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ABSTRACT
Alzheimer’s disease is a neurodegenerative disease that seriously threatens the life
and health of the elderly. This study used three-dimensional lightweight neural
networks to classify the stages of Alzheimer’s disease and explore the relationship
between the stages and the variations of brain tissue. The study used CAT12 to
preprocess magnetic resonance images of the brain and got three kinds of
preprocessed images: standardized images, segmented standardized gray matter
images, and segmented standardized white matter images. The three kinds of images
were used to train four kinds of three-dimensional lightweight neural networks
respectively, and the evaluation metrics of the neural networks are calculated. The
accuracies of the neural networks for classifying the stages of Alzheimer’s disease
(cognitively normal, mild cognitive impairment, Alzheimer’s disease) in the study are
above 96%, and the precisions and recalls of classifying the three stages are above
94%. The study found that for the classification of cognitively normal, the best
classification results can be obtained by training with the segmented standardized
gray matter images, and for mild cognitive impairment and Alzheimer’s disease, the
best classification results can be obtained by training with the standardized images.
The study analyzed that in the process of cognitively normal to mild cognitive
impairment, variations in the segmented standardized gray matter images are more
obvious at the beginning, while variations in the segmented standardized white
matter images are not obvious. As the disease progresses, variations in the segmented
standardized white matter images tend to become more significant, and variations in
the segmented standardized gray matter images and white matter images are both
significant in the development of Alzheimer’s disease.
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INTRODUCTION
Alzheimer’s disease (AD) is a life-threatening neurodegenerative disease common in the
elderly. The disease manifests itself in a series of symptoms, such as memory loss and
cognitive impairment, which seriously affect the patient’s daily life until death. To our
knowledge, there are no drugs or other medical treatments that can cure AD, but studies
have found that if AD can be diagnosed in the early stage, some drugs and treatments
could slow the progression of AD (Rasmussen & Langerman, 2019). Therefore, the early
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diagnosis of AD is particularly important and meaningful. The early stages before AD are
cognitively normal (CN) and mild cognitive impairment (MCI) (Storandt, 2008). At CN,
individuals show no noticeable symptoms of cognitive decline. Brain variations associated
with Alzheimer’s disease may begin, but they do not impact daily functioning. Individuals
with MCI experience noticeable memory or cognitive issues that are greater than expected
for their age, but not severe enough to interfere significantly with daily life. MCI is often
considered a risk factor for developing Alzheimer’s disease, but not everyone with MCI will
go on to develop the disease.

Currently, there are many methods for the early diagnosis of AD. Clinical evaluations
include cognitive function tests, such as the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) (Pinto et al., 2019). Imaging examinations
include magnetic resonance imaging (MRI) to detect variations in brain structures, such as
hippocampal atrophy and ventricular enlargement (Frisoni et al., 2010). Positron emission
tomography (PET) could show the accumulation of amyloid plaques in the brain
(Nordberg et al., 2010). Biomarker tests include analysis of cerebrospinal fluid to detect
changes in amyloid and tau protein levels (Olsson et al., 2016). As a non-invasive
examination method, MRI is widely used in the early diagnosis of AD. There are a lot of
related works that used MRI to diagnose the early stage of Alzheimer’s disease with
machine learning methods. Raghavaiah & Varadarajan (2021) used the squirrel search
algorithm to optimize the deep neural network to classify the preprocessed gray matter
part of MRI. Tuan et al. (2022) first used a Gaussian mixture model with a convolutional
neural network (CNN) to segment the MRI into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). Then, CNN was used to extract the features of the
segmented images, and extreme gradient boosting (XGBoost) was used for feature
selection. Finally, a support vector machine (SVM) was used for classification. Sarraf &
Tofighi (2017) used LeNet and GoogleNet to classify the AD stages with GM MRI.
Basheera & Ram (2020, 2019, 2021) used enhanced independent component analysis to get
the segmented GM from T2-weighted MRI and then used the segmented GMMRI to train
a CNN for classifying AD stages. Ji et al. (2019) used the segmented GM and WM images
to train a CNN and improved the accuracy of classification through ensemble learning.
Ortiz et al. (2017) used sparse inverse covariance estimation to obtain features from the
segmented GM and WM MRI, and then used these features as input to train a
deep-learning model to classify AD stages. Houria et al. (2022) fused the anisotropy
fraction and mean diffusion coefficients in diffusion tensor imaging (DTI) with the GM
MRI as multimodal features, and that were used by SVM for classification. Maqsood et al.
(2019) used the segmented GM, WM, CSF MRI, and unsegmented complete MRI to
fine-tune the pre-trained AlexNet to make it suitable for classifying AD stages.Huang et al.
(2022) used voxel-based morphology to get the segmented GMMRI and used GMMRI to
train a CNN for classification. All of the above studies achieved good accuracies of
classification at those times. There are also many other studies using MRI to classify AD
stages for the early diagnosis of AD (Khvostikov et al., 2018; Yagis et al., 2020; Folego et al.,
2020; Hazarika et al., 2023; Li & Yang, 2021; Turkan & Tek, 2021). These studies treated
MRI as a whole and did not segment MRI into the GM and WM images. The two models
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recently designed by Ozdemir & Dogan (2024a, 2024b) can diagnose brain tumors and
Alzheimer’s disease, respectively. The methylthioadenosine phosphorylase (MTAP) model
combines Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN)
oversampling, network pruning, and Avg-TopK pooling with DenseNet201 to achieve
99:69% accuracy in brain tumor classification (glioma, meningioma, pituitary tumor),
optimizing computational efficiency and diagnostic focus on temporal/parietal regions
(Ozdemir & Dogan, 2024a). A custom CNN integrating Squeeze-and-Excitation (SE)
blocks, SMOTE oversampling, and Avg-TopK pooling enables 99:84% accuracy in
Alzheimer’s disease diagnosis, with Grad-CAM visualization highlighting cortical
pathology-related features, surpassing traditional models like VGG and ResNet (Ozdemir
& Dogan, 2024b).

The novelty and contribution of this study are mainly reflected in the following
two aspects:

. Application of 3D CNNs for early diagnosis: While many previous studies have utilized
2D imaging techniques for AD diagnosis, our research employs 3D CNNs to extract
features from 3D brain images. This approach allows for a more comprehensive capture
of spatial information, leading to enhanced diagnostic accuracy. Recent studies have
demonstrated that 3D CNNs can effectively identify AD biomarkers from structural
MRI (sMRI) scans (Folego et al., 2020).

. Integrated analysis of disease staging and brain tissue impact: Beyond focusing solely on
diagnostic accuracy, our study concurrently classifies disease stages and investigates the
effects of AD on brain tissues, specifically gray matter, and white matter. This dual
approach provides deeper insights into the pathological progression of AD.

The structure of the article is as follows: The next section outlines the materials and
methods used in this study, followed by a presentation of the results and discussion.
Finally, the conclusions are summarized.

MATERIALS AND METHODS
Dataset
The dataset for this study was downloaded from the public dataset Alzheimer’s Disease
Neuroimaging Initiative (ADNI) T1-weighted Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) MRI (Jack et al., 2008). MPRAGE is an MRI sequence used for
brain imaging, especially in neuroimaging, which is widely used to display brain structures
in detail, such as the boundary between GM and WM. MPRAGE is often used to detect
pathological variations in the brain, such as brain atrophy in AD, which is why this MRI
sequence was used in this study. It should be noted that since the structure of the brain
varies over time, in this study, images collected from the same person at different times are
considered different images. As shown in Table 1, the statistical information of the dataset
has been given.

The downloaded original images are single-layer Digital Imaging and Communications
in Medicine (DICOM) format images, which need to be converted into 3D images in the
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Neuroimaging Informatics Technology Initiative (NIfTI) format for subsequent
processing. DICOM is a format widely used in medical imaging that stores both image data
and metadata, including patient details and imaging parameters. NIfTI is a format
primarily used for storing and sharing brain imaging data, particularly in neuroimaging
research. It focuses on storing volumetric or multidimensional data with a simpler
structure compared to DICOM, often used for MRI data. There are mainly the following
four steps using CAT12 (https://neuro-jena.github.io/cat/) to preprocess MRI: spatial
normalization, bias field correction, tissue classification, and modulation.

. Spatial normalization: The MRI image is then spatially normalized to a standard
template (such as the MNI template (Lancaster et al., 2007)). This step aligns the
individual scan to a common anatomical space, allowing for consistent tissue
segmentation across subjects. The normalization process involves both affine and
non-linear transformations, ensuring that anatomical differences between subjects are
accounted for.

. Bias field correction: MRI scans often exhibit low-frequency intensity variations due to
magnetic field inhomogeneities. To correct this, CAT12 applies a bias field correction,
which reduces the impact of these inhomogeneities and enhances the accuracy of tissue
classification.

. Tissue classification: The process begins by classifying the MRI scan into GM, WM, and
CSF based on a probabilistic model. The intensity of each voxel in the image is compared
to a predefined tissue probability map, which reflects the typical distribution of tissue
intensities across the brain. The classification is not solely intensity-based; it incorporates
spatial information to improve accuracy, especially in areas where tissue boundaries are
ambiguous.

. Modulation: During spatial normalization, each individual’s brain is transformed to
match a standard template. This transformation involves scaling, rotation, and warping,
which may stretch or compress the brain. Modulation compensates for these local
changes by scaling the tissue maps to preserve the original tissue volume. Without
modulation, the segmented tissue maps would only reflect the spatial distribution of
tissue types, not their actual volume.

Spatial normalization, bias field correction, and modulation are called
standardization in this study. The final output consists of separate tissue probability maps
for GM, WM, and CSF. CAT12 includes an automated quality control mechanism for
segmentation. This feature provides quantitative metrics that assess the accuracy of the
segmentation process, ensuring that the outputs meet the required standards without the

Table 1 Statistical information of the dataset.

Age Gender AD stages

Male Female CN MCI AD

76:34� 7:07 1,896 1,627 1,530 1,275 718
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need for extensive manual intervention. Furthermore, we chose CAT12 over other
segmentation tools because of its robust performance, seamless integration with SPM
(https://www.fil.ion.ucl.ac.uk/spm/), and its extensive validation in numerous
neuroimaging studies, which together ensure high reliability and reproducibility of the
segmentation results. This study mainly studies AD from a structural perspective, so the
standardized images, as well as the segmented standardized GM and WM images, are
mainly used. The resolution of the images is 113� 113� 137 (corresponding to depth �
height � width). As shown in Fig. 1, the standardized image, as well as the segmented GM
and WM images are given. The standardized image is represented by wm (i.e., warped and
modulated), the segmented GM image is represented by mwp1, and the segmented WM
image is represented by mwp2.

METHODS
Since brain tissues are 3D structures, to learn the 3D spatial information of MRI, the study
decided to use 3D neural networks to learn the features of images. The neural networks
used in this study are 3D-SqueezeNet, 3D-MobileNetV1, and 3D-ShuffleNetV1. As a
reference, the 3D version of the classic neural network ResNet18 is also used. The code of
Köpüklü et al. (2019) was modified for this study. Due to the small scale of the dataset, to
avoid overfitting of training, this study uses lightweight neural networks. The common
point of these neural networks is that the depth of the neural networks is relatively shallow,
the parameters of the neural networks are relatively small, and while the parameters of
neural networks remain small, the performance of the neural networks is not much lower
than that of deeper neural networks. Since these lightweight neural networks have been
described in detail in relevant literature (Köpüklü et al., 2019), here is just a brief
description of these lightweight neural networks.

The 3D-SqueezeNet architecture begins with a convolutional layer (Conv1) that
performs downsampling with a stride of (1,2,2). This is followed by eight Fire modules
(Fire2-9), each of which consists of a 1� 1 Squeeze layer and a 3� 3 Expand layer. Finally,
there is a convolutional layer (Conv10) with a stride of (1,1,1), followed by an average

Figure 1 (A) The standardized image (wm), (B) the segmented GM image (mwp1), (C) the
segmented WM image (mwp2). Full-size DOI: 10.7717/peerj-cs.2897/fig-1
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pooling layer and a linear layer for classification. The original model takes as input a 16-
frame clip with a spatial resolution of 112� 112 pixels. The accuracy of SqueezeNet has
reached the level of the classic AlexNet, while the parameters of the neural network are
reduced by 50 times compared to AlexNet. The parameter of 3D-SqueezeNet is 1839299 in
the experiment.

The 3D-MobileNetV1 architecture starts with a convolutional layer (Conv1) that
downsamples with a stride of (1,2,2). Subsequently, it includes 13 MobileNet blocks, where
each block comprises a depthwise convolution (DWConv) and a pointwise convolution
(1� 1 convolution). The output of the model is processed through an average pooling
layer, followed by a linear layer for classification. The input to the original model is a
16-frame clip with a spatial resolution of 112� 112 pixels. The parameter of 3D-
MobileNetV1 is 3301059 in the experiment.

The 3D-ShuffleNetV1 architecture commences with a convolutional layer (Conv1) that
downsamples using a stride of (1,2,2). It is then followed by 16 ShuffleNet blocks, which
are grouped into three stages. Each ShuffleNet block includes a pointwise group
convolution (GConv) and a channel shuffle operation. The model’s output passes through
an average pooling layer, followed by a linear layer for classification. The original input is a
16-frame clip with a spatial resolution of 112� 112 pixels. The parameter of 3D-
ShuffleNetV1 is 947787 in the experiment.

In addition to the above three lightweight neural networks, this study also used the 3D
version of the classic ResNet18. The 3D-ResNet18 architecture initiates with a
convolutional layer (Conv1) that downsamples with a stride of (1,2,2). This is succeeded by
17 ResNet blocks, each of which employs a bottleneck design and includes 1� 1, 3� 3,
and 1� 1 convolutional layers, utilizing identity shortcut connections for dimension
matching. The output of the model goes through an average pooling layer, followed by a
linear layer for classification. The original model input is a 16-frame clip with a spatial
resolution of 112� 112 pixels. The parameter of 3D-ResNet18 is 33031619 in the
experiment.

The experimental dataset is randomly divided into two parts: training set and testing set,
of which the training set accounts for 80% and the testing set accounts for 20%. To alleviate
the problem of class imbalance to some extent, the proportion of AD stages in the training
set and the testing set is consistent with the proportion in the original dataset. The
numbers of CN, MCI, and AD in the training set are 1,224, 1,020, and 574, respectively.
The numbers of CN, MCI, and AD in the testing set are 306, 255, and 144, respectively.
Subsequently, we plan to adopt additional data augmentation techniques to enhance the
model’s performance; for example, the RGB-Angle-Wheel method proposed by Ozdemir,
Dogan & Kaya (2024). The experiment uses wm, mwp1, and mwp2 images to train the
above four 3D neural networks, and calculates the evaluation metrics of the neural
networks on the testing set. Finally, the evaluation metrics of these neural networks trained
with different kinds of images (wm, mwp1, and mwp2) are compared and discussed. It
should be noted that to evaluate the neural networks fairly, the neural networks have never
seen the testing set before calculating the evaluation metrics on the testing set.
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The confusion matrix is an important tool for evaluating neural networks of multi-
classification. Each row of the confusion matrix represents the actual class, while each
column represents the predicted class. The diagonal of the confusion matrix represents all
correctly predicted instances. This study is a problem of multi-classification, and it is
needed to give the evaluation metrics of each class. For example, for CN, the instance is
called a true positive (TP) when that is CN actually and the neural network predicts that is
CN, the instance is called a false negative (FN) when that is CN actually and the neural
network predicts that is not CN, the instance is called a false positive (FP) when that is not
CN actually and the neural network predicts that is CN, and the instance is called a true
negative (TN) when that is not CN actually and the neural network predicts that is not CN.
Precision is defined as

Precision ¼ TP
TP þ FP

: (1)

Precision refers to the predicted results, which is the ratio of samples that are true
positive TP to samples predicted as positive TP + FP. The higher the precision, the more
reliable the prediction as positive is. Recall is defined as

Recall ¼ TP
TP þ FN

: (2)

The recall refers to the samples themselves and is the ratio of correctly predicted true
positive samples TP to the total positive samples TP + FN. The higher the recall, the lower
the probability of a missed diagnosis. It should be pointed out that, for CN, the precision
should be as high as possible. The higher the precision, the more accurate and reliable the
prediction as CN is, and the lower the rate of misdiagnosis is. For the two disease stages
MCI and AD, the recall should also be as high as possible, and the missed diagnosis rate
should be as low as possible for the stages of the disease.

RESULTS AND DISCUSSION
The training and testing of these neural networks were performed on a Linux server. The
server hardware configurations are Intel� Xeon� Gold 5218R CPU @ 2.10 GHz (4 CPUs),
512 GB memory, and four NVIDIA GeForce RTX 3090 graphics cards with 24 GB video
memory. The experiment employs a carefully designed training procedure using stochastic
gradient descent (Zaras, Passalis & Tefas, 2022) with categorical cross-entropy loss. An
initial learning rate of 0.04 is set and reduced several times by a factor of 0.1 when the loss
converges. A mini-batch size of approximately eight is used, along with momentum and
dampening both set to 0.9 and a weight decay of 1� 10�3. To mitigate overfitting, dropout
is applied before the final convolution or linear layer, with a rate of 0.2. The detailed model
hyperparameters are listed in Table 2. As shown in Fig. 2, the loss functions vary with the
epochs given. It can be seen from the figure that after 250 epochs, the neural networks have
been convergent. From Fig. 2, it could also be found that the neural networks are trained
fastest with the mwp1 images, followed by the mwp2 images, and the neural networks are
trained slowest with the wm images. Explanations about this phenomenon are given here.
The neural networks are trained fastest with the mwp1 means that the features of mwp1
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images are most easily learned by the neural networks to classify the stages of AD, followed
by the mwp2 images. Standardized images contain both gray matter and white matter
parts, and the wm images are equivalent to multimodal images. Generally, it is more
difficult to learn deep features from multimodal images (i.e., the wm images), but once
trained, the robustness of the trained neural networks with the wm images should be
better. As shown in Fig. 3, the curves of precisions with epochs are also given. It could also
be observed that the precisions of the neural networks trained with the mwp1 images

Figure 2 (A–D) Correspond to the curves of loss functions with epochs of SqueezeNet, MobileNetV1,
ShuffleNetV1, and ResNet18, respectively. Full-size DOI: 10.7717/peerj-cs.2897/fig-2

Table 2 Model hyperparameters.

Hyperparameter Value Description

Optimizer SGD Stochastic gradient descent

Loss function Categorical cross-entropy Standard loss for classification tasks

Learning rate 0.04 Initial learning rate

Momentum 0.9 Momentum term for SGD

Dampening 0.9 Dampening factor for momentum

Weight decay 1� 10�3 Regularization parameter to prevent overfitting

Batch size 8 Maximum fitting mini-batch size

Dropout rate 0.2 Dropout before the final layer to reduce overfitting
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increased fastest, followed by mwp2 images, and the precisions of the neural networks
trained with the wm images increased slowest. This similar phenomenon also means that
the variations of GM features are more obvious than those of WM features in the
development of AD. The neural networks can classify CN, MCI, and AD with the mwp1
images well.

As shown in Fig. 4, the confusion matrixes of the predicted results on the testing set of
each neural network trained with wm, mwp1, and mwp2 images are given. After
calculation, the accuracies (i.e., the sum of the diagonal elements of the confusion matrix
divided by the total number of testing sets 705) of each neural network on the testing set
are above 96%. The results show that the 3D neural networks could learn deep features
from the 3D images and classify the stages of AD well.

According to the confusion matrixes that are given in Fig. 4, the precisions and recalls of
each stage of AD are calculated respectively. Table 3 and Fig. 5 respectively give the
precisions of classifying AD stages by the neural networks trained with different kinds of
images and their corresponding histograms. From Table 3, it could be seen that the
precisions of classifying AD stages of each neural network are above 94%. As shown in
Fig. 5, for CN, except for ShuffleNetV1, that trained with the wm images has the highest
precision, while the other three neural networks trained with the mwp1 images have the
highest precisions. Overall, the precisions of the neural networks trained with the mwp1

Figure 3 (A–D) Correspond to the precision curves with epochs of SqueezeNet, MobileNetV1,
ShuffleNetV1, and ResNet18, respectively. Full-size DOI: 10.7717/peerj-cs.2897/fig-3
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Figure 4 The confusion matrixes of the trained neural networks on the testing set. The first column is the neural networks trained with the wm
images, the second column is the neural networks trained with the mwp1 images, and the third column is the neural networks trained with the mwp2
images. Each row is a neural network. Full-size DOI: 10.7717/peerj-cs.2897/fig-4

Li et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2897 10/19

http://dx.doi.org/10.7717/peerj-cs.2897/fig-4
http://dx.doi.org/10.7717/peerj-cs.2897
https://peerj.com/computer-science/


Table 3 The precisions of the neural networks trained with different kinds of images for classifying
AD stages.

Networks Images CN MCI AD

Squeezenet wm 0.97068404 0.95703125 0.95774648

mwp1 0.97741935 0.96442688 0.95774648

mwp2 0.97106109 0.98 0.97222222

Mobilenetv1 wm 0.96805112 0.98393574 0.98601399

mwp1 0.97096774 0.96031746 0.95104895

mwp2 0.96214511 0.98373984 0.98591549

Shufflenetv1 wm 0.9775641 0.98790323 0.96551724

mwp1 0.96496815 0.97560976 0.95172414

mwp2 0.96784566 0.97188755 0.94482759

Resnet wm 0.96141479 0.97233202 0.9858156

mwp1 0.96507937 0.97590361 0.9787234

mwp2 0.96496815 0.97590361 0.97887324

Figure 5 The histograms of precisions of the neural networks trained with different kinds of images for classifying AD stages. (A) SqueezeNet
precision; (B) MobileNet V1 precision; (C) ShuffleNetV1 precision; (D) ResNet precision. Full-size DOI: 10.7717/peerj-cs.2897/fig-5
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images are the highest at CN. For MCI, the precisions of MobileNetV1 and ShuffleNetV1
trained with the wm images are the highest, the precision of SqueezeNet trained with the
mwp2 images is the highest, and the precision of ResNet trained with the mwp1 or mwp2
images is the highest. Overall, for MCI, the precisions of neural networks trained with the
mwp1 images are no longer the highest, but the neural networks trained with the wm or
mwp2 images have the highest precisions. This phenomenon shows that the variations of
WM features at MCI gradually play a significant role in the classification. For AD, except
for SqueezeNet, that trained with the mwp2 images has the highest precision, while the
other three neural networks trained with the wm images have the highest precisions.
Overall, the precisions of the neural networks trained with the wm images are the highest
at AD.

At the stage of CN, the GM features that have been learned by the neural networks could
classify CN well. The variations of WM features could be less obvious than the variations of
GM features at CN, and the precisions of the neural networks trained with the mwp2
images are worse than those trained with the mwp1 images. According to the precision of
MCI, the results of the neural networks trained with the wm images are better than those
trained with the mwp1 images at MCI. In the process of CN to MCI, the variations of WM
features gradually become significant, while the variations of GM features remain
important. At the stage of AD, it could be considered that both GM andWM features have
undergone obvious variations, and the precisions of the neural networks trained with the
wm images are the best.

Table 4 and Fig. 6, respectively give the recalls and corresponding histograms of the
neural networks trained with different kinds of images for classifying AD stages. From
Table 4, we can see that the recalls of each neural network for classifying AD stages are all
above 94%. As shown in Fig. 6, for CN, SqueezeNet and ResNet trained with the mwp1
images have the best recalls, MobileNetV1 trained with the mwp2 images has the best
recall, and ShuffleNetV1 trained with the wm images has the best recall. Overall, the neural
networks trained with the mwp1 images have the best recalls at CN. For MCI, except for
SqueezeNet, where the recalls of SqueezeNet trained with the wm or mwp2 images were
the best equally, the recalls of the other three neural networks trained with the wm images
were the best. Overall, for MCI, the recalls of the neural networks trained with the wm
images were better. For AD, except for SqueezeNet, where the recall of SqueezeNet trained
with the mwp2 images was the best, the recalls of the other three neural networks trained
with the wm images were the best. Overall, for AD, the recalls of the neural networks
trained with the wm images were better.

The discussions about the recalls of the neural networks trained with different kinds of
images for classifying AD stages are almost the same as the discussions about the
precisions, and would not be repeated here. According to the results of comprehensive
precisions and recalls, At the stage of CN, the variations of GM features are more
significant, while the variations of WM features are not yet obvious. The neural networks
trained with the mwp1 images can obtain the best results. This corresponds to the early
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Table 4 The recalls of the neural networks trained with different kinds of images for classifying AD
stages.

Networks Images CN MCI AD

squeezenet wm 0.97385621 0.96078431 0.94444444

mwp1 0.99019608 0.95686275 0.94444444

mwp2 0.9869281 0.96078431 0.97222222

mobilenetv1 wm 0.99019608 0.96078431 0.97916667

mwp1 0.98366013 0.94901961 0.94444444

mwp2 0.99673203 0.94901961 0.97222222

shufflenetv1 wm 0.99673203 0.96078431 0.97222222

mwp1 0.99019608 0.94117647 0.95833333

mwp2 0.98366013 0.94901961 0.95138889

resnet wm 0.97712418 0.96470588 0.96527778

mwp1 0.99346405 0.95294118 0.95833333

mwp2 0.99019608 0.95294118 0.96527778

Figure 6 The histograms of recalls of the neural networks trained with different kinds of images for classifying AD stages. (A) SqueezeNet
precision; (B) MobileNet V1 precision; (C) ShuffleNetV1 precision; (D) ResNet precision. Full-size DOI: 10.7717/peerj-cs.2897/fig-6
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stage of AD, where the damages of neurons in the GM are more pronounced (Zhang &
Sejnowski, 2000). In the process of CN to MCI, the variations of WM features gradually
become more significant, while the variations of the GM features remain significant, and
the two kinds of images show a certain competitive relationship in the process of training
the neural networks. At the stage of MCI, the neural networks trained with only mwp1
images could not get the best results. The neural networks trained with the wm images
often give the best results. Sometimes, the results of training with the mwp2 images are also
good. This corresponds to an increasingly pronounced impairment of neuronal
connections in white matter as the disease progresses (Zhang & Sejnowski, 2000). At the
stage of AD, the disease has become more serious, and the features of GM and WM have
varied significantly. Therefore, using the wm images to train the neural networks will get
the best results. The experiments show that AD first experiences neuronal damage at the
early stage. Then the connections between neurons are also gradually damaged in the
process of CN to MCI. Finally, the disease develops into the AD stage, and both the
damage to neurons and the connections between neurons have been significant.

In Table 5, the accuracy of multi-classification of SqueezeNet trained with the wm
images has been given to compare with the state-of-the-art works. The accuracy of the
proposed approach is best compared with the cited works. Except forMaqsood et al. (2019)
using OASIS (Marcus et al., 2007) dataset, the other cited works all use the ADNI (Jack
et al., 2008) dataset. Basheera & Ram (2020, 2019, 2021) used the segmented GM images of
T2-weighted sMRI to train the neural networks, and the other cited works used the
unsegmented T1-weighted sMRI to train the neural networks. The cited works all used 2D
neural networks, except for the proposed approach using 3D neural networks. The best
accuracy of the proposed approach has been obtained compared with the cited works due
to 3D neural networks could learn the features of spatial information from 3D images of
the brain. It should be mentioned that Maqsood et al. (2019) also gives the results of
classification of the AD stages using the GM and WM images, and the tendency of the
results is in accordance with the above-mentioned results of this study. To validate the
statistical significance of the improvement in classifier performance, we calculated p-values
using appropriate statistical tests. We compared the classification accuracy, precision, and
recall rates obtained using different methods on the same dataset. The results showed that
the rates for different methods were significantly different, with p-values less than 0.05.

Table 5 Comparing the accuracies of multi-classification of different works.

Work Dataset Sequence Method Classification Accuracy

Jain et al. (2019) ADNI sMRI (T1w) 2D Transfer learning VGG16 CN/MCI/AD 95.73

Billones et al. (2016) ADNI sMRI (T1w) 2D Transfer learning VGG16 CN/MCI/AD 91.85

Basheera & Ram (2020) ADNI sMRI (T2w) GM 2D CNN CN/MCI/AD 86.7

Basheera & Ram (2019) ADNI sMRI (T2w) GM 2D CNN CN/MCI/AD 90.47

Basheera & Ram (2021) ADNI sMRI (T2w) GM 2D CNN (inception block) CN/MCI/AD 95.61

Maqsood et al. (2019) OASIS sMRI (T1w) 2D Transfer learning AlexNet CN/MCI/AD 92.85

Proposed approach ADNI sMRI (T1w) 3D SqueezeNet CN/MCI/AD 96.31
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These p-values indicate that the observed differences are unlikely to be due to chance and
suggest that the improvements are meaningful and not specific to the dataset biases.

CONCLUSIONS
This study uses the standardized images, the segmented standardized GM, and WM
images to train four 3D lightweight neural networks, respectively, to evaluate the ability of
the trained neural networks to classify AD stages. Each trained neural network in the study
could well classify the AD stages (i.e., CN, MCI, and AD), and the accuracies of
classification are at least 96%. The precisions and recalls for classifying the AD stages of
each neural network are both above 94%, showing that deep features could be learned from
3D images through the 3D lightweight neural networks to classify the AD stages.
According to the analysis of the precisions and recalls of the four neural networks trained
with the three kinds of images for classifying the AD stages, at the stage of CN, the
variations in GM features are mainly significant, and the variations in WM features are not
yet obvious. The neural networks trained only with the mwp1 images could classify CN
well. From CN to MCI, variations in WM features tend to be significant and compete with
variations in GM features, while variations in GM features are still significant. Therefore,
the neural networks trained with the wm images will often get the best results for
classifying MCI. At the stage of AD, the variations of the GM and WM features are both
obvious, so the neural networks trained with the wm images are needed to obtain the best
results of classification. Due to the limitation of the size of the dataset, the present study
only qualitatively summarizes the impact of the development of AD on GM and WM, and
subsequent broader datasets and the latest neural networks would be applied to explore the
impact of the development of AD on brain tissue.
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