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Abstract

The structural, electronic, elastic, mechanical and optical properties of

technologically important lithium niobate (LiNbO3) have been investigated by

using the first-principle calculations based on density functional theory (DFT)

implemented in the CASTEP code. The lattice constants and unit cell volume

were calculated from the optimized unit cell, which were in well agreement with

the reported theoretical as well as experimental values. Bulk modulus B,

Young’s modulus Y, shear modulus G, Poisson’s ratio s, elastic anisotropy A

and compressibility K were determined based on the computed values of

independent elastic constants (C11, C12, C13, C14, C33, C44 and C66). Electronic

band structure and density of states (DOS) demonstrated its semiconducting

nature showing a band gap of 3.54 eV. Furthermore, several optical properties,

such as absorption coefficient, reflectivity, refractive index, dielectric function,

optical conductivity and electron energy loss function have been calculated.
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1. Introduction

Perovskite compounds are of great interest to the researchers for several industrial

and technological applications. Perovskite structure was first discovered by Gustav

Rose in 1839. These materials exhibit unusual physical properties like high Tc super-

conductivity, ferromagnetism, ferroelectricity, spin dependent transport, high

thermopower etc. The perovskite structures can be described by the common chem-

ical formula ABO3. In a cubic unit cell of this crystal structure, ’A’ atom occupies

corner positions (0, 0, 0) while ’B’ atom is at body-center position (1/2, 1/2, 1/2)

and oxygen atoms are at face centred positions (1/2, 1/2, 0).

In recent years, perovskite alkaline niobates (ANbO3; A ¼ Li, Na, K, Rb) are paying

lots of attention due to their versatile properties for numerous applications, e.g.

nonlinear optical response, piezoelectric, pyroelectric, photorefractive, and photoca-

talytic response as well as good mechanical and chemical stability.

Lithium niobate (LiNbO3, LN) is ferroelectric material with layered structure [1]. It

has attracted great interest as a future functional material due to their excellent ferro-

electric, photorefractive, electro-optic, piezoelectric, nonlinear-optical, photocata-

lytic, and ion conductive properties [2, 3, 4, 5, 6]. Laser-induced optical damage

also known as photorefraction was first observed in LiNbO3 and LiTiO3 crystals

at the Bell Laboratories. For these excellent properties, I am interested to study

several properties of this compound.

On the other hand, modern communication technology largely depends on fiber-

optic systems. It includes laser as light sources, optical fiber, integrated optical com-

ponents such as switches, modulators and optical detectors [7]. Different semicon-

ducting materials are used to fabricate lasers and detectors. The integrated optical

components are generally designed using single crystal materials such as LiNbO3.

Substantial experimental and theoretical studies have been performed on LiNbO3 [8,

9, 10, 11, 12, 13]. But, to the best of my knowledge, extensive theoretical study of

elastic and mechanical properties is still lacking in literatures. Due to interesting

unique physical properties of this compound, it is essential to know more details

about the material. Density Functional Theory (DFT) is one of the most sophisticated

tools in condensed matter physics to study different properties of a material. From

this perspective, in the present work structural, elastic, electronic, thermodynamic

and optical properties of lithium niobate (LiNbO3) have been studied by using

density functional theory (DFT).
2. Methodology

The simulation study was carried out using the pseudo-potential based plane-

wave density functional theory (DFT) built in the CASTEP code [14, 15].
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The core electrons were replaced by Vanderbilt type ultrasoft pseudopotentials

[16] and plane-wave basis cut-off energy of 500 eV was used. Exchange

correlation functional was taken into consideration using the local density

approximation (LDA) with CeperleyeAlder and PerdeweZunger (CA-PZ)

functional [17, 18]. The potential of the constituent atoms was evaluated by

assuming the neutral atomic configurations of Li 2s1, Nb 4d4 5s1 and O 2s2

2p4. The k-point mesh 9 � 9 � 3 of Monkhorst-Pack scheme was used for

the calculations [19, 20]. The equlibrium structures were obtained by using

Broyden-Fletcher-Goldfarb-Shenno (BFGS) methods [21]. The total energy

was fixed to a value of 1.0�10�5 eV/atom; maximum force of 0.02 eV/�A;

maximum stress of 0.04 GPa; maximum displacement of 0.001 �A and self

consistent field of 1.0�10�6 �A.

Single crystal elastic constants have been calculated using stress-strain condition.

The mechanical stability criteria also known as Born criteria for trigonal crystal

system are as follows: [22, 23, 24]

C11 �C12 > 0; ðC11 þC12ÞC33 � 2C2
13 > 0;

ðC11 �C12ÞC44 � 2C2
14 > 0 ð1Þ

The bulk modulus B and shear modulus G are defined as,

B¼ 1
2
ðBV þBRÞ andG¼ 1

2
ðGV þGRÞ ð2Þ

The well-known Young’s modulus Y and Poisson’s ratio s are calculated using the

following relations:

E ¼ 9BG
3BþG

ð3Þ

s¼ 3B� 2G
6Bþ 2G

ð4Þ

Further, elastic anisotropies such as compression anisotropy (Acomp) and shear

anisotropy (Ashear) can be defined as [25].

Acomp ¼ BV �BR

BV þBR
� 100% ð5Þ

Ashear ¼ GV �GR

GV þGR
� 100% ð6Þ
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3. Results and discussion

3.1. Structural properties

The LiNbO3 crystallizes in trigonal structure of hexagonal symmetry with ten atoms

per unit cell. At room temperature it exists in ferroelectric phase with space group

R3c (no. 161) and change into para-electric phase (R3c) above 1480K temperature

[26]. The Wyckoff positions of atoms for this compound are Li (0, 0, 0.2829); Nb (0,

0, 0) and O (0.0492, 0.3446, 0.0647) [27]. The schematic crystal structure of LiNbO3

is shown below in Fig. 1. The optimized lattice constants and related cell volume are

presented in Table 1.
3.2. Elastic and mechanical properties

Elastic constants are fundamental properties of solid materials. The propagation of

elastic wave through a medium depends on elastic constants of that material. Elastic

properties are also linked to thermodynamic properties like specific heat, thermal

expansion coefficient, Debye temperature and melting point. The elastic stiffness

constants describe the response of a material to external applied forces. Elastic

constants are used to describe the mechanical properties of solids. Bulk modulus,

Young’s modulus, shear modulus and Poisson’s ratio are calculated from single

crystal elastic constants which determine the hardness and strength of the material.

Elastic constants are also related to the melting temperature of a solid.
Fig. 1. Crystal structure of LiNbO3.
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Table 1. The optimized lattice constants and unit cell volume of LiNbO3.

a (�A) b (�A) c (�A) c/a V (�A3) References

5.057 5.057 13.942 2.76 308.58 This work

5.221
5.159

5.221
5.159

14.094
13.869

2.70
2.69

332.71
320.18

[28]theor.

[29]theor.

5.147 5.147 13.849 2.69 317.73 [30]expt.
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For a trigonal crystal system 21 independent elastic stiffness constants reduce to

seven components, C11, C33, C44, C66, C12, C13 and C14 due to the presence of

symmetry between stress and strain tensors.

The six independent elastic constants for LiNbO3 obtained using stress-strain condi-

tion from CASTEP calculation are listed in Table 2, which satisfy the Born criteria

mentioned in Eq. (1). Among the three diagonal components, C44 is smaller than C11

and C33, which means that the material is easier to compress along the direction C44

than that of along the other two directions. On the other hand C33 shows the highest

value. The calculated values were compared with reported experimental results and

showed good agreement.

To study the polycrystalline behavior of a material from single crystal elastic con-

stants, the well-established Voigt and the Reuss approximations are generally

used [33, 34, 35].

The results are shown in Table 3. Bulk modulus is a very important mechanical prop-

erty of solid materials. It indicates the ability of a material to resist compression

under applied force and also represents the nature of chemical bonding in solids.

The shear modulus measures resistance to shape change in materials. The higher

the shear modulus, the more rigid the material is. Pugh established a ratio of B/G,

which describes the ductile or brittle characteristics of materials which is very impor-

tant for engineering applications. The cutoff value is 1.75. When B/G > 1.75, the

material behaves in a ductile manner, otherwise, it exhibits brittle properties [36].

From Table 3, B/G ratio is 1.97 which indicates that LiNbO3 should behave in

ductile nature.
Table 2. Calculated single crystal elastic constants (Cij) at external pressure

P ¼ 0.

C11 C12 C13 C14 C33 C44 C66 References

205.69 69.28 72.15 12.38 238.34 65.81 70.03 This work

200 56 75 8 240 60 72 [31]expt.

208.77 73.28 75.99 15.68 236.23 49.80 67.74 [29]theor.

198.9 54.7 67.3 7.8 233.7 70.4 72.1 [32]theor.
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Table 3. Calculated bulk modulus B (GPa), Young’s modulus E (GPa), shear

modulus G (GPa), Poisson’s ratio s, and B/G ratio.

B E G s B/G

272.80 355.95 138.77 0.28 1.97
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Calculated Acomp and Ashear were found to be 8.37% and 21.90% respectively, which

indicate that shear anisotropy is more serious than compression.
3.3. Electronic properties

3.3.1. Band structure and electronic density of states (DOS)

The spectrum of energy eigen values of a periodic system is band structure.

The calculation of the band structure helps one to understand the shape of the Fermi

surface. The electronic and optical properties of a compound can be understood by

identifying the dominant bands near the Fermi level, their energy etc. The band gap

is one of the most useful aspects of the band structure, as it influences strongly the

electrical and optical properties of the material. The electronic band structure of

LiNbO3 is shown in Fig. 2(a).

The energy band structure of LiNbO3 was computed at equilibrium volume (P ¼ 0,

which means equilibrium volume at zero pressure) by using the first principles DFT

approach with local density approximation (LDA). The energy bands of LiNbO3 are

along the high symmetry direction, (F-G-Z) of the Brillouin zone in the energy range

from �6 to þ10 eV. The Fermi level is chosen at zero value of energy. The valence

band maximum and conduction band minimum occur at the same point G, making it

a direct band gap material. The calculated band gap of LiNbO3 is Eg ¼ 3.54 eV

which is very close to the experimental value [37, 38, 39].

The electronic density of states (DOS) of a material is defined as the number of elec-

tronic energy states per unit energy at each energy level that are available to be occu-

pied by the electrons.

The total and partial electronic density of states of LiNbO3 at zero pressure (P ¼ 0)

are shown in Fig. 2(b) to describe the electronic structure. Here, the vertical line

indicates the Fermi level, EF. The partial contributions of s, p and d orbital of Li,

Nb and O are displayed in the figure. The figure shows that the valence band and

conduction band are composed of Li 2s, Nb 4d and O 2p. The lowest energy bands

from -10 to þ10 eV are mainly derived from the Nb 4d O and 2p states with little

contribution of Li 2s state.

The atomic bonding nature has been represented clearly in partial DOS. The highest

contribution of partial DOS comes from O 2p indicating a value of 5.15 states/eV
on.2019.e01436
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Fig. 2. (a) Electronic band structure and (b) total and partial density of states (DOS) of LiNbO3.
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which is the common characteristics of oxide semiconductors. Density of states for

LiNbO3 are listed in Table 4.
3.3.2. Mulliken populations: atomic and bond overlap

Mulliken populations are used to study the bonding nature of atoms in a crystal. Pos-

itive value of population represents bonding state whereas negative value indicate

antibonding. Mulliken atomic and bond populations of LiNbO3 are listed in Table 5.
3.4. Optical properties

The investigation of optical properties of a material is very important for various

applications like absorbers, optical coatings, reflectors, and different optoelectronic

devices. To understand the material response to incident electromagnetic radiation

optical properties are essential. The response to electromagnetic radiation is
Table 4. Total and partial density of states of LiNbO3.

Partial Density of States (States/eV) Total DOS (States/eV)

Li Nb O

2s 4p 4d 5s 2s 2p 5.30

0.03 0.22 0.23 0.08 0.02 5.15

on.2019.e01436
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Table 5. Mulliken populations.

Atom Mulliken populations of LiNbO3

s p d f Total

Li 1.68 0.00 0.00 0.00 1.68

O 1.84 4.91 0.00 0.00 6.75

Nb 2.32 6.72 3.03 0.00 12.07
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measured by the various optical parameters with respect to photon energy, such as

real and imaginary parts of dielectric constant ε1(u) and ε2(u), respectively, complex

refractive index having real part n(u), extinction coefficient k(u), real and imaginary

parts of optical conductivity s1(u) and s2(u), respectively, reflectivity R(u), absorp-

tion coefficient a(u) and loss function. Several optical parameters of LiNbO3 were

calculated for energies of incident radiation up to 20 eV as shown in Fig. 3 along

electric field polarization vector [100].

The complex dielectric function εðuÞ ¼ ε1ðuÞ þ iε2ðuÞ completely describes the

optical properties of a medium for different photon energies. The peak value of

real part of the dielectric constant is related the electron excitation. The real part

can be derived from the imaginary part ε2(u) by the Kramers-Kronig relation. By

using the momentum matrix elements between the occupied and the unoccupied

states imaginary part of dielectric constant 32(u) can be calculated.

The real and the imaginary parts of complex dielectric constant for LiNbO3 are

shown in Fig. 3(a). LiNbO3 exhibits semiconducting characteristics in the energy

ranges for which ε1(u) > 0. For the real part ε1(u) of the dielectric function, the

highest peak for LiNbO3 appears at around 3.78 eV. On the other hand the imaginary
Fig. 3. (a) Dielectric constant, (b) refractive index, (c) absorption coefficient, (d) reflectivity, (e) optical

conductivity and (f) loss function of LiNbO3 as a function of energy.
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part ε2(u) is indicating its first peak at 5.12 eV with the first edge at 3.25 eV, which is

associated to the fundamental band gap, Eg.

The complex refractive index as a function of energy in eV is shown in Fig. 3(b).

The static refractive index n(0) was found to be 2.30 which agree with other reported

theoretical and experimental values [40, 41]. The real part of refractive index, n is

not zero at any energy whereas imaginary part of refractive index also known as

extinction coefficient, k is zero at certain energy. The real part of the refractive index

is a measure of phase velocity of the electromagnetic wave in a medium, while the

imaginary part determines the attenuation of electromagnetic wave traveling through

a material. The complex dielectric function is related to the real and imaginary parts

of the refractive index by the expression, εðuÞ ¼ n2ðuÞ � k2ðuÞ [42]. Therefore, at
high photon energies both real and imaginary parts of the complex refractive index

decrease since the imaginary part of the dielectric constant tends to zero as displayed

in Fig. 3(a).

The absorption coefficient determines the solar energy conversion efficiency and it

indicates how far light of a specific energy (frequency) can penetrate into the

material before absorption. A strong absorption peak was found at 6.02 eV as shown

in Fig. 3(c). Absorption stars at around 3.40 eV which is the band gap of the material.

This confirms that, the material is partially transparent in visible region.

The reflectivity spectrum as a function of photon energy is shown in Fig. 3(d). For

LiNbO3 maximum reflectivity occurs at around 16.34 eV. This means that these

materials may be used as promising materials for coatings in visible range.

The real (s1(u)) and imaginary (s2(u)) parts of optical conductivity are shown in

Fig. 3(e). The first edge is found at 3.40 eV which corresponds to the fundamental

band gap. The maximum conductivity was found to be 5.35 f�1s�1.

Fig. 3(f) shows the energy dependent loss function. The energy loss function, L(w)

of a material determines loss of energy of fast electron when it traverse through the

medium. The maximum energy loss is 25.16 which occurs at around 16.65 eV indi-

cating the bulk screened plasma frequency, up of the compound which was

compared with available reported data and showed good agreement [43]. The loss

spectrum is highly isotropic with respect to the polarization of the incident electro-

magnetic wave.
4. Conclusions

In the present work, structural, electronic, elastic and optical properties of

LiNbO3 have been studied by means of first principles calculations. The elastic

properties have been investigated, which followed the Born stability criteria.

Several mechanical properties, like as Bulk modulus, Young’s modulus, shear
on.2019.e01436
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modulus, and anisotropy factor were computed by using the values of Cij.

Young’s modulus is very important parameter for industrial and technological

applications of a material, which measures the stiffness of solids. The material

showed high value of Young’s modulus of 355 GPa. Both Pugh’s ratio and Pois-

son’s ratio confirmed the ductile nature of the compound. The electronic structure

confirmed that the compound is a wide band gap semiconductor of 3.54 eV.

The calculated value of real part of dielectric constant for LiNbO3 is 3.75 at

low energy and increased gradually to reach its highest value of 9.80 at 3.78

eV. The imaginary part of dielectric constant showed its first edge at around

3.25 eV, which is consistent with the fundamental band gap. The maximum value

of static refractive index was found to be 3.47 at 4.35 eV. Based on the predicted

properties, it may be concluded that the study will play an important role to

develop modern technologies.
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