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We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is
accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires
only local interaction and avoids the use of cavities in the probe state preparation process. We show that the
probe state preparation and the interaction between the accelerated detector and the external field have
significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit
of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved
by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the
detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a
higher precision in the estimation. We also find that an extremely high acceleration is not required in the
quantum metrology process.

I
t is well known that a uniformly accelerated detector which interacts with external fields becomes excited in the
Minkowski vacuum. This effect is named as Unruh effect1,2, which indicates the fact that quantum properties of
fields is observer dependent3–9. However, despite its crucial role in modern theoretical physics, the experi-

mental detection of the Unruh radiation remains an open research program on date. The main technical obstacle
is that the Unruh temperature for the current experimental realizable acceleration lies far below the observable
threshold of temperature. More specifically, the Unruh temperature is smaller than 1 Kelvin even for accelerations
up to 1021 m/s2 2,10,11. On the other hand, quantum metrology12 aims to study the bounds of the estimation
precision and the quantum strategies that can attain them. The estimation is based on measurements made on
a probe system that undergoes an evolution depending on the estimated parameters. For a classical metrology
scheme, the effect of statistical errors can be reduced by repeating the measurements and averaging the outcomes.
Furthermore, by using some quantum resources and taking into account laws of quantum mechanics, the
precision can be enhanced. More specifically, the mean variance of the errors for a given measurement on the
parameter h is bounded by the Cramér-Rao inequality13 Var hð Þ§ nF j hð Þ½ �{1, where n is the number of identical
measurements repeated andF j hð Þ is the Fisher information (FI) for a given measurement scheme. Moreover, by
optimizing over all the possible set of quantum measurements, the ultimate limit on the variance is set by the
quantum Cramér-Rao bound Var hð Þ§ nFQ hð Þ½ �{1, where FQ hð Þ§F j hð Þ is the quantum Fisher information
(QFI). Recently, the adaptation of quantum metrology to improve probing technologies of relativistic effects has
been preceded by several pioneering works in different contexts, see for example14–22. These studies are of great
importance for the observation of relativistic effects in laboratories23 and pace-based quantum information
processing tasks24–27.

In particular, it is found that quantum metrology can be employed to enhance the accuracy of estimation for the
Unruh effect, both for accelerated free modes18–20 and moving cavities21,22. Unfortunately, the former is suffered
from the physically unfeasible detection of global free models in the full spacetime while the latter is absence of
non-perturbative expression of Boglivbov coefficients and therefore without an analytical form of QFI due to the
boundary conditions of the moving cavities. To avoid these difficulties, in this paper we employ the Unruh-Dewitt
detector model28 and avoid the use of any cavities. The detector is modeled by a two-level semiclassical atom with
a fixed energy gap and interacts only with the neighbor field. We assume that one detector is switched off and at
the same time keeps stationary while the other detector moves with constant acceleration and interacts with a
massless scalar filed in the Minkowski vacuum. The detector is classical in the sense that it possesses a classical
world line while quantum because its internal degree of freedom are treated quantum mechanically28. This model
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is adopted to study the behaviour of quantum teleportation29,
quantum discord30 and quantum nonlocality31 under the influence
of the Unruh effect. We find that the strength of effective coupling
between the accelerated detector and the external field, and the
energy gaps of the detector have significant effects on the value of
QFI, i.e., the precision in the estimation of Unruh effect is sensitive to
those parameters. We also find that an extremely high acceleration is
not required in the estimation of the Unruh effect, although a higher
Unruh temperature is obtained for a higher acceleration.

Results
Detector-Field interaction and probe state preparation. We
consider a couple of Unruh-Dewitt detectors28 in the Minkowski
spacetime, each of them is modeled through a two-level non-
interacting atom29–31. The detectors initially share a entangled state,
which is the probe state of the estimation and has the form as,

YARj i~sin h 0Aj i 1Rj izcos h 1Aj i 0Rj i, ð1Þ

where j0A(R)æ and j1A(R)æ represent the unexcited and excited states of
Alice’s (or Rob’s) detector, respectively. The total initial state of the

detectors plus the external scalar fields is given by YARw
t0

��� E
~ YARj i

6 0Mj i, where j0Mæ corresponds to the Minkowski vacuum of the
scalar field.

We assume that the detector carried by Alice keeps inertial while
Rob’s detector moves with constant acceleration a along the x axis for
a finite amount of time D. The world line of a uniformly accelerated
detector is described by

t tð Þ~a{1 sinh at, x tð Þ~a{1 cosh at,

y(t) 5 z(t) 5 0, where t is the detector’s proper time and (t, x, y, z)
are Cartesian coordinates of the Minkowski spacetime. Throughout
this paper we set c 5 �h 5 kB 5 1. From Alice’s perspective, the full
Hilbert space is H 5 HA fl HR fl HI. However, we should map the
state in the accelerated observer of Rob’s frame into the Rindler Fock
space basis, which means that a complementary Rindler region HII is
relevant. Here HI is the Hilbert space in the right region of the Rindler
spacetime, and analogously HII denotes that in the left Rindler
region.

Then we let Alice’s detector keeps switched off while Rob’s
detector is switched on at the very beginning of its accelerated
motion. The detectors are two-level atoms with energy gap V as
introduced by Unruh and Wald28. Besides, the detectors are assumed
to be point-like and only interact with the field in neighborhoods of
their world lines. The total Hamiltonian of the system is given by

HARw~HAzHRzHKGzHRw
int , ð2Þ

where HA 5 VA{A and HR 5 VR{R are the detectors’ Hamiltonian,

HKG is Hamiltonian of the massless scalar field, and HRw
int is the

interaction Hamiltonian between the scalar field and Rob’s detector.
Rob’s detector will keep being switched on for a finite amount of time
D and interacts with the external scalar field w(x) which satisfies the
massless Klein-Gordon equation =a=aw(x) 5 032.

The density matrix that describes the detector’s state after the
accelerated motion and the interaction is found to be

rAR
t ~a YARj i YARh jzb 0Aj i 0Rj i 0Ah j 0Rh j

zc 1Aj i 1Rj i 1Ah j 1Rh j,
ð3Þ

where YAR is the initial state of the detectors and the parameters a, b
and c are found to be

a~
1{e{V=T
� �

1{e{V=Tð Þzsin2 hn2zn2 cos2 he{V=T
,

b~
n2 sin2 h

1{e{V=Tð Þzn2 sin2 hzn2 cos2 he{V=T
,

c~
n2 cos2 he{V=T

1{e{V=Tð Þzn2 sin2 hzn2 cos2 he{V=T
,

respectively, and T 5 a/2p is the Unruh temperature. For the sake of
convenience, we have defined the effective coupling29,33

n2: lk k2
~

2VD

2p
e{V2k2

, ð4Þ

where is the coupling constant, D is the time interval of the interaction,
and V{1=D is required for the validity of the above definition. In this
paper the coupling constant is fixed as ~2p|10{3 29,30 and the
effective coupling is restricted to n=134,35 for the validity of the perturb-
ative approach. From Eq. (3) we can see that the Unruh temperature T
is involved in the evolution of the probe state. Now our main task is to
optimize the estimation procedure by maximizing the precision over all
the interaction parameters. In the following, by employing the optimal
probe preparation and tuning the interaction parameters, we are going
to seek the optimal strategy for the Unruh temperature estimation.

Quantum Fisher information and metrology for the detector
model. We assume that the following process is repeated n times:
Alice’s and Rob’s detectors are prepared initially as YAR in the
inertial frame, then we let Rob’s detector be accelerated for a
duration of time D while Alice stays inertial. After the interaction
period, a set of positive operator valued measurement (POVM) is
performed on the final state rAR

t . For each interaction period, we can
get an unbiased estimator j for the Unruh temperature T. According to
the classical Cramér-Rao inequality13, the mean variance of the error
for this measurement scheme is Var Tð Þ§1=F j Tð Þ, where F j Tð Þ is
the FI for the estimated parameter T. The F j Tð Þ is defined as

F j Tð Þ~
X

jp j ljð Þ L ln p j Tjð Þ
LT

� �2

~
X

j
1

r j Tjð Þ
Lp j Tjð Þ

LT

� �
,

ð5Þ

where p(jjT) is the probability of obtaining the value j when the
parameter T is estimated. In quantum mechanics, according to the
Born rule we have p x Tjð Þ~Tr PjrAR

t

� �
, where rAR

t is the density
operator of the final state. Now we define the symmetric logarithmic
derivative (SLD) LT as

LT rAR
t zrAR

t LT

2
~

LrAR
t

LT
, ð6Þ

where the relation
Lr j Tjð Þ

LT
~Tr

L rAR
t Pj

� �
LT

	 

~Re Tr rAR

t PjLT
� �� �

is

used. The FI (5) is then can be rewritten as

F j Tð Þ~
X

j

Re Tr rAR
t PjLT

� �� �2

Tr rAR
t Pj½ �

" #
: ð7Þ

For any given POVM {Pj}, FI establish the bound on precision. To
obtain the ultimate bounds on precision, now the task is maximizing
the FI over all the possible quantum measurements. Following Refs. 36,
37, we have

F j Tð Þƒ
X

j

Tr rAR
t PjLT

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr rAR

t Pj½ �
p
�����

�����
2

ƒ

X
jTr PjLT rAR

t LT
� �

~Tr LT rAR
t LT

� �
,

ð8Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7195 | DOI: 10.1038/srep07195 2



where the last term is the QFI

FQ Tð Þ~Tr LT rAR
t LT

� �
~Tr rAR

t L2
T

� �
: ð9Þ

Thus, optimizing over all the possible measurements provides us with
an lower quantum Cramér-Rao bound36, i.e.,

Var Tð Þ§ 1
nF j Tð Þ§

1
nFQ Tð Þ : ð10Þ

Despite the concise definition of QFI, the calculation of LT is
somewhat a non-trival task. Alternatively, basing on a spectrum

decomposition of the state as rAR
t ~

XN

m~1
pm ymj i ymh j, the QFI

can be rephrased as37,38

FQ Tð Þ~2
XN

m,n

ymh jLT rAR
t ynj i

�� ��2
pmzpn

, ð11Þ

with the eigenvalues pm $ 0 and
XN

m
pm~1. For a non-full-rank state

the QFI can be expressed as39,40

FQ Tð Þ~
X

m’

LT pm’ð Þ2

pm’

z2
X
m=n

pm{pnð Þ2

pmzpn
ymjLT ynh ij j

2

,

ð12Þ

where the summations involve sums over all pm9 ? 0 and pm 1 pn ? 0,
respectively. From Eq. (12), we can see that the QFI of a non-full-rank
state can be determined by the subset of the spectrum decomposition
of the state with nonzero eigenvalues.

Our aim is to study how precisely one can in principle estimate the
Unruh temperature that appears in the detector model. We are look-
ing for the optimal estimation scheme, i.e. finding the optimal probe
state preparation and interaction parameters that allow us to get the

largest QFI. With the expression of the QFI in Eq. (12), we only need
the nonzero eigenvalues of the final state Eq. (3), there are

L1~
2 1{e{V=T
� �

2{n2 1zcos 2hð Þze{V=T n2 cos 2h{1ð Þ{2½ � ,

L2~
n2 cos2 h

{1zn2 cos2 hzeV=T 1zn2 sin2 hð Þ ,

L3~
eV=T n2 sin2 h

{1zn2 cos2 hzeV=T 1zn2 sin2 hð Þ :

The corresponding eigenvectors are found to be jy1æ 5 (1 1 tan2

h)21 {0, tan h, 0, 1}, jy2æ 5 {0, 0, 0, 1}, and jy3æ 5 {1, 0, 0, 0},
respectively. Now we have obtained all the required elements to
calculate the QFI for the estimation of the Unruh temperature T.
Physically, a fix value of FI is obtained by any set of measurement,
while the QFI is the biggest FI optimizing over all the possible mea-
surements. Here the eigenvectors jymæ of the final state Eq.(3) inde-
pendent of the estimated parameter T so hTjymæ 5 0. Then the
optimal projective measurement can be constituted by the eigenvec-
tors jymæ of the final state, and the measured probabilities p(j jT) are
exactly the eigenvalues pm of the final state.

In Figure 1 we plot the QFI of the probe state Eq. (3) after the
Unruh temperature involved evolution as functions of the effective
coupling parameter n and the acceleration a. The maximal QFI is
obtained by numerical optimization over n and a for a given initial
state parameter h 5 p/4, i.e., the initial between Alice’s and Rob’s
detector is a singlet state. It is shown that the QFI always increase as
the growth of coupling parameter n, which means that we can get the
a larger precision for a stronger effective coupling between Rob’s
detector and the scalar field. We can see that the QFI of the final
states depends on the observers’s acceleration sensitively, which
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Figure 1 | QFI in the estimation of the Unruh temperature as functions of the coupling parameter n and the acceleration a. The initial state parameter is

fixed with h 5 p/4 and the energy gap is given by V 5 1. Here we set a smaller energy gap than that of Ref. 29 because a smaller energy gap V makes the

detector easier to be excited and de-excited by considering the metrology process repeat the measurement many times.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7195 | DOI: 10.1038/srep07195 3



shows that the magnitude of Rob’s acceleration has a non-trivial
influence on the quantum metrology. Note that the QFI firstly
increases and then decreases as the increase of a, which indicates
that the highest precision in the Unruh effect estimating can be
obtained for a medium value acceleration. That is to say, we don’t
need to obtain an extremely high acceleration during the estimation
of the Unruh effect, although the higher Unruh temperature is
obtained for a higher acceleration. There is a range of acceleration
that provides us with the optimal precision during the estimation
procedure.

To obtain a physical interpretation of this counterintuitive phe-
nomenon, we calculate the quantum entanglement of the final state
Eq. (3). We employ the well accepted concurrence41,42 to quantify
quantum entanglement, which can be computed by C rð Þ~2 max

0, ~C1 rð Þ,~C2 rð Þ
� 

for a state with a X-type structure. Here
~C1 rð Þ~ ffiffiffiffiffiffiffiffiffiffiffiffiffi

r14r41
p

{
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r22r33
p

and ~C2 rð Þ~ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r23r32
p

{
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r44
p

, and
rij are elements of the density matrix rAR

t of the final state.
In Figure 2 we compare the QFI and the entanglement of the probe

state as a function of the acceleration a for a fixed effective coupling
parameter n 5 0.1. It is found that, as we have shown in Ref. 31, the
entanglement of the probe state decreases as the increasing of accel-
eration. On the other hand, in order to have a detectable Unruh
effect, the acceleration is required to be large enough. This forms a
balance: it will be beneficial for the detecting of Unruh effect by a
increasing acceleration, but this large acceleration will destroy the
entanglement which in general will induce the increasing QFI12 and
thus obscure overall the detection. In Figure 2, we may notice that the
estimation precision increases rapidly as the increase of acceleration
for small value accelerations until reaching the optimal point, then
decreases even the acceleration increases. For some larger accelera-
tion, the QFI diminishes due to the decrease of quantum entangle-
ment. This suggests the regime of acceleration a which is beneficial
for the detection of Unruh effect.

We are also interested in how the energy gap V of Rob’s detector
and the interaction time D influence the estimation of the Unruh
effect. In Figure 3 we plot the behaviour of QFI as a function of the
energy gapV for different interaction timeD. It is shown that the QFI
is sensitive to the variation of different energy gaps of Rob’s detector.
In particular, the maximal QFI is obtained at a fixed energy gap V
value for every interaction time D. That is to say, the energy gap of
Rob’s detector has a significant impact on the estimation of Unruh

effect. Thus one can prepare a proper detector by some kinds of two-
level systems that possess the proper energy gap to obtain the best
estimation precision. Alternatively, we can get a higher precision, i.e.,
a larger QFI for a longer interaction time. To sum up, we can choose
the largest effective coupling strength and the longest interaction
time allowed by quantum mechanics, as well as some suitable energy
gaps to realizes the optimal strategy attaining the ultimate sensitivity
for the estimation of the Unruh effect.

Discussion
We have studied the relativistic quantum metrology for two entang-
led detectors when one of them with accelerated motion. The optimal
strategy for the Unruh effect estimation is obtained by employing the
proper probe state preparation and by adjusting the interaction para-
meters in the estimation process. We employ the Unruh-Dewitt
detector model, which has a fixed energy gap and interacts only with
the neighbor field. The studied model avoids two critical technical
difficulties in the estimation of the Unruh temperature: a physically
unfeasible detection of global free models in the full space and a non-
analytical expression of QFI due to the boundary conditions of the
moving cavity. In this paper the point-like detectors only couple to
the neighbour field modes, and Alice’s and Rob’s detectors in the
Rindler region I are causally connected. The studied modes are in fact
relativistic local and only the local projective measurements are per-
formed in the metrology process so obeys the causality. It is worthy to
mention that the relativistic causality would be violated if the pro-
jective measurements are performed between the causally separated
modes45. Fortunately, Lin recently found that the violation can be
suppressed by introducing restrictions on the post-measurements for
the projective measurements on relativistic nonlocal modes46. It is
shown that the probe state preparation and the interaction para-
meters between Rob’s detector and the external field have significant
influences on the value of QFI. To be specific, there are a range of
energy gaps of the accelerated detector that provide us a better pre-
cision in the estimation of the Unruh temperature. However, one
should choose the largest effective coupling strength and the phys-
ically allowed longest interaction time to achieve the same goal. The
results of this paper can be also applied to the estimation of Hawking
temperature of black holes and Unruh temperature for non-uni-
formly accelerated detectors43,44. Such topics are left for a future
research.

Figure 2 | QFI and entanglement of the final state Eq. (3) as a function of the acceleration a. The initial state parameter is fixed with h 5 p/4 and the

energy gap is given by V21 5 2p. The effective coupling parameter is fixed as n 5 0.1 to keep the perturbative approach valid for large times.
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Methods
The interaction Hamiltonian between Rob’s detector and the scalar field is

HRw
int tð Þ~ tð Þ

ð
P

t

d3x
ffiffiffiffiffiffiffiffi
{g
p

w xð Þ y xð ÞRz�y xð ÞR{
� �

, ð13Þ

where g ; det(gab), and gab is the metric tensor of the Minkovski spacetime. Here
is the coupling constant. The detector is switched on smoothly within a finite

time interval D and then switched off outside this interval. Besides, y(x) is a
function which vanishes outside a small volume around the detector, models the
fact that the detector only interacts with the neighbor fields47 in the Minkowski
vacuum.

The state YRw
t~t0zD

��� E
that describes Rob’s detector and the scalar field at time t 5 t0

1 D can be expressed as

YRw
t

��� E
~T exp {i

ðt

{?
dt’HI

int t’ð Þ
	 


YRw
t0

��� E
, ð14Þ

in the interaction picture, where T is the time-ordering operator and

HI
int tð Þ~U{

0 tð ÞHint tð ÞU0 tð Þ: ð15Þ

Here U0(t) is an unitary evolution operator associated with HR 1 HKG
29,33. By using

Eq. (14), we write the final state YRw
t

��� E
of the detector-field system as

YRw
t

��� E
~T exp {i

ð
d4x

ffiffiffiffiffiffiffiffi
{g
p

w xð Þ fRz�f R{
� �	 


YRw
t0

��� E
, ð16Þ

where f: tð Þe{iVty xð Þ is a compact support complex function defined in the
Minkowski space-time. In this paper we only consider the point-like detectors, which

can be realized by choosing y xð Þ~ k
ffiffiffiffiffi
2p
p� �{3

exp {x2
�

2k2
� �

with the parameter

k~const = 1. In the weak coupling case, we can express Eq. (16) in the first order of
perturbation over the coupling constant 28–30

YRw
t

��� E
~ I{i w fð ÞRzw fð Þ{R{

� �h i
YRw

t0

��� E
, ð17Þ

where w(f) is an operator valued distribution of the scalar field33 given by

w fð Þ:
ð

d4x
ffiffiffiffiffiffiffiffi
{g
p

w xð Þf

~i aRI KE�f
� �

{a{RI KEfð Þ
h i

,

ð18Þ

and aRI �uð Þ and a{RI uð Þ are the annihilation and creation operators of u modes29,33,
respectively. Besides, K is an operator that takes the positive frequency part of the
solutions of the Klein-Gordon equation, and E is the difference between the advanced
and retarded Green functions.

Considering that only Rob’s detector interacts with the field, we evolve our initial
state to its asymptotic form

YARw
t

��� E
~ YARw

t0

��� E
zsin h 0Aj i 0Rj i6 a{RI lð Þ 0Mj i

� �
zcos h 1Aj i 1Rj i6 aRI

�l
� �

0Mj i
� �

,

ð19Þ

where l 5 2KEf, the subscripts in a{
RI and aRI indicate that they are creation and

annihilation operators of Rindler modes in the region I. Note that in Eq. (19) the
operators are defined in the Rindler coordinate, while the state j0Mæ is a vacuum state
in the Minkowski spacetime.

We write the operators aRI and a{RI as

aRI
�l
� �

~
aM F1V
� �

ze{pV=aa{M F2Vð Þ
1{e{2pV=að Þ1=2

, ð20Þ

a{
RI lð Þ~

a{
M F1Vð Þze{pV=aam F2V

� �
1{e{2pV=að Þ1=2

, ð21Þ

where F1V~
lze{pV=al0w

1{e{2pV=að Þ1=2
, and F2V~

l0wze{pV=a�l

1{e{2pV=að Þ1=2
. Here w(t, x) 5 (2t, 2x)

is the wedge reflection isometry, which makes a reflection from Q [ HI to
Q0w [ �HII . It is worthy to note that the transformations Eqs. (20) and (21) are not
the usual manner of the Bogoliubov transformations under the single-mode
approximation. They are in fact the appropriate transformations28 between a set of
positive-frequency modes l and l u w which are wave packet with frequencies
peaked sharply about V and a set of functions F1V and F2V therefore beyond the

single mode approximation. Substituting the operators aRI(l) and a{
RI lð Þ in Eq.

(19), the final state of the total system can be obtained. The density matrix that
describes the detector’s state is calculated by tracing out the degrees of freedom of
the external field

rAR
t ~ YARw

t

��� ���{2
TrwY

ARw
t

��� E
YARw

t

D ���, ð22Þ

where YARw
t

��� ���2
: normalizes the final state and has the form of

YARw
t

��� ���2
~1z

sin2 hn2

1{e{2pV=a
z

cos2 hn2e{2pV=a

1{e{2pV=a
: ð23Þ

Eq. (3) can be derived by working out Eq. (22).
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