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Abstract: Diabetes mellitus (DM) burden encompasses diabetic kidney disease (DKD), the leading
cause of end-stage renal disease worldwide. Despite compelling evidence indicating that pharma-
cological intervention curtails DKD progression, the search for non-pharmacological strategies can
identify novel targets for drug development against metabolic diseases. One of those emergent
strategies comprises the modulation of the intestinal microbiota through fecal transplant from healthy
donors. This study sought to investigate the benefits of fecal microbiota transplant (FMT) on func-
tional and morphological parameters in a preclinical model of type 2 DM, obesity, and DKD using
BTBRob/ob mice. These animals develop hyperglycemia and albuminuria in a time-dependent man-
ner, mimicking DKD in humans. Our main findings unveiled that FMT prevented body weight gain,
reduced albuminuria and tumor necrosis factor-α (TNF-α) levels within the ileum and ascending
colon, and potentially ameliorated insulin resistance in BTBRob/ob mice. Intestinal structural integrity
was maintained. Notably, FMT was associated with the abundance of the succinate-consuming
Odoribacteraceae bacteria family throughout the intestine. Collectively, our data pointed out the safety
and efficacy of FMT in a preclinical model of type 2 DM, obesity, and DKD. These findings provide
a basis for translational research on intestinal microbiota modulation and testing its therapeutic
potential combined with current treatment for DM.

Keywords: diabetes mellitus; diabetic kidney disease; gut microbiota; fecal transplant; obesity

1. Introduction

Diabetic kidney disease (DKD) is one of the major complications of diabetes mellitus
(DM) [1,2] and develops in approximately 40% of diabetic individuals [1,3]. DKD is
considered the main cause of end-stage kidney disease (ESKD) [3], resulting in increased
morbidity and mortality rates, mainly due to cardiovascular complications [2].

Several risk factors contribute to the development and progression of DKD, including
non-modifiable and modifiable variables, such as age, sex, ethnicity, family history of
DM, duration of DM, glycemic control, hypertension, and obesity [1,3]. The pathogenesis
of DKD is complex and is triggered by the exposure of renal cells to excessive glucose
inflow. That hyper glucose burden leads to metabolic stress, hemodynamic alterations,
overactive renin-angiotensin-aldosterone system (RAAS), and upregulation of various
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signaling pathways resulting in oxidative stress, cellular dysfunction, inflammation, apop-
tosis and fibrosis [1]. Albuminuria is defined by a urinary albumin-to-creatinine ratio
(UACR) ≥ 30 mg/g [1] and is the hallmark of DKD diagnosis and progression [2,3]. It
is associated with an increased risk of ESKD and cardiovascular disease [2,3]. Currently,
therapeutic strategies to prevent DKD comprise adequate glycemic control, dietary and
lifestyle interventions, dyslipidemia treatment, blood pressure control, blockade of RAAS,
and antidiabetic drugs [1,2]. Despite broad pharmacological and non-pharmacological
approaches, DKD has evolved throughout the years, which prompted the development of
novel strategies to curtail its progression.

Among these novel therapeutic approaches, the modulation of the intestinal micro-
biota has emerged as a promising strategy. The gut microbiota is a complex microbial
community that plays an important role in many aspects of human health [4]. Several
factors can influence the composition of that microbiota, mode of birth, infant type of
feeding, host genetics, age, diet, lifestyle, medication, burden of comorbidities, and environ-
mental exposures [4]. The imbalance in the composition and function of the gut microbiota
has been associated with metabolic disorders, including obesity, insulin resistance, and
type 2 DM (T2DM) [5–7]. The gut microbiota participates in energy homeostasis, glucose
metabolism, insulin resistance, and weight gain [5,8,9]. Moreover, gut microbiota-derived
lipopolysaccharide (LPS) produced by Gram-negative bacteria is involved in compromis-
ing the integrity of the intestinal barrier, which leads to subclinical inflammation and
DM burden [9,10]. Diabetic individuals are dysbiotic and present a less diverse [7], dys-
functional, depleted in butyrate-producing bacteria microbiota, as well as an increase in
opportunistic pathogens [6], Likewise, DM is associated with a lower abundance of the
Firmicutes phylum, whereas higher proportions of the Bacteroidetes and Proteobacteria phyla
and Betaproteobacteria class were found [11]. Thus, understanding human microbiome
homeostasis is of paramount importance for therapeutic purposes, including dietary inter-
ventions [12], use of prebiotics [13], probiotics [14], symbiotics [15], and fecal microbiota
transplant (FMT) [16–18]. FMT consists of the administration of a solution of fecal matter
from healthy donors in order to modify the gut microbial composition of unhealthy recipi-
ents [18]. Here, we hypothesized that FMT may have beneficial effects on functional and
morphological parameters in the preclinical model of DKD using the BTBRob/ob mice, the
most robust animal model that empresses the human features of DKD [19].

2. Results
2.1. 16S rRNA Sequencing Analysis

In BTBR (Black and Tan, Obese Tufted) wild-type mice (WT), BTBRob/ob mice not
submitted to FMT or FMT (−), and BTBRob/ob mice submitted to FMT or FMT (+), sequenc-
ing of the 16S rRNA disclosed seven bacterial phyla, including Bacteroidetes, Firmicutes,
Proteobacteria, Actinobacteria, Verrucomicrobia, Deferribacteres, and Chloroflex (Figure 1A). In
all groups, most sequences revealed greater proportions of the Bacteroidetes phylum when
compared to the Firmicutes phylum. See Supplementary Materials for detailed information.

Alpha-diversity analysis using Shannon’s index indicated that the species richness
was similar among groups (Figure 1B). Beta diversity analysis, using principal coordinate
analysis (PCoA) based on Bray–Curtis dissimilarity metrics, was not associated with the
treatment (Figure 1C).

When we evaluated the rate of butyrate-producing bacteria (Ruminococcaceae and
Lachnospiraceae) relative to non-producing bacteria, an increase in the proportion in the
Lachnospiraceae family was observed in 14-week-old BTBR WT mice over 14-week-old
BTBRob/ob FMT (−) and FMT (+) mice with similar ages (p = 0.026) (Figure 1D). Next, we
investigated the effect of genotype and treatment on the microbiota quantified by a log2-fold
change and found a higher relative abundance in the Gammaproteobacteria and Verrucomicro-
biae classes and a lower abundance in the Dehalococcoidia and Odoribacteraceae families in
14-week-old BTBRob/ob FMT (−) mice. Importantly, FMT increased the abundance of the
Odoribacteraceae family in 14-week-old BTBRob/ob mice (Figure 1E).
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Figure 1. Intestinal composition analysis by 16S rRNA sequencing in BTBRob/ob FMT (+) and
BTBRob/ob FMT (−) mice compared to BTBR WT mice. (A) Bacterial phyla according to 16S rRNA
sequencing of 10- and 14-week-old BTBRob/ob FMT (+) and FMT (−) mice compared to age-matched
BTBR WT mice: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Verrucomicrobia, Deferribacteres,
and Chloroflex. (B) Alpha diversity analysis by Shannon Index in 10-week-old BTBR WT and age-
matched BTBRob/ob mice (p = 0.24), and among 14-week-old BTBR WT versus BTBRob/ob FMT (−)
and BTBRob/ob FMT (+) mice (p = 0.21) indicated that the species richness was similar among
groups. Results are median and IQR. (C) Principal coordinate analysis (PCoA) based on Bray–Curtis
dissimilarity metrics did not show any clearly associated clusters in relation to the study animals.
Results are median and IQR. (D) Butyrate producer Lachnospiraceae bacteria family proportions were
similar between 10-week-old BTBR WT and age-matched BTBRob/ob mice (p = 0.59), yet higher
proportions of these bacteria in 14-week-old BTBR WT compared to 14-week-old BTBRob/ob FMT
(−) and FMT (+) mice (* p = 0.026) were observed. No significant difference was found between
14-week-old BTBRob/ob FMT (+) and FMT (−) mice (p = 0.39). Results are median and IQR. (E,F)
Assessment of the differences in relative abundance between genotypes effect evaluated by log 2-fold
change demonstrated greater relative abundance in the Gammaproteobacteria and Verrucomicrobiae
classes and lower abundance in the Dehalococcoidia and Odoribacteraceae families in 14-week-old
BTBRob/ob FMT (−) mice. The treatment increased the abundance of the Odoribacteraceae family in
14-week-old BTBRob/ob FMT (+) mice. In all analyses, n = 6/group.
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2.2. Functional and Metabolic Parameters in BTBR WT, BTBRob/ob FMT (−), and BTBRob/ob FMT (+) Mice

As expected, BTBRob/ob mice exhibited higher body weight gain when compared
to BTBR WT mice (p > 0.05), and this difference was maintained over time. However,
BTBRob/ob FMT (+) mice presented lower body weight when compared to untreated
BTBRob/ob mice at all time points (p < 0.05) (Figure 2A). All BTBRob/ob mice, regardless of
age and treatment, had significantly increased blood glucose when compared to BTBR WT
mice (p < 0.05) (Figure 2B).
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Figure 2. Analysis of the functional and metabolic parameters in BTBRob/ob FMT (+) and BTBRob/ob

FMT (−) mice compared to BTBR WT mice. (A) BTBRob/ob mice showed significantly higher body
weight when compared to BTBR WT mice (*** p = 0.0001); however, 14-week-old BTBRob/ob FMT
(+) mice at all intervals gained less body weight than BTBRob/ob FMT (−) mice (Row 1: * p = 0.03,
Row 2: * p = 0.02, Row 3: * p = 0.02, Row 4: * p = 0.04, Row 5: * p = 0.01). (B) Fasting blood
glucose was higher in 10-week-old BTBRob/ob mice when compared to age-matched BTBR WT mice
(p = 0.0001), and between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice when compared
to age-matched BTBR WT mice (**** p < 0.0001). No difference was found between 14-week-old
BTBRob/ob FMT (−) and FMT (+) mice (p = 0.78). (C) Glycosuria did not change significantly between
10-week-old BTBR WT and age-matched BTBRob/ob mice (p = 0.59). However, it was higher between
14-week-old BTBR WT and 14-week-old BTBRob/ob FMT (−) (** p = 0.002) and FMT (+) (** p = 0.02)
mice, yet with no significant difference between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice
(p > 0.99). (D,E) The body weight of 14-week-old BTBRob/ob FMT (−) mice correlated positively
to the Verrucomicrobia phylum (r = 0.9; * p = 0.01) (D) and Flavonifractor genus (r = 0.88; * p = 0.02)
(E). (F) Body weight of 14-week-old BTBRob/ob FMT (+) mice was positively associated with the
intestinal Betaproteobacteria class (r = 0.93, ** p = 0.008). (G) Plasma insulin was elevated in 10-week-
old BTBRob/ob when compared to age-matched BTBR WT mice (* p = 0.01) and between 14-week-old
BTBR WT mice versus BTBRob/ob FMT (−) mice (* p = 0.02). No significant difference was found
between 14-week-old BTBR WT and BTBRob/ob FMT (+) mice (p = 0.3) and 14-week-old BTBRob/ob

FMT (−) and BTBRob/ob FMT (+) mice (p > 0.99). (H) Plasma C-peptide was higher in 10-week-old
BTBRob/ob mice when compared to age-matched BTBR WT mice (* p = 0.01) and between 14-week-old
BTBR WT and BTBRob/ob FMT (−) mice (* p = 0.02). No significant difference was found between
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14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p > 0.05) and 14-week-old BTBR WT and
BTBRob/ob FMT (+) mice (p = 0.79). (I) Plasma glucagon did not change significantly between 10-
week-old BTBR WT and age-matched BTBRob/ob mice (p = 0.57). However, glucagon levels were
higher in 14-week-old BTBRob/ob FMT (−) mice when compared to 14-week-old BTBR WT (* p = 0.02)
but not to BTBRob/ob FMT (+) mice (p > 0.99). There was a trend toward higher glucagon levels in
BTBRob/ob FMT (+) mice in comparison to age-matched BTBR WT mice (p = 0.05). (J) HOMA-IR in
10-week-old BTBRob/ob was elevated when compared to age-matched BTBR WT mice (* p = 0.02)
and between 14-week-old BTBR WT versus BTBRob/ob FMT (−) mice (** p = 0.006). However, no
difference was observed between 14-week-old BTBR WT and 14-week-old BTBRob/ob FMT (+) mice
(p = 0.2) and between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p > 0.99). (K) HOMA-β
was significantly higher in 10-week-old BTBRob/ob when compared to age-matched BTBR WT mice
(p = 0.01) and did not change significantly between 14-week-old BTBR WT and BTBRob/ob FMT (−)
and BTBRob/ob FMT (+) mice (p = 0.22 and p > 0.99, respectively). All data are means ± SEM. In all
analyses, n = 6/group.

Glycosuria was higher in 14-week-old BTBRob/ob FMT (−) and FMT (+) mice when
compared to age-matched BTBR WT mice and showed no difference due to treatment
(p > 0.05) (Figure 2C). Body weight was positively correlated with the Verrucomicrobia
phylum in 14-week-old BTBRob/ob FMT (−) mice (r = 0.9, * p = 0.02) (Figure 2D) and the
Flavonifractor genus (r = 0.88, * p = 0.02) (Figure 2E) and Betaproteobacteria class (r = 0.93,
** p = 0.008) in BTBRob/ob FMT (+) mice (Figure 2F).

Regarding metabolic parameters, plasma insulin (Figure 2G) and C-peptide (Figure 2H)
levels were higher in the 10- and 14-week-old BTBRob/ob when compared to age-matched
BTBR WT mice (p < 0.05), and FMT abrogated that increase. Plasma glucagon was not
significantly different between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p >
0.05) (Figure 2I). To access insulin resistance and secretion using fasting glucose and insulin
concentration, we evaluated HOMA-IR and HOMA-β indexes. Thus, HOMA-IR was
higher in 10- and 14-week-old BTBRob/ob mice when compared to age-matched BTBR WT
mice (p < 0.05), and FMT prevented the increase in HOMA-IR in BTBRob/ob mice (Figure 2J).
Islet cell function, assessed by HOMA-β, was higher in 10-week-old and BTBRob/ob mice
and was not affected by the treatment (Figure 2K).

2.3. Pancreas Histological and Metabolic Parameters and Plasma Enteroendocrine Hormones Evaluation

Morphological evaluation of the pancreatic islet area demonstrated hypertrophy in
all BTBRob/ob mice, regardless of age and treatment, when compared to BTBR WT mice
(p > 0.05) (Figure 3A).

To gain insights into the secretion of enteroendocrine hormones in DKD and obesity
settings, we evaluated glucagon- like peptide -1 (GLP-1 )levels. That hormone exerts a
positive impact on glucose and energy homeostasis by stimulating glucose-dependent
insulin secretion, as well as inhibiting glucagon release and decreasing food intake [20].
GLP-1 was not significantly different among treated and untreated BTBRob/ob mice in
comparison to BTBR WT mice (p > 0.05) yet was significantly higher in 10-week-old
BTBRob/ob mice (Figure 3B). On the other hand, glucagon-like peptide 2 (GLP-2), which
exerts an intestinotrophic effect, improving intestinal epithelial proliferation and reducing
intestinal permeability [21], was elevated in 14-week-old BTBRob/ob FMT (−) and FMT
(+) mice when compared to age-matched BTBR WT mice (p < 0.05), and not affected
by FMT (Figure 3C). Peptide YY (PYY), an intestinal hormone associated with delayed
gastric emptying, gut motility, and reduced appetite [21,22], was higher in 14-week-old
BTBRob/ob FMT (−) mice, whereas FMT prevented that increase (Figure 3D). Glucose-
dependent insulinotropic polypeptide (GIP), an incretin released by nutrients present in
the gastrointestinal tract that potentiates insulin secretion [20], was significantly elevated in
14-week-old BTBRob/ob FMT (−) and FMT (+) mice when compared to age-matched BTBR
WT mice (p < 0.05) (Figure 3E).
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Figure 3. Analysis of morphological and metabolic parameters in BTBRob/ob FMT (+) and FMT
(−) mice compared to BTBR WT mice. (A) Representative hematoxylin-eosin (HE) staining of
morphological evaluation of pancreatic islets in 10-week-old BTBR WT compared to age-matched
BTBRob/ob mice and 14-week-old BTBR WT compared to BTBRob/ob FMT (+) and FMT (−) mice.
Data exhibited hypertrophy of the pancreatic islet in 10-week-old BTBRob/ob mice when compared to
age-matched BTBR WT mice (** p = 0.005), and between BTBRob/ob FMT (−) (** p = 0.008) and FMT (+)
(* p = 0.01) versus 14-week-old BTBR WT mice. No difference was observed between BTBRob/ob FMT
(−) and FMT (+) mice (p = 0.93). (B) Plasma GLP-1 was significantly more elevated in 10-week-old
BTBRob/ob mice when compared to age-matched BTBR WT mice (* p = 0.01) but did not show a
significant difference between 14-week-old BTBR WT versus 14-week-old BTBRob/ob FMT (−) (p
= 0.23) and FMT (+) mice (p > 0.99). (C) Plasma GLP-2 was significantly elevated in 14-week-old
BTBRob/ob FMT (−) and BTBRob/ob FMT (+) mice when compared to age-matched BTBR WT mice
(* p = 0.02 and * p = 0.01, respectively), but no difference was found between BTBRob/ob 14-week-old
FMT (−) and FMT (+) mice (p > 0.99). (D) Plasma PYY was significantly different between 14-week-
old BTBR WT and 14-week-old BTBRob/ob FMT (−) (* p = 0.02) mice, although no difference was
observed between 14-week-old BTBR WT and BTBRob/ob FMT (+) mice (p > 0.99). (E) Plasma GIP
was significantly higher in 14-week-old BTBRob/ob FMT (−) and BTBRob/ob FMT (+) mice when
compared to age-matched BTBR WT mice (* p = 0.02 for both), but no difference was found between
BTBRob/ob 14-week-old FMT (−) and BTBRob/ob FMT (+) mice (p > 0.99). All data are means ± SEM.
Scale bars represent 100 µm in (A). In all analyses, n = 5–6/group.

2.4. Renal Functional and Histological Parameters and Systemic Inflammation

FMT prevented the increase in urinary albumin-to-creatinine ratio (UACR) in 14-
week-old BTBRob/ob mice (Figure 4A). Despite the impact of FMT on albuminuria, we
only observed a slight decrease in hyperfiltration, as assessed by creatinine clearance
(Figure 4B). In 14-week-old BTBRob/ob FMT (+) mice, UACR was associated negatively
with the Odoribacteraceae family (r = −0.85, p = 0.034) (Figure 4C) and Deltaproteobacteria
class (r = −0.85, p = 0.034) (Figure 4D), whereas in 14-week-old BTBRob/ob FMT (−) and
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FMT (+) mice, UACR was correlated negatively to the Lactobacillales order (r = −0.9, p = 0.02
and r = −0.89, p = 0.04, respectively) (Figure 4E).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 21 
 

 

 

 
Figure 4. Functional and morphological evaluation of the kidney, metagenomics analysis, and sys-

temic inflammatory markers. (A) Urinary albumin-to-creatinine ratio (UACR; μg/mg) was higher 

in 10-week-old BTBRob/ob mice when compared to the UACR of age-matched BTBR WT mice (** p= 

0.006). UACR in 14-week-old BTBRob/ob FMT (-) mice was significantly more elevated when com-

pared to age-matched BTBR WT mice (** p = 0.007). Additionally, UACR in 14-week-old BTBRob/ob 

FMT (+) mice was significantly lower when compared to BTBRob/ob FMT (-) mice (* p = 0.03), and no 

significant difference was found when compared to 14-week-old BTBR WT mice (p = 0.55). (B) Glo-

merular filtration rate in accordance with treatment and age: 14-week-old BTBR WT versus BTBRob/ob 

FMT (-) (p = 0.26), 14-week-old BTBR WT versus BTBRob/ob FMT (+) (p = 0.63), and BTBRob/ob FMT (-) 

versus FMT (+) mice (p= 0.78). (C,D) UACR of 14-week-old BTBRob/ob FMT (+) mice correlated nega-

tively to the Odoribacteraceae family (r = −0.85; p = 0.034) and Deltaproteobacteria class (r = −0.85; p = 

0.034). (E) UACR in 14-week-old BTBRob/ob FMT (-) and FMT (+) mice interacted negatively with the 

Lactobacillales order (r = −0.9; p = 0.02 and r = −0.89; p = 0.04 respectively). (F) Representative of 

Figure 4. Functional and morphological evaluation of the kidney, metagenomics analysis, and
systemic inflammatory markers. (A) Urinary albumin-to-creatinine ratio (UACR; µg/mg) was higher
in 10-week-old BTBRob/ob mice when compared to the UACR of age-matched BTBR WT mice
(** p = 0.006). UACR in 14-week-old BTBRob/ob FMT (−) mice was significantly more elevated
when compared to age-matched BTBR WT mice (** p = 0.007). Additionally, UACR in 14-week-
old BTBRob/ob FMT (+) mice was significantly lower when compared to BTBRob/ob FMT (−) mice
(* p = 0.03), and no significant difference was found when compared to 14-week-old BTBR WT mice
(p = 0.55). (B) Glomerular filtration rate in accordance with treatment and age: 14-week-old BTBR WT
versus BTBRob/ob FMT (−) (p = 0.26), 14-week-old BTBR WT versus BTBRob/ob FMT (+) (p = 0.63), and
BTBRob/ob FMT (−) versus FMT (+) mice (p= 0.78). (C,D) UACR of 14-week-old BTBRob/ob FMT (+)
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mice correlated negatively to the Odoribacteraceae family (r = −0.85; p = 0.034) and Deltaproteobacteria
class (r = −0.85; p = 0.034). (E) UACR in 14-week-old BTBRob/ob FMT (−) and FMT (+) mice interacted
negatively with the Lactobacillales order (r = −0.9; p = 0.02 and r = −0.89; p = 0.04 respectively).
(F) Representative of periodic acid-Schiff (PAS) staining of kidney sections in BTBR WT, BTBRob/ob

FMT (−), and FMT (+) mice between 10 and 14 weeks of age. 14-week-old BTBRob/ob FMT (−)
and FMT (+) mice showed an increase in the accumulation of mesangial matrix when compared
to age-matched BTBR WT mice (** p = 0.002 for both), and FMT did not prevent that structural
damage in 14-week-old BTBRob/ob compared to untreated mice (p = 0.98). (G) Fold change of PDGF
expression in the kidney in relation to age-matched BTBR WT: 10-week-old BTBRob/ob mice versus
14-week-old BTBRob/ob FMT (−) mice was significantly different (* p = 0.02), but no difference was
found in 10-week-old BTBRob/ob mice versus 14-week-old BTBRob/ob FMT (+) mice (p = 0.05), and
between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p > 0.99). (H–J) Plasma evaluation of
systemic inflammatory markers TNF-α (H), IL-6 (I), and MCP-1 (J) had no significant difference in
accordance to the age and treatment (p > 0.99). All data are means ± SEM. Scale bars represent 20 µm
in (F). In all analyses, n = 5–6/group.

However, BTBRob/ob mice of all ages, regardless of treatment, exhibited an increase
in the accumulation of the mesangial matrix (Figure 4F), a hallmark not only of early
stages of DKD but also of progression [1]. In line with these findings, we verified an
induction of several genes within the kidneys of BTBRob/ob mice of all ages, indicating renal
hypertrophy and fibrosis E-cadherin, actin alpha 2 (Acta 2), cluster of differentiation (CD90),
transforming growth factor beta (TGF-β), sodium-glucose co-transporter 1 (SGLT-1) and
sodium-glucose co-transporter 2 (SGLT-2) (Supplementary Figure S1A–F). Platelet-derived
growth factor (PDGF) expression was not upregulated in treated animals, suggesting a
potential reduction in mesangial proliferation (Figure 4G).

Plasma evaluation of systemic inflammatory markers, including tumor necrosis factor-
α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1), was
similar among mice in all groups (p > 0.05) (Figure 4H–J), which points out that FMT was a
safe treatment in these animals. TNF-α gene expression was similar in all BTBRob/ob mice,
regardless of time and treatment (p > 0.05) (Supplementary Figure S1G).

2.5. Evaluation of the Number of Podocytes, Cell Death, and Renal Oxidative Stress in Renal Tissue

To verify the impact of FMT on halting the progression of DKD, we sought to analyze
the number of Wilms´Tumour-1 (WT1+) podocyte/glomerulus. Podocytopenia was found
in all BTBRob/ob mice, independently of age, and was not prevented by FMT (Figure 5A).
Likewise, FMT did not prevent the downregulation of podocyte genes, such as nephrin,
podocin, and integrin β1 (Supplementary Figure S1H–J). Nonetheless, WT-1 expression
was maintained after FMT, as opposed to untreated animals, highlighting the potential for
preservation of both the podocytes and glomerular filtration barrier (Figure 5B).

We also investigated the 4- hydroxy-2-noneal (4-HNE) lipid peroxidation marker as a
result of oxidative stress signaling in the kidney induced by hyperglycemia. Lipid-related
oxidative stress was not significantly different in all mice, regardless of age and treatment
(p > 0.05) (Figure 5C). When we evaluated total caspase-mediated cell death within the
kidneys of BTBR WT and BTBRob/ob mice, no differences were observed in FMT-treated
and non-treated animals (Figure 5D). Likewise, cleaved caspase 3 expression did not change
in accordance with time and treatment (Figure 5E).

2.6. TNF-α Gene Expression and Morphological Parameters in the Ileum and Ascending Colon

FMT decreased TNF-α gene expression in the ileum and preserved the height of the
crypt and villi in this segment of the intestine (Figure 6A,B). Similar findings were found
in the ascending colon (Figure 6C,D). These findings highlight the safety of FMT and the
association of decreased inflammation in the intestine.
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Figure 5. Immunohistochemical analysis of WT-1, total caspase, cleaved caspase-3, and 4-hydroxy-
2-noneal (4-HNE) in the kidneys of BTBRob/ob FMT (−) and FMT (+) mice compared to BTBR WT
mice. (A) BTBRob/ob mice exhibited lower detection of WT-1+ cells in all ages when compared to
BTBR WT mice: 10-week-old BTBRob/ob and age-matched BTBR WT mice (** p = 0.004), 14-week-
old BTBR WT versus 14-week-old BTBRob/ob FMT (−) (*** p = 0.0007) and FMT (+) (*** p = 0.0001)
mice. FMT did not prevent a decrease in the podocyte number (p = 0.93). (B) Fold change of WT-1
expression in the kidney in relation to age-matched BTBR WT: 10-week-old BTBRob/ob mice versus
14-week-old BTBRob/ob FMT (−) mice was significantly different (* p = 0.03), but no difference was
found in 10-week-old BTBRob/ob mice versus 14-week-old BTBRob/ob FMT (+) mice (p = 0.16), and
between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p = 0.62). (C) Immunohistochemical
analysis for lipid-related oxidative stress was not significantly different between 10-week-old and
BTBRob/ob and age-matched BTBR WT mice (p = 0.7), and 14-week-old BTBR WT versus 14-week-old
BTBRob/ob FMT (−) mice (p = 0.89), 14-week-old BTBR WT versus 14-week-old BTBRob/ob FMT (+)
mice (p = 0.1), and 14-week-old BTBRob/ob FMT (−) versus 14-week-old BTBRob/ob FMT (+) mice
(p = 0.16). (D) Immunohistochemical analysis for total caspase showed no significant difference
according to age and treatment: 10-week-old BTBRob/ob versus age-matched BTBR WT mice (p = 0.7),
14-week-old BTBR WT versus 14-week-old BTBRob/ob FMT (−) mice (p = 0.09), 14-week-old BTBR
WT versus 14-week-old BTBRob/ob FMT (+) mice (p = 0.57), and 14-week-old BTBRob/ob FMT (−)
versus 14-week-old BTBRob/ob FMT (+) mice (p = 0.85). (E) Immunohistochemical analysis for cleaved
caspase-3 showed a significant difference between 10-week-old BTBRob/ob and age-matched BTBR
WT mice (* p = 0.03), but no significant difference was found between 14-week-old BTBR WT versus 14-
week-old BTBRob/ob FMT (−) mice (p > 0.99), 14-week-old BTBR WT versus 14-week-old BTBRob/ob

FMT (+) mice (p = 0.99), and 14-week-old BTBRob/ob FMT (−) versus 14-week-old BTBRob/ob FMT (+)
mice (p = 0.99). Scale bars represent 10 µm in (A) and 20 µm in (C–E). All data are means ± SEM. In
all analyses, n = 5–6/group.
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Figure 6. Evaluation of gene expression and morphological aspects of intestinal crypts and villi in
BTBRob/ob FMT (−) and BTBRob/ob FMT (+) mice compared to BTBR WT mice. (A) Fold change
of TNF-α expression in the ileum from age-matched BTBR WT: TNF-α expression of 14-week-old
BTBRob/ob FMT (+) mice was significantly downregulated when compared to 10-week-old BTBRob/ob

mice (** p = 0.004) and 14-week-old BTBRob/ob FMT (−) mice (* p = 0.02). No significant difference
was found between 10-week-old BTBRob/ob versus 14-week-old BTBRob/ob FMT (−) mice (p = 0.76).
(B) Representative hematoxylin-eosin (HE) staining of the morphological evaluation of ileum crypts
from 10-week-old BTBRob/ob compared to age-matched BTBR WT showed no difference in crypt
height (p = 0.08), also from 14-week-old BTBR WT versus 14-week-old BTBRob/ob FMT (−) (p = 0.49)
and FMT (+) (p > 0.99) mice. No difference was observed between 14-week-old BTBRob/ob FMT (−)
and FMT (+) mice (p > 0.99). Furthermore, no difference was found in the villi of this segment in
10-week-old BTBRob/ob mice and age-matched BTBR WT mice (p = 0.16), and between 14-week-old
BTBR WT and 14-week-old BTBRob/ob mice FMT (−) (p > 0.99) and FMT (+) (p > 0.99) mice. No
difference was observed between 14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p = 0.99).
(C) Fold change of TNF-α expression in the ascending colon relative to age-matched BTBR WT:
TNF-α expression of 14-week-old BTBRob/ob FMT (+) mice was significantly downregulated when
compared to 10-week-old BTBRob/ob mice (** p = 0.0014), but was not significantly different from
14-week-old BTBRob/ob FMT (−) mice (p = 0.1). (D) Representative hematoxylin-eosin (HE) staining
from morphological assessment of ascending colon crypts in 10-week-old BTBRob/ob mice and age-
matched BTBR WT and 14-week-old BTBR WT mice in comparison to BTBRob/ob FMT (−) and
FMT (+) mice. The data showed no difference in the height of 10-week-old BTBRob/ob crypts when
compared to age-matched BTBR WT (p = 0.18) mice and between 14-week-old BTBR WT and 14-week-
old BTBRob/ob FMT (−) (p > 0.99) and FMT (+) (p = 0.99) mice. There was no difference between
14-week-old BTBRob/ob FMT (−) and FMT (+) mice (p = 0.99). All data are means ± SEM. Scale bars
represent 50 µm in (B) and 20 µm in (D). In all analyses, n = 5–6/group.
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Likewise, we did not find significant differences in claudin-1 expression between BTBR
WT and BTBRob/ob mice regardless of time and treatment in the ileum crypt and villus
(p > 0.05) (Figure 7A) and in the ascending colon crypts (Figure 7B), corroborating the gene
expression data. Occludin expression in the ileum crypts and villi and in the ascending
colon crypts was similar regardless of age and treatment (Figure 7C,D). Decreased occludin
gene expression was prevented by FMT in the ileum and ascending colon of treated mice,
but not claudin, zonula occludens-1, and leucine-rich repeat-containing G-protein coupled
receptor 5 (LgR5) (Supplementary Figure S2A–H).
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Figure 7. Immunohistochemical evaluation of claudin-1 and occludin proteins in ileum and ascending
colon in BTBRob/ob FMT (+) and BTBRob/ob FMT (−) mice compared to BTBR WT mice. (A) Claudin-
1 evaluation in the ileum crypts showed no significant difference according to age and treatment (all
p > 0.99). Likewise, detection of claudin-1 in ileum villi was not statistically significant: 14-week-old
BTBR WT versus 14-week-old BTBRob/ob FMT (−) (p > 0.99) and BTBRob/ob FMT (+) (p = 0.97) mice,
and 14-week-old BTBRob/ob FMT (−) versus FMT (+) (p = 0.99) mice. (B) Claudin-1 expression in
ascending colon crypts was not different among mice, regardless of age and treatment (all p > 0.99).
(C) Occludin expression in ileum crypts was not significantly different between 14-week-old BTBR
WT versus 14-week-old BTBRob/ob FMT (−) (p = 0.79) and FMT (+) (p > 0.99) mice, and 14-week-old
BTBRob/ob FMT (−) versus FMT (+) (p > 0.99) mice. In ileum villi, occludin expression was not
different between 14-week-old BTBR WT versus 14-week-old BTBRob/ob FMT(-) and FMT (+) (p >
0.99 for both) mice, and 14-week-old BTBRob/ob FMT(-) versus FMT (+) (p > 0.99) mice. (D) Occludin
expression in the ascending colon crypt was significantly different between 10-week-old BTBRob/ob

and age-matched BTBR WT mice (* p = 0.01), but not significantly different between 14-week-old
BTBR WT versus 14-week-old BTBRob/ob FMT (−) (p = 0.06) and FMT (+) (p = 0.27) mice, and 14-
week-old BTBRob/ob FMT (−) versus FMT (+) (p = 0.96) mice. All data are means ± SEM. Scale bars
represent 100 µm in (A–D). All data are means ± SEM. In all analyses, n = 4–6/group.

3. Discussion

The present study sought to investigate the use of FMT in BTBRob/ob in mice as a
possible therapeutic strategy to mitigate hyperglycemia-driven DKD progression. Our
main results showed that FMT is a safe treatment that prevented body weight gain, reduced
albuminuria, decreased local expression of TNF-α in the ileum and ascending colon, and
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potentially ameliorated insulin resistance in BTBRob/ob mice. To our knowledge, this is the
first study using FMT in BTBRob/ob mice.

Murine models, especially those genetically modified, have been widely used in
research on microbiota and FMT, allowing a better understanding of host–microbiota
crosstalk [5,16,23,24]. Importantly, FMT efficacy is challenged by several factors, such as
route of delivery, amount of feces per sample, number of transplants, condition burden,
and target impact [18].

As previously reported, leptin-deficient BTBRob/ob mutant mice are a hyperphagic
model that presents significant body weight gain at an early age [25,26]. Leptin is mainly
expressed in adipocytes and has pleiotropic effects in the regulation of energy homeostasis,
neuroendocrine function, and immune response, so leptin pathway signaling disruption
may lead to metabolic disorders [27,28]. Leptin levels are proportional to body adiposity
and are notably elevated in obese individuals [29]. Thus, hyperleptinemia secondary to
leptin resistance is implicated in a chronic inflammatory state and ultimately in weight
gain [30]. Obese individuals have decreased levels of GLP-1, probably due to leptin re-
sistance [9,31]. However, the reduction in body weight in our treated BTBRob/ob mice
could not be explained either by GLP-1 secretion or by food intake. In a less severe
mouse model of leptin deficiency, the burden of obesity and DM is related to a gut mi-
crobiota signature, in particular a reduction in a time-dependent manner of Akkermansia
muciniphila abundance [23]. Additionally, disturbances in the intestinal microbial ecosys-
tem may be associated with low-grade inflammation induced by systemic absorption of
lipopolysaccharides derived from the outer membrane of Gram-negative bacteria caused
by changes in intestinal permeability [10], which contributes to the progression of obesity
and T2DM [32]. Previous reports found a predominance of the Firmicutes/Bacteroidetes
ratio in obese mice [28,33] and humans [34,35], so that gut microbiome associated with
obesity had a higher capacity for energy harvest from the diet [8]. Therefore, that ratio is
frequently mentioned as a hallmark of obesity [36]. In our study, most of the sequences
obtained by intestinal microbiota analysis revealed greater proportions of the Bacteroidetes
in comparison to the Firmicutes phylum in either obese or non-obese mice, which is in agree-
ment with other human studies [11,37]. However, the literature is poor on gut microbiota
characterization in BTBR strains, and most studies addressing gut microbiota composition
included other mice strains [8,13,23,28,33]. Additionally, Firmicutes/Bacteroidetes ratio in-
volvement in the metabolic parameters is controversial in the literature [11,36,37]. Most
studies did not perform longitudinal analysis, including our study, which is a limitation
of the interpretation of a gut microbiota signature. Composition and diversity of the gut
microbiota is influenced not only by host-dependent and environmental factors [9] but
also by leptin deficiency [38]. In treated BTBRob/ob mice, body weight correlated positively
to the Betaproteobacteria class, Gram-negative bacteria belonging to the Proteobacteria phy-
lum, which are highly enriched in diabetic individuals and positively correlated to plasma
glucose [11]. In untreated BTBRob/ob mice, the abundance of the Gram-negative Odoribacter-
aceae family was reduced when compared to treated mice. That bacteria family is associated
with succinate consumption [35]. Importantly, succinate is an intermediate synthetized in
the tricarboxylic acid cycle and has been identified as a potential mitochondrial DAMP
(damage-associated molecular pattern), which mediates the innate immune response and
is implicated in various inflammatory diseases [39]. Additionally, high circulating lev-
els of succinate secondary to higher relative abundance of succinate-producing bacteria
(Prevotellaceae and Veillonellaceae) and lower relative abundance of succinate-consuming
bacteria (Odoribacteraceae and Clostridaceae) are associated with obesity and impaired glu-
cose metabolism [35], which may explain the lower body weight gain in treated BTBRob/ob

mice. A prospective cross-sectional study found a positive association between circulating
succinate levels and body mass index (BMI), insulin, glucose, and HOMA-IR in obese
individuals, pointing out the influence of microbiota substrates on metabolic profile [35].
Although we did not evaluate endogenous succinate levels, a previous study documented
elevated circulating succinate levels in ob/ob mice when compared to healthy controls [40].
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Several reports have shown the potential of specific bacterial metabolites as regulators
of a range of metabolic functions in the body, whether positive or negative [4,13,15,35,40].
Thus, butyrate is a short-chain fatty acid and is associated with multiple metabolic beneficial
effects, including the improvement of insulin resistance [14]. Therefore, modulation of
the number of butyrate-producing bacteria could offer protection against T2DM [41]. In
our study, the proportion of the two main butyrate-producing bacteria, Lachnospiraceae,
and Ruminococcaceae [14] were similar among treated and untreated mice. In ob/ob mice,
gut microbiota abundance of the unclassified genus from the Lachnospiraceae family had
a negative correlation with the oral glucose tolerance test [14,23]. Male recipients with
metabolic syndrome showed improvement in peripheral insulin sensitivity six weeks after
receiving allogenic intestinal microbiota from lean donors, attributed to an increase in gut
microbial diversity, including those related to butyrate-production [17].

In our study, FMT as a single approach was not sufficient for effective control of
glycemic levels. Therefore, the modulation of the intestinal microbiota combined with other
established therapies for DM, including lifestyle modifications, pharmacological drugs
including metformin [42,43], sodium-glucose cotransporter-2 inhibitors (SGLT2i) [44,45],
GLP-1 receptor agonists [46,47], and lipid-lowering drugs, such as statins [48,49], can result
in better metabolic parameters, which may ultimately mitigate the damage associated with
this complex pathophysiology.

The lack of glycemic control contributed to the maintenance of hypertrophy of pancre-
atic islets in BTBRob/ob, as described in that model [50]. The compensatory expansion of
β-cell mass in response to insulin resistance is a finding in both obese and insulin-resistant
animals and humans [51]. However, HOMA-IR and the secretion of insulin and C-peptide
in treated mice behaved similarly to BTBR WT mice, suggesting lower insulin resistance
after FMT. The incretins GLP-1 and GIP levels, both insulinotropic hormones, were not
associated with insulin resistance in our study, although the secretion of these hormones
is impaired in obesity and T2DM [52]. Ablation of GIP in Lepob/ob mice, did not prevent
body weight gain and insulin resistance, suggesting that endogenous GIP may not have
a role in the development of obesity in leptin deficient mice, indicating that the crosstalk
between leptin and GIP secretion warrants further investigation [53].

In our study, FMT prevented the increase in UACR, a time-dependent and reversible
feature of BTBRob/ob mice [19,26], yet the number of podocytes decreased, and the mesan-
gial matrix continued to expand over time. However, gene expression of WT-1 and PDGF
indicated a potential reduction in the progression of DKD. Additionally, the slight hyperfil-
tration observed in untreated mice, yet not significant, could at least in part explain the
higher levels of UACR in these animals. The improvement in albuminuria in treated mice
may be associated with a hemodynamic mechanism in the kidney, indicating a reduction in
glomerular hypertension. It is noteworthy that hyperinsulinemia is involved in increased
glomerular hydrostatic pressure and renal vascular permeability, which aggravate glomeru-
lar hyperfiltration [54,55]. Thus, FMT promoted a decrease in hyperinsulinemia and insulin
resistance and could contribute to preserving the glomerular filtration barrier. In treated
mice, we found that albuminuria correlated negatively with the Odoribacteraceae family.
Although succinate correlated with some metabolic parameters in other studies [35,56,57],
its effect on albuminuria levels remains elusive. Albuminuria also correlated negatively
with Deltaproteobacteria class, Gram-negative bacteria belonging to the Proteobacteria phy-
lum [11]. That class contains sulfate-reducing bacteria, which conduct dissimilatory sulfate
reduction to acquire energy [58] and produce hydrogen sulfide as a final product [59].
Despite hydrogen sulfide contributing to dysbiosis [60], that metabolite holds several bio-
logical properties, such as anti-inflammatory potential and renoprotective effects [61] by
modulating the antioxidant response and oxidative stress in the kidney [62]. However, FMT
did not affect oxidative stress and the apoptosis-mediated cell death signaling pathway in
the kidney, which can be explained by the burden of the DKD microenvironment, as no
treatment for DM was performed in our animals.
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Importantly, FMT was a safe procedure, and the intestinal architecture, including the
height of the villi in the ileum, the depth of the crypts in the ileum or ascending colon,
and the expression of tight junction proteins, was not compromised by this treatment. DM
adversely impacts these structures and is associated with morphological and physiological
remodeling, which leads to the proliferation of the villi and crypt in the ileum, and increased
thickness of the ascending colon [63].

Notably, intestinal homeostasis is maintained by the dynamic interaction between
luminal microorganisms and the intestinal epithelium [64], so hyperglycemia may predis-
pose individuals to intestinal barrier dysfunction [65]. Changes in the intestinal microbiota
are also associated with an increase in intestinal permeability in metabolic disease [66].
Obese mice showed an alteration in the intestinal barrier characterized by the rupture of
the tight junction occludin and zonula occludens-1 proteins and indicated that the increase
in TNF-α orchestrates this structural damage [21]. Our findings pointed out a reduction
in the expression of the inflammatory marker TNF-α in the ileum and ascending colon
segments of treated animals, which corroborates FMT safety.

Collectively, our data documented that FMT is a safe treatment and was implicated
in albuminuria reduction and decreasing local inflammation in the ileum and ascending
colon, and with a trend in ameliorating insulin resistance in BTBRob/ob mice. These results
suggest potentially important beneficial effects of FMT and support further investigation
in diabetic patients.

4. Research Design and Methods

Experiments were carried out in accordance with the Institutional Animal Care and
Use Committees of Hospital Israelita Albert Einstein (HIAE), and the study was registered
on the Jewish Institute of Research and Education, HIAE, São Paulo, SP, Brazil (No. 2704-16).

BTBRob/ob mice (BTBR.Cg-Lepob/WiscJ; #004824-JAX Laboratories) homozygous for
the leptin gene knockout is a reversible model for T2DM and DKD, characterized, in males,
by early development of obesity, hyperphagia, insulin resistance, and hyperglycemia (6th
week of age), followed by DKD establishment with time-dependent albuminuria (8th week
of age), resembling human DKD alterations [19]. Male wild-type mice were used as the
healthy control and were compared with BTBRob/ob at different ages (9–11 and 14–15-week-
old). Six animals were used in all groups. Mice were housed in a controlled environment
(12-h daylight cycle; lights off at 6:00 p.m.) alone or in groups of two or three per cage,
with free access to chow (Nuvilab CR-1, Quimtia S/A, Colombo, PR, Brazil) and water
ad libitum.

At the end of protocol animals (age 14–15 weeks), blood samples from the portal vein
and vena cava were collected and stored at −20 ◦C, whereas kidney, pancreas, ileum, and
ascending colon were harvested and stored at −80 ◦C for molecular analyses.

All experimental protocols were conducted in accordance with the guidelines and
regulations of the Association for Assessment and Accreditation of Laboratory Animal
Care (AAALAC).

4.1. Fecal Microbiota Transplant (FMT)

For FMT, 300 mg of feces from all segments of intestine were collected per sample
from BTBR wild-type donors and dissolved in 500 µL phosphate buffered saline (PBS,
ThermoFisher Scientific, Waltham, MA, USA). The samples were homogenized using a
vortex and centrifuged for 5 min at 6000 rpm at 4 ◦C to separate the particulate material.
FMT was performed on male BTBRob/ob mice aged 9–11 weeks, referred to as FMT (+). We
used the sample supernatant (~300 µL), which was administered via rectal route using a
polyethylene probe into the intestine. This probe was introduced approximately 3–3.5 cm.
After performing the procedure, the animal was placed in a ventral position with the head
down at an angle of 45◦ for 2–3 min to avoid extravasation of the transplanted material.
Then, treated mice were housed individually in cages. Euthanasia was carried out after
4–5 weeks.
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4.2. Functional Assessment

All mice were weighed once weekly. Urine was obtained at baseline, weeks 9–10,
and 13–14 in all groups using a metabolic cage. Albuminuria levels were measured by
an Albumin Mouse ELISA Kit (Abcam, ab207620, Cambridge, MA, USA) and were stan-
dardized to urinary creatinine, assessed by a colorimetric assay Creatinine K® 96–300
(Labtest, Vista Alegre, Brazil) using a biochemical analyzer Cobas Mira Plus (Roche, Basel,
Switzerland). The results were reported as urinary albumin-to-creatinine ratio (UACR;
g/mg). Blood glucose was quantified with a glucometer (Accu-Check Advantage Blood
Glucose Monitor® (Roche Diagnostic Corporation, Indianapolis, IN, USA) after six hours
of fasting. All procedures were performed on animals at the beginning (9–11 weeks-old)
and at the end of the protocol (14–15 weeks-old). Glycosuria was measured by the Glu-
cose Liquiform® 133-2/500 LabTest kit (Lagoa Santa, MG, Brazil), and the absorbance
values were obtained by the ChemWell-T spectrophotometer LabTest (Lagoa Santa, MG,
Brazil). Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) and HOMA-β, as
previously described [67].

4.3. Microbial Analysis of the Intestinal Contents of Mice

After euthanasia, fecal content was collected from all segments of the intestine and
analyzed using a QIAamp DNA Stool Mini Kit® (Qiagen, Hilden, Germany).

4.4. Evaluation of Metabolic Parameters and Inflammatory Markers

Blood was collected from the portal vein, and we immediately added 10 µL of DPP4
inhibitor (DPP IV Inhibitor®, Millipore, Burlington, MA, USA) and 10 µL of aprotinin
(Aprotinin, Bovine Lung, Crystalline®, Millipore, Burlington, MA, USA) for glucagon-
like peptide-1 (GLP-1) and glucagon analyses, respectively. GLP-1, glucose-dependent
insulin tropic polypeptide (GIP), peptide YY (PYY), and plasma cytokines tumor necrosis
factor (TNFα), interleukin (IL)-6, monocyte chemoattractant protein (MCP-1), insulin, C-
peptide, and glucagon levels were determined in duplicate using the kit MILLIPLEX MAP
Mouse Metabolic Hormone Magnetic Bead Panel-Metabolism Multiplex Assay® (Millipore,
Bellerica, MA, USA), and measured by using Luminex technology (Bio-Rad Bioplex). To
quantify GLP-2, we used the KIT ELISA EZGLP2-37K (Millipore, Bellerica, MA, USA).

4.5. Mesangial Expansion

Kidney sections (paraffin-fixed, 3–4 µm thick) were stained with periodic acid-Schiff
reagent (PAS; Sigma-Aldrich, St. Louis, MO, USA). The increase in the mesangial matrix
was measured by the presence of PAS-positive area in the mesangium and was defined
by percentage using light microscopy (magnification 40×; Olympus). The glomerular
area (µm2) was also indicated along the outline of capillary loops using CellSens software
(Olympus) in 30 randomly selected glomeruli in each animal.

4.6. Morphological Analysis

Pancreas sections (paraffin-fixed, 3–4 µm thick) were stained with hematoxylin-eosin
(HE) to assess the number, volume, and integrity of pancreatic islets using light microscopy
(magnification 10×). We counted six islets on average per animal.

Ileum and ascending colon sections (paraffin-fixed, 3–4 µm thick) were stained with
HE to access villi and crypts using light microscopy (magnification 20×). In 10 villi per
sample, we measured the height of the villi in the ileum, as well as in 10 crypts in the ileum
and ascending colon.

4.7. Immunohistochemistry (IHC) Analyses

BTBRob/ob and wild-type mice tissues (kidney, ileum, and ascending colon) were
preserved with formalin (10%) and sectioned at 3–4 µm thick. Quantification analyses were
carried out by CellSens software (Olympus) using 20× magnification.
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For kidney analyses, the score for WT-1+ cells was performed by counting the number
of positive nuclei in 25 randomly selected glomeruli in the kidney cortex using 100×
magnification and after applying rabbit polyclonal anti-WT-1 (Santa Cruz, Dallas, TX, USA).
All data were pooled to obtain the number of WT-1+ podocytes per glomerular cross-section.
For apoptosis pathway analysis, we evaluated caspase-3 and cleaved caspase-3 protein
activation (#9662 and 9661, Cell Signaling, Danvers, MA, USA), and for oxidative stress, we
estimated the 4-HNE detection (anti-4 hydroxynonenal rabbit polyclonal, ab46545, Abcam,
Cambridge, MA, USA). IHC reaction was carried out using the EnVision FLEX High pH kit
(K8000, DAKO, Santa Clara, CA, USA).

For ileum and ascending colon analyses, we verified the expression of tight junction
claudin and occludin (anti-claudin 1 rabbit polyclonal, ab15098, Abcam, Waltham, MA,
USA, and anti-occludin rabbit polyclonal, 40-4700, ThermoFisher Scientific, Waltham, MA,
USA). See Supplementary Materials for detailed procedure. The sections were initially
blocked with a Vector SP 2001® kit (Vector, Burlingname, CA, USA). For blocking unspecific
connections, 1:20 goat non-immune serum (Sigma-Aldrich, Burlington, MA, USA) was
used for 30 min, followed by incubation with primary antibodies overnight in a humid
chamber at 4 ◦C. Slides were then washed in TBS-T buffer and incubated for 45 min with a
secondary goat anti-rabbit antibody bound to biotin. The slides were washed again with
TBS-T and incubated with avidin-biotin-HRP complex (Vector AK 4000, Burlingame, CA,
USA) for 30 min. DAB staining was used for a maximum of 10 min. Tissue sections were
then counterstained with Mayer’s hemalum. Three to ten villi per field were evaluated to
measure the height of the crypts in the ileum and ascending colon and the height of the
villi in the ileum.

4.8. RNA Extraction and cDNA Synthesis

RNA from tissues (kidney, ileum, and ascending colon) was prepared using RNeasy®

Fibrous Tissue Mini Kit (Qiagen, Hilden, Germany) kit. cDNA was synthesized using the
High-capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific, Waltham, MA, USA).

4.9. Real-Time qPCR Assays

qPCR reactions were performed on the Thermocycler qPCR-QuantStudio 6 Flex Sys-
tem using the TaqMan Real-Time PCR Master Mix kit (ThermoFisher Scientific, Waltham,
MA, USA).

In the kidney, we used the following probes: β1-integrin (Mm01253230-m1), CD90 (Th1:
Mm00493682_g1), Podocin (Nth2: Mm01292252-m1), α-Actin (Acta2: Mm00725412_s1), E-
cadherin (Cdh1: Mm01247357_m1), Nephrin (Nph1s: Mm01176615_g1), Wilms tumor
protein (Wt1: Mm01337048_m1), Tumor Necrosis Factor-α (TNF-α: Mm00443258_m1),
Transforming Growth Factor-ß (TGF-β; Mm01178820), Platelet-derived Growth Factor
(PDGF; Mm00440677), Sodium Glucose Transporter-1 (SGLT-1; Mm00451203), and SGLT-2
(Mm00453831). In the ileum and ascending colon, TaqMan probes were used to target the
following genes: Claudin 3 (Mm00515499), Occludin (Mm00500912), Zonula Ocludens-
1 (Mm00493699), Leucine-rich repeat containing G-protein coupled receptor 5 (LGR5;
Mm00438890), and Tumor Necrosis Factor-α (TNF-α: Mm00443258_m1). TaqMan GAPDH
(Mm99999915_g1) and GUSB: (Mm01197698_m1) probes were used as endogenous controls.
All rigs were purchased from Thermo Fisher Scientific–Waltham, MA, USA. We analyzed
the Ct (“Cycle threshold”) values using QuantStudio6 Flex System Software. To determine
the relative expression of the values, method 2–∆∆Ct (fold change) was used, where
averages of duplicates of the Ct values were calculated for each sample and subtracted
from those derived from the GUSB.

4.10. Preparation of Sequencing Libraries for Microbial Analysis of Intestinal Content of Mice

The preparation of the sequencing libraries was carried out in a two-step PCR protocol,
using primers for V3–V4 regions as previously described. PCR reactions were performed
in triplicate. The final PCR reaction was cleaned using AMPurebeads (Beckman Coulter,
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Brea, CA, USA), and the samples were pooled in the sequencing libraries for quantification.
Pool amplification estimates were performed with Picogreen dsDNA assays (Invitrogen,
Waltham, MA, USA) and then the pooled libraries were diluted for quantification via qPCR
using the KAPA Library Quantification Kit for Illumina platforms (KAPA Biosystems,
Woburn, MA, USA). The libraries were sequenced on a MiSeq system using the standard Il-
lumina primers provided in the kit. After sequencing, the bioinformatics pipeline performs
demultiplexing of sequences, removal of adapters, and trimming of primers. The readings
were normalized in size of 283 bp, and other analyses were performed in the statistical
analysis environment R.

Data manipulation was performed using the packages tidy verse (version 1.2.1) and
phyloseq (summer 1.28.0). The ggplot2 package (version 3.2.0) was used for data vi-
sualization. Differential abundance analysis was performed using the DESeq2 package
(version 1.2.2). The method assumes that the observed counts follow a negative binomial
distribution, which is analyzed using a generalized linear model. Regression coefficients
were analyzed using the Wald test. p-values were corrected for multiple comparisons
using the Benjamin Hochberg procedure, controlling the rate of false discoveries by 10%.
Nonparametric analysis, when necessary, included Kruskal–Wallis and Wilcoxon tests.

4.11. Statistical Analysis

The results were expressed as the mean ± SEM (standard error of the mean) or median
and interquartile range (IQR). Statistical analysis was performed using the Shapiro–Wilk
normality test. ANOVA (Analysis of Variance) was performed in samples with normal
distribution, followed by Tukey’s post-test. For repeated measures over time, a two-away
ANOVA/mixed model test was performed (when there were differences in the number of
observations in repeated measures). For multiplex comparisons when baseline differences
were highly variable, the Fisher LSD post-test was performed. In case of non-normal
distribution of the sample means, we used the Kruskal–Wallis or t test with Holm–Sidak
correction for the multiple comparisons. Evaluation was made using Graph Pad Prism
version 8.2.1 for Windows Vista (Graph Pad Software, San Diego, CA, USA). Statistical
analysis of the sequencing data for the 16S region of the ribosomal RNA was performed
using R software (version 3.6.3). p < 0.05 was considered statistically significant.
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