset

Variables

Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

risk gene signature 2.509 1.990‐3.163 <.0001 2.107 1.689‐2.773 .002

Age 1.003 0.976‐1.030 .834 0.993 0.965‐1.021 .615

Gender 1.023 0.572‐1.831 .938 1.065 0.559‐2.028 .849

Tumour stage 2.475 1.826‐3.354 <.0001 1.490 1.056‐2.007 .019

Fuhrman	grade 3.091 1.979‐4.826 <.0001 1.713 1.016‐2.887 .031

Necrosis 5.857 3.159‐10.859 <.0001 2.075 1.012‐4.256 .043

Lymph node invasion 16.233 7.369‐35.761 <.0001 2.972 1.176‐7.510 .021

TA B L E  4   Univariable and multivariable Cox regression analyses of risk gene signature and other clinical features in testing dataset

Variables

Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

risk gene signature 2.727 2.011‐3.914 <.0001 2.418 1.683‐3.417 <.0001

Age 1.005 0.979‐1.032 .728 1.026 0.995‐1.059 .105

Gender 1.008 0.514‐1.975 .981 0.782 0.352‐1.740 .782

Tumour stage 2.262 1.795‐3.524 <.0001 2.228 1.442‐3.442 <.0001

Fuhrman	grade 2.642 1.732‐4.031 <.0001 2.153 1.245‐3.724 .006

Necrosis 4.561 2.214‐9.397 <.0001 2.326 1.050‐5.154 .038

Lymph node invasion 5.327 2.403‐11.809 <.0001 3.495 1.400‐8.723 .007
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score was dramatically worse than that with low‐risk score both in 
the early‐stage and late‐stage stratums.

Receiver operating characteristic analysis was also performed 
to	 testify	 the	 specificity	 and	 sensitivity	 of	 RFS	 prediction	 in	 

each	 data	 set	 (Figure	 6A‐C).	 The	 risk	 gene	 signature	 score	 
model	possessed	a	similar	predictive	power	compared	with	AJCC	 
stage and tumour grade for the prognostic evaluation of ccRCC 
patients.

F I G U R E  5  Using	Kaplan‐Meier	
survival analysis to testify the 
independence of our risk gene signature 
from	AJCC	stage.	The	patients	from	each	
data set were stratified into subgroups. 
The risk gene signature was applied to the 
low‐stage patients (A, C, E) and high‐stage 
patients	(B,	D,	F)

TA B L E  5   Univariable and multivariable Cox regression analyses of risk gene signature and other clinical features in external validation 
dataset

Variables

Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

risk gene signature 2.922 2.570‐3.354 <.0001 2.195 1.645‐2.595 <.0001

Age 1.007 0.983‐1.032 .570 0.999 0.974‐1.024 .935

Gender 1.363 0.801‐2.320 .254 1.378 0.788‐2.410 .261

Tumour stage 3.142 2.335‐4.226 <.0001 1.519 1.032‐2.236 .034

Fuhrman	grade 4.354 2.873‐6.598 <.0001 2.245 1.239‐3.879 .004

Necrosis 4.251 2.474‐7.302 <.0001 2.545 1.395‐4.644 .002

Lymph node invasion 8.721 4.132‐18.409 <.0001 2.791 1.253‐6.219 .012
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3.6 | Construction of nomogram combined 5‐
gene signature with the other clinical features for 
personalized prediction

To come up with a useful approach to predict the risk of recurrence 
so	 as	 to	 facilitate	 personalized	 management	 of	 ccRCC	 patients,	 we	
constructed a nomogram which combined our five gene‐signature, 
and	 clinical	 features	 for	 predicting	 3‐year,	 5‐year	 and	 10‐year	 RFS	
(Figure	7A).	Results	from	Figure	7B‐D	indicated	that	the	line	segments	
in the calibration plots were close to the 45° line which meant the well 
prediction, demonstrating that our nomogram was useful for prediction 
of	3‐year,	5‐year	and	10‐year	RFS.	Besides,	the	C‐index	of	our	nomo‐
gram was 0.859, which also indicated the high predictive accuracy.

Our nomogram combined both genomic and clinical features of 
ccRCC	patients,	which	showed	better	accuracy	 for	predicting	RFS	

of ccRCC after nephrectomy when compared with SSIGN prog‐
nostic system.12 The C‐index of our nomogram was 0.859, 95% 
confidence interval (CI) 0.8149‐0.9031, which was significantly 
higher (P < .01) than the SSIGN prognostic system (0.808), 95% CI 
0.758‐0.858. Besides, while we excluded the risk gene signature 
from the nomogram, the C‐index of nomogram dropped to 0.819, 
95% CI 0.775‐0.863. These results indicated that our nomogram 
could	serve	as	a	predictor	for	RFS	of	ccRCC.

4  | DISCUSSION

In this retrospective study, results indicated that our risk gene signa‐
ture	model	developed	in	this	research	could	categorize	patients	who	
had	 significantly	 different	RFS	 into	 the	 low‐	 and	high‐risk	 groups.	

F I G U R E  6  Receiver	operating	characteristic	(ROC)	analysis	was	performed	to	evaluate	the	specificity	and	sensitivity	of	the	RFS	
prediction	by	risk	gene	score,	tumour	stage,	tumour	grade,	lymph	node	invasion	and	necrosis	in	(A)	training	cohort	(n	=	107);	(B)	testing	
cohort	(n	=	108)	and	(C)	external	validation	cohort	(n	=	123)
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Besides, the efficacy of risk gene signature was verified in both in‐
ternal and external validation cohorts, respectively. Importantly, a 
novel	prognostic	nomogram	for	precisely	predicting	RFS	of	ccRCC	
patients after nephrectomy was constructed based on the expres‐
sion of risk gene signature and clinical risk features.

Cancers	 are	 recognized	 as	 heterogeneous	 disease.13 Thus, 
identifying the dysregulated genes in tumour carcinogenesis and 
progression could be helpful for improving prognostic and thera‐
peutic strategies.14 Nowadays, development in microarray has con‐
tribute	 to	 the	acquisition	of	 large	amounts	of	data	which	 is	useful	
for exploring molecular mechanisms, risk stratification and guiding 
strategies for clinical therapy in different cancers.15‐17 In our study, 
microarray	 analysis	was	performed	 to	 acquire	 different	 expressed	
genes between normal kidney and ccRCC. Risk gene signature clas‐
sifier was generated to predict recurrence risk, and its prognostic 
value was verified in both internal and external validation cohorts. 
Moreover,	 this	 indicator	 is	 independent	 of	 clinical	 features	 and	
possessed a similar predictive power compared with those widely 
used	 indicators	 for	 ccRCC	 such	 as	AJCC	 stage	 and	 tumour	 grade.	
Among	 these	genes,	MAP4K1	was	previously	 known	 to	positively	
regulate cell motility and thereby to influence tumour cell invasion 

in the medulloblastoma and colon carcinoma.18‐20 Beside, Lourdes 
and	Wang,	Y	indicated	that	the	MAP4K1	was	related	to	the	progres‐
sion of bladder cancer21,22; STAT6 was found to promote intestinal 
tumorigenesis in the mouse model via inhibition of cytotoxic CD8 
response23 and was involved in lymphoma.24,25 It is reported that 
activation	of	FGFR1	by	its	ligand	fibroblast	growth	factor	2	(FGF2)	
could promote cell proliferation, epithelial‐mesenchymal transition 
and invasion in lung cancer.26	Overexpression	of	FGF2	could	also	in‐
duce	EMT	in	malignant	pleural	mesothelioma	cells	via	MAPK/MMP1	
signal and confer the poor prognosis.27 DCN is found to be a novel 
biomarker	for	the	diagnosis	of	colon	cancer	by	using	iTRAQ‐tagging	
and	2D‐LC‐MS/MS.28 Researchers found that T cells with chimeric 
antigen receptors (CAR T cells) which targets human CD19 (hCD19) 
have shown great efficacy against B cell malignancies.29 Therefore, 
our risk gene signature could potentially serve as a predictive appli‐
ance	for	personalized	treatment	and	might	also	be	potential	target	
for clinical therapeutic targets of ccRCC.

Finally,	a	nomogram	was	constructed	for	prediction	of	an	 indi‐
vidual's	recurrence	risk.	Despite	the	fact	that	we,	nowadays,	often	
apply traditional indicators in clinic, such as tumour grade, stage 
and	lymph	node	invasion	(lymph	node	invasion	owns	highest	hazard	

F I G U R E  7  The	nomogram	for	personalized	prediction	of	RFS	in	ccRCC	patients.	(A)	The	nomogram	for	predicting	probability	of	patients	
with	recurrence‐free	survival.	Risk:	Risk	gene	signature	scores;	LN:	lymph	node	invasion	(B)	The	calibration	plots	for	predicting	RFS	at	
3	years.	The	calibration	plots	for	predicting	RFS	at	5	years	(C)	and	10	years	(D).	Nomogram‐predicted	probability	of	recurrence	is	plotted	on	
the x‐axis; actual recurrence is plotted on the y‐axis. The red line represents the predictive efficacy of our nomogram
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ratios	in	our	study),	these	factors	are	unable	to	guide	personalized	
treatment.30,31 Importantly, when patients presented with the same 
stage or grade, these traditional factors are unable to predict an in‐
dividual's	risk.	Therefore,	our	nomogram	combined	individual	gene	
signature reflecting the biological heterogeneity of different ccRCC 
patients with traditional prognostic factors providing insights into a 
patient's	 clinicopathologic	 features	 so	as	 to	elevated	 the	accuracy	
of	 individual	 RFS	 prediction.32,33 We also demonstrated the per‐
formance of our nomogram in validation cohorts. However, this re‐
search	is	retrospective	and	our	sample	size	is	still	limited.	Thus,	our	
risk	gene	model	and	nomogram	still	require	further	validation	in	mul‐
ticenter clinical trials. Besides, we will validate the efficiency of our 
nomogram in other ccRCC patient cohorts in the following studies.

5  | CONCLUSIONS

This is the first research to combine gene expression profiles with 
clinical information for predicting clinical prognosis of ccRCC pa‐
tients. Our results show that the risk gene signature can effectively 
classify	ccRCC	patients	into	high	and	low‐risk	groups.	Moreover,	this	
nomogram might help clinicians accurately and personally predict 
the prognosis of patients with ccRCC after nephrectomy.
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