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Abstract

White matter maturation has been characterized by diffusion tensor (DT) metrics. How-

ever, maturational processes and degrees are not fully investigated due to limitations of

univariate approaches and limited specificity/sensitivity. Diffusion kurtosis imaging (DKI)

provides kurtosis tensor (KT) and white matter tract integrity (WMTI) metrics, besides

DT metrics. Therefore, we tried to investigate performances of DKI with the multi-

parametric analysis in characterizing white matter maturation. Developmental changes in

metrics were investigated by using tract-based spatial statistics and the region of interest

analysis on 50 neonates with postmenstrual age (PMA) from 37.43 to 43.57 weeks.

Changes in metrics were combined into various patterns to reveal different maturational

processes. Mahalanobis distance based on DT metrics (DM,DT) and that combing DT and

KT metrics (DM,DT-KT) were computed, separately. Performances of DM,DT-KT and DM,DT

were compared in revealing correlations with PMA and the neurobehavioral score. Com-

pared with DT metrics, WMTI metrics demonstrated additional changing patterns. Fur-

thermore, variations of DM,DT-KT across regions were in agreement with the maturational

sequence. Additionally, DM,DT-KT demonstrated stronger negative correlations with PMA

and the neurobehavioral score in more regions than DM,DT. Results suggest that DKI with

the multiparametric analysis benefits the understanding of white matter maturational

processes and degrees on neonates.
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1 | INTRODUCTION

White matter maturation, accompanied with structural changes,

underpins development of cognitive functions and behaviors

(Gilmore, Knickmeyer, & Gao, 2018). Structural changes are extremely

rapid during the neonatal period (Dubois et al., 2014; Ouyang, Dubois,

Yu, Mukherjee, & Huang, 2019). Many neurobehavioral disorders orig-

inate from perturbations of typical maturational processes in this early

period, which would lead to lower maturational degrees

(Suzuki, 2007). Therefore, assessing maturational processes and

degrees on neonates is essential for understanding the typical brain

development and relevant disorders (Geng et al., 2012; Ouyang

et al., 2019; Suzuki, 2007).

Magnetic resonance imaging (MRI) allows investigation of white

matter maturational processes in vivo. The myelin water fraction and

the magnetization transfer MRI can provide quantitative metrics for

assessing myelination (Dubois et al., 2014; Ouyang, Jeon, et al., 2019).

However, it is difficult to fully characterize maturational processes

including but not limited to myelination (Paus, 2010). Sensitive to

microstructural alterations, diffusion tensor imaging (DTI) is feasible to

provide various diffusion tensor (DT) derived metrics, for example,

axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy

(FA) (Ouyang, Jeon, et al., 2019). Changes of these metrics have been

thought to be related to white matter maturational processes

(e.g., premyelination, myelination, etc.) (Dubois et al., 2008, 2014;

Ouyang, Jeon, et al., 2019). Note that premyelination and myelination

mainly focus on the development of oligodendrocytes. Actually, the

axon itself undergoes dramatic changes (Paus, 2010). The axonal

growth is accompanied with more organized neurofilaments, in addi-

tion to the increasing neighbor spacing of neurofilaments, decreasing

density of the microtubule and mitochondria, and the increasing axo-

plasmic flow (Andrews et al., 2006; Garcia et al., 2003; Stassart,

Möbius, Nave, & Edgar, 2018; Suzuki, Matsuzawa, Kwee, &

Nakada, 2003). These alterations would increase the intra-axonal axial

diffusivity (Da,axial) (Garcia et al., 2003; Lee, Papaioannou, Kim,

Novikov, & Fieremans, 2020; Suzuki et al., 2003). It is difficult for DTI

to distinguish diffusion in the intra-axonal space from that in the

extra-axonal space (Paus, 2010). Several models have been proposed

to link the diffusion weighted signals to intra-axonal and extra-axonal

structural properties, for example, the neurite orientation dispersion

and density imaging (NODDI) (Zhang, Schneider, Wheeler-Kingshott, &

Alexander, 2012). However, the intra-cellular diffusivity parallel to

each sub-bundle in this model is set equal to each other and fixed to a

predefined value (Jelescu et al., 2015; Zhang et al., 2012). This limits

its ability to investigate developmental changes in Da,axial. White mat-

ter tract integrity (WMTI) metrics derived from diffusion kurtosis

imaging (DKI) may overcome this limitation by providing the estima-

tion of Da,axial, as well as axonal water fraction (AWF), fiber dispersion

(FD), extra-axonal axial diffusivity (De,axial), extra-axonal radial diffusiv-

ity (De,radial), and tortuosity (Fieremans, Jensen, & Helpern, 2011;

Jelescu et al., 2015). Therefore, this study hypothesizes that combing

changes in WMTI and DT metrics may help in revealing more detailed

maturational processes on neonatal white matter.

Typically, brain reaches its mature stage when measurements

match the mature reference (Somerville, 2016). Accordingly, the mat-

urational degree of white matter refers to the degree of similarity

between the developing brain and the mature reference. Though MRI

parametric values can reveal developmental changes on neonatal

brains (Dean III et al., 2017; Gilmore et al., 2007; Hüppi et al., 1998;

Kunz et al., 2014), the parametric value on the developing brain itself

may be not able to reflect the maturational degree without the mature

reference (Kulikova et al., 2015). Moreover, univariate approach based

on one single metric (e.g., AD or RD) may not be able to reflect fully

maturational degrees. It is necessary to use multivariate approaches

and to take the mature brain as the reference. Multivariate techniques

are often based on the measurement of distances between objects.

The most commonly used distance measures are Euclidean and

Mahalonobis distances (Maesschalck, Jouan-Rimbaud, &

Massart, 2000). In the Euclidean distance calculation, different metrics

are equally weighted. However, different MRI metrics hold different

scales. As comparisons, Mahalonobis distance is the distance between

a point and a distribution, which holds the advantage in characterizing

the maturational degree by scaling the contribution of variables

according to the variability of each variable (Ghorbani, 2019). Specifi-

cally, Mahalanobis distance based on the combination of various met-

rics has demonstrated greater discrimination among individuals and

better characterization of maturation than univariate approaches

(Dean III et al., 2017; Kulikova et al., 2015; Lindemer et al., 2015). Fur-

thermore, among various distance measures, the Mahalanobis dis-

tance demonstrates great sensitivity to reveal the association with

intelligence (Shehzad et al., 2014). Taking the mature adult brain as

the reference, the smaller the distance, the closer the developing brain

to the mature brain (Kulikova et al., 2015). Therefore, Mahalanobis

distance is an alternative strategy to quantify maturational degrees.

DT metrics have been demonstrated suitable to be included into the

Mahalanobis distance calculation for assessing white matter matura-

tion (Kulikova et al., 2015), as each metric changes in one direction to

the mature reference (increasing FA, decreasing AD and RD) during

the postnatal period (Dubois et al., 2014). As an extension of DTI, DKI

can provide kurtosis tensor (KT) metrics (e.g., axial kurtosis, AK; radial

kurtosis, RK; mean kurtosis, MK), besides DT metrics, for characteriz-

ing brain structural changes (Grinberg et al., 2017; Jelescu et al., 2015;

Paydar et al., 2014). However, whether KT metrics could improve the

performance of the Mahalanobis distance in quantifying maturational

degrees remains to be investigated.

According to the above considerations, this study tried to investi-

gate performances of DKI with the multiparametric analysis in charac-

terizing white matter maturational processes and degrees on term

neonates. Age-related changes in metrics were investigated by using

tract-based spatial statistics (TBSS) (Smith et al., 2006) and the region

of interest (ROI) analysis. Then, change patterns were assessed by

combing changes of different metrics to reveal maturational pro-

cesses. To quantify maturational degrees, Mahalanobis distances

based on DT metrics (DM,DT) and the combination of DT and KT met-

rics (DM,DT-KT) were computed, considering the adult brain as the ref-

erence. Finally, performances of DM,DT-KT and DM,DT were compared
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in revealing correlations with the postmenstrual age (PMA) and the

neurobehavioral score.

2 | MATERIALS AND METHODS

This study was approved by the local institutional review board.

Informed written consents were obtained from adult participants and

parents of neonates.

2.1 | Participants

This study included term neonates who met the following inclusion

criteria: (a) postnatal age at MRI ≤28 days; (b) term birth (gestational

age ≥ 37 weeks); (c) complete MRI data; and (d) accomplished neona-

tal behavioral neurological assessment. Exclusion criteria were:

(a) MRI abnormalities or diseases that may affect white matter matu-

ration (e.g., punctate white matter lesions, hypoxic–ischemic encepha-

lopathy, neonatal asphyxia, congenital heart disease, neonatal

respiratory distress syndrome, etc.); (b) abnormal neurodevelopment

assessed by the follow-up Bayley scales of infant development assess-

ment (second edition, score of mental development index or psycho-

motor development index <85); and (c) motion artifacts.

To link Mahalanobis distance to the maturational degree, the ref-

erence should be the mature brain. As age has impacts on structural

changes in the brain, adults in the plateau period may be candidates

of the reference. For DT and KT metrics, changes reach a plateau in

late adolescence or in the twenties (Das, Wang, Bing, Bhetuwal, &

Yang, 2017; Paydar et al., 2014; Tamnes et al., 2010). Therefore, this

study selected the adult as the reference. Healthy adult volunteers

were recruited among students from the local university. MRI was

performed on these volunteers after obtaining informed written con-

sents and accomplishing neurological and psychiatric examinations.

The inclusion criteria for adults were: (a) 18 years ≤ age at

MRI < 30 years; (b) term birth (gestational age ≥ 37 weeks);

(c) complete MRI data; (d) right-handed; (e) free of neurological/

psychiatric diseases, without MRI abnormalities, Wechsler adult intel-

ligence scale >85, Hamilton depression scale <7; (f) no history of brain

injuries or drug/ alcohol abuse; and (g) self-reported habitual good

sleep (>7 hr per night) in 2 weeks prior to the MRI scanning. Data with

motion artifacts would be excluded.

2.2 | Data acquisition

MRI was performed on a 3 T scanner (Signa HDxt; GE Healthcare;

Milwaukee, Wisconsin) with an 8-channel head coil. To complete the

MRI examination and reduce motion artifacts, neonates were

suggested to adjust the sleep habit. Subjects who could not success-

fully accomplish the MRI examination under the natural sleep status

after three attempts or request by their parents were sedated

(Phenobarbital, 4 mg/kg, intramuscular injection) after consultation

with anesthesiologists. The patient selection, monitoring, and manage-

ment were performed following guidelines for pediatric patients dur-

ing and after sedation (Coté & Wilson, 2006). No adverse events

related to the sedation occurred during the followed-up investigation.

The body temperature, the heart rate, the respiration rate, and the

transcutaneous oxygen saturation were monitored throughout the

MRI procedure. Micro-earplugs were placed bilaterally in the external

auditory meatus of subjects to protect their hearing.

DKI was performed by using a single shot echo planar imaging

sequence with following parameters: b values = 0, 500, 1,000, 2,000,

2,500 s/mm2; 5 volumes of b = 0 s/mm2 (b0) (including one reversed

phase-encode b0); 18 gradient directions per nonzero b value;

NEX = 1; repetition time/echo time = 11,000/91.7 ms; slice

thickness = 4 mm; field of view = 180 � 180 mm2 for neonates and

240 � 240 mm2 for adults; acquisition matrix =128 � 128 for neo-

nates and 172 � 172 for adults to keep the same spatial resolution;

the acquisition voxel size = 1.4 � 1.4 � 4 mm3. The acquisition time

of DKI was 14 min 6 sec.

The neurobehavioral assessment was performed on neonates

within 5 days before or after MRI by using the neonatal behavioral

neurological assessment (Chinese) (Bao, Yu, Li, & Zhang, 1991). This

assessment (including 20 items) is a composite measure based on the

Chinese practice and the representative behavioral neurological mea-

surement methods proposed by Amiel-Tison and Brazelton (Amiel-

Tison et al., 1982; Brazelton, 1984). The neurobehavioral score (sum

of 20 items) in this current work reflects the broad behavioral devel-

opment of neonates.

2.3 | Data processing

During the data exclusion procedure, the detection of motion artifacts

was performed by using an automatic method (Appendix S1) (Li

et al., 2014). Taking b0 image as the reference, images in different gra-

dient directions were checked slice by slice using the two-dimensional

local Pearson correlation coefficient. The threshold for motion arti-

facts detection and exclusion was set to be the SD by a factor of

3 from the average of correlation coefficients (averaged thresh-

old = 0.81). Artifacts were detected with relatively low correlation

coefficients (Figure S1). At least 2 nonzero b values and 15 gradient

directions per nonzero b value should be retained to estimate the KT

after the artifacts removal (Tabesh, Jensen, Ardekani, &

Helpern, 2011). Geometric distortion correction was performed based

on pairs of b0 images (b0 and the reversed phase-encode b0) by using

the topup tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup). The eddy

current correction was performed for diffusion weighted images in

DKI by using the eddy_correct tool of FMRIB software library (FSL,

version 5.0.9) (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). Then, the brain was extracted by using the FSL brain

extraction tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)

(Smith, 2002). Diffusion weighted images were smoothed by using a

Gaussian kernel to reduce the impact of noise and misregistration

(Tabesh et al., 2011). DT and KT were estimated by using a
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constrained weighted linear least squares method (Tabesh

et al., 2011; Veraart et al., 2011). FA, mean diffusivity (MD), AD, and

RD were derived from DT. AK, RK, and MK were calculated based on

the combination of DT and KT (Cheung et al., 2009). For the estima-

tion of WMTI metrics, AWF was calculated based on the maximum

kurtosis (Kmax) over 10,000 directions randomly chosen by using

MATLAB (version 7.11; MathWorks; Natick, Massachusetts)

(Fieremans et al., 2011):

AWF¼ Kmax

Kmaxþ3
, ð1Þ

Subsequently, intra-axonal diffusivities were estimated by (Fieremans

et al., 2011):

Da,i ¼Di 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki 1� fð Þ

3f

s2
4

3
5, ð2Þ

where, Di and Ki were the diffusivity and kurtosis in the corresponding

direction (i), while f represented the AWF. Da,axial was the maximum

eigenvalue of the intra-axonal diffusion tensor. FD was estimated by

(Jelescu et al., 2015):

FD¼ Da,axial

Tr Dað Þ , ð3Þ

where, Tr(Da) indicated the trace of the intra-axonal diffusion tensor.

Extra-axonal diffusivities were estimated by (Fieremans et al., 2011):

De,i ¼Di 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kif
3 1� fð Þ

s" #
: ð4Þ

De,axial was the primary eigenvalue of the extra-axonal diffusion ten-

sor. De,radial was calculated by averaging the second and the third

eigenvalues of the extra-axonal diffusion tensor. And the tortuosity of

the extra-axonal space was calculated by:

Tortuosity¼ De,axial

De,radial
: ð5Þ

The artifacts detection and the tensor estimation were performed by

using an in-house program implemented in MATLAB.

Spatial normalization for neonates: Firstly, this study created the

FA template for local neonates by using a group-wise method

(detailed steps were provided in the Appendix S1) (Li, Gao, Wang,

Wan, & Yang, 2016; Oishi et al., 2011). FA maps of neonates were

normalized to the local neonatal FA template by using the combina-

tion of linear and nonlinear registrations (Ball et al., 2010; Li

et al., 2016). During the procedure of registration, FMRIB's linear

image registration tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT)

and nonlinear image registration tool (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FNIRT) were used. Prior to the linear registration with

12 degrees-of-freedom, applying a linear registration with 6 degrees-

of-freedom would reduce registration errors (Ball et al., 2010; Li

et al., 2016). Therefore, this study used both 6 and 12 degrees-of-

freedom linear registrations, followed by the nonlinear registration.

Other metrics were normalized into the template space by using

deformation parameters of FA. The white matter skeleton, the tract

center, was extracted from the mean FA map of neonates by a FA

threshold of 0.15 (Ball et al., 2010; Smith et al., 2006). All the metric

images were projected onto this skeleton.

Spatial normalization for adults: It is difficult to map neonatal and

adult images to one common coordinate space directly. This study

acquired datasets on toddlers (the participant information was pro-

vided in the Appendix S1) as the bridge for the normalization of neo-

nates and adults. This study also created FA templates (Figure S2) for

toddlers and adults, separately, by using the group-wise method

(detailed steps were provided in the Appendix S1) (X. Li et al., 2016;

Oishi et al., 2011). Original FA maps were normalized to their

corresponding templates by using the combination of linear and

nonlinear registrations (Ball et al., 2010; Li et al., 2016). To transform

individual images into one common space, the FA template of neo-

nates was firstly registered to that of toddlers, and then to that of

adults by using a step-wise strategy (Figure S2) (Geng et al., 2012; Shi

et al., 2011). Then, FA maps of adults were back registered to the tod-

dler template space, and finally to the neonate template space by

using the inversed transformation. Other metrics were normalized

into the common space by using deformation parameters of FA. The

mean FA skeleton for adults was not created independently. To keep

consistency of the location between adults and neonates, metrics of

adults were projected onto the mean FA skeleton of neonates.

White matter ROIs were obtained by warping the JHU White-

Matter Tractography Atlas in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Atlases). FA template available in FSL was back registered to the local

FA template of adults, then to that of toddlers, and finally to that of

neonates (Figure S2). White matter tracts labels corresponding to the

FA template were successively warped to the template space for neo-

nates by using deformation parameters of the FA template. Prior to the

back registration, JHU-ICBM-labels was used to segment the

corticospinal tract (CST) into cerebral peduncle (CST_CP), internal cap-

sule (CST_IC), and corona radiata (CST_CR) parts. ROIs included projec-

tion tracts: bilateral CST_CP, CST_IC, and CST_CR; commissural tracts:

forceps major (F_major) and forceps minor (F_minor); association tracts:

bilateral inferior longitudinal fasciculus (ILF) and superior longitudinal

fasciculus (SLF). ROIs were defined as the overlap between warped

labels and the white matter skeleton. WMTI model is applicable in

regions with relatively aligned fibers and the angular spread of ≤30�. To

satisfy this condition, the current work performed analyses for WMTI

metrics on voxels with FD ≥0.75 (corresponding to angle ≤30�) on the

FA skeleton (Figure S3) (Fieremans et al., 2011; Jelescu et al., 2015).

Mahalanobis distance calculation: To quantify maturational

degrees, Mahalanobis distances between neonatal and adult brains

were calculated on the white matter skeleton in the neonatal template

space by using the following equation:
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Mahalanobis distance¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�μð ÞTS�1 x�μð Þ

q
, ð6Þ

where x was a multivariate vector in each voxel of the neonatal white

matter, μ and S were the mean vector and covariance matrix for met-

rics of the same voxel on adult brains. Prior to the calculation of the

Mahalanobis distance, possible age effects on metrics of adults were

investigated. As shown in the Figure S4 and Table S1, no significant

correlation between age and metrics of adults. During the calculation

of the Mahalanobis distance, “independent” metrics (e.g., AD, RD, AK,

RK, etc.) could provide complementary information and are necessary

to be included (Kulikova et al., 2015). As for DT metrics, MD is a linear

combination of AD and RD: MD = (AD + 2RD)/3. Compared with AD

and RD, MD did not provide additional information for revealing mat-

urational changes (Figure S5). Additionally, including FA or MD did

not improve the performance of the Mahalanobis distance (Figure S6).

WMTI metrics were valid only in limited regions. Therefore, FA, MD

and WMTI metrics were not included in the Mahalanobis distance cal-

culation. As for KT metrics, MK could provide additional information,

compared with AK and RK (Nørhøj Jespersen, 2018). Figure S6

showed that including MK into the calculation of the Mahalanobis dis-

tance would improve performances in reflecting correlations with

PMA and the neurobehavioral score. Note that Mahalanobis distance

based on the combination of DT and KT metrics holds better perfor-

mance than that based on just DT or KT metrics (Figure S6D). This

indicates that DT and KT metrics provide complementary information

for assessing white matter maturation. Finally, Mahalanobis distances

in this work were calculated by using “independent” DT metrics

(AD and RD) and the combination of DT and KT metrics (AD, RD, AK,

RK, and MK), named DM,DT and DM,DT-KT, separately.

2.4 | Statistical analysis

Relationships between DT, KT, WMTI metrics and PMA were per-

formed by using the general linear model while adjusting for

covariates of the gender and the birth weight in TBSS (Smith

et al., 2006; Winkler, Ridgway, Webster, Smith, & Nichols, 2014). The

family-wise error rate correction and the threshold-free cluster

enhancement were performed for tests in TBSS (Smith &

Nichols, 2009). As shown in the Figure S3, voxels with FD ≥0.75

mainly locate in bilateral CST_IC and F_major. Therefore, the ROI

analysis for age-related changes in metrics was performed in bilateral

CST_IC and F_major. Correlations between regional values of DT, KT,

WMTI metrics and PMA were performed by using the partial Spear-

man correlation while controlling for effects of the gender and the

birth weight. Determination coefficients (R2) of different methods

(including linear, logarithmic, and exponential methods) for fitting

PMA-related changes in DT, KT, and WMTI metrics were compared.

As shown in the Figure S7, there was no significant difference in R2

across these three fitting methods. Therefore, linear trend lines were

used to reveal PMA-related changes in DT, KT, and WMTI metrics.

It is not possible to infer the maturational process based on one

single metric (Jones, Knösche, & Turner, 2013). Therefore, this study

provided change patterns, that is, combinations of changes in differ-

ent metrics. Changes in metrics were determined by using the TBSS.

Prior to the combination of these changes, p values during multiple

comparisons across different metrics were adjusted by using the false

discovery rate correction. The age-related changes in DT, KT, and

WMTI metrics were combined into different change patterns (taking

DT metrics as example, Pattern 1: decreased AD, decreased RD, and

unchanged/increased FA; Pattern 2: unchanged AD, decreased RD,

and increased FA; etc.). To demonstrate the asynchrony of maturation

in each tract, the volume proportion of each pattern relative to the

whole ROI volume (in percentage) within one ROI was calculated by:

Proportion¼100%�Voxel number ofpatterni
Voxel number ofROI

, ð7Þ

where patterni represents the ith pattern. This proportion would also

help to reveal the main maturational changing pattern in each tract.

Proportions of change patterns across different ROIs were tested by

using the Chi-square test in SPSS (version 17; SPSS Inc.; Chicago,

Illinois).

To compare regional values between DM,DT and DM,DT-KT, the

Wilcoxon signed rank test in SPSS was performed in each ROI. After

the inter-hemisphere comparison, the asymmetry index was calcu-

lated by:

Asymmetry index¼ Right�Left
0:5� RightþLeftð Þ : ð8Þ

Voxel-wise and ROI-wise correlations between Mahalanobis distances

and PMA were performed by using the partial Spearman correlation

while controlling for effects of the gender and the birth weight. Partial

Spearman correlation was used to test correlations between

Mahalanobis distances and the neurobehavioral score after controlling

PMA, the gender and the birth weight. To determine the fitting

method for revealing PMA-related and neurobehavioral score-related

changes in Mahalanobis distances, R2 of linear, logarithmic, and expo-

nential methods were also calculated. Exponential fitting method held

relatively higher R2 than linear and logarithmic fitting methods

(Figure S8). Therefore, the exponential fitting method was used to

reveal PMA-related and neurobehavioral score-related changes in

Mahalanobis distances.

The p values during multiple comparisons (across different metrics

and regions) were adjusted by using the false discovery rate correc-

tion. Tests were considered statistically significant at p < .05 after the

multiple comparison correction.

3 | RESULTS

3.1 | Demographics

According to the inclusion and exclusion criteria, this study enrolled

50 term neonates (males/females, 34/16; birth weight, 3.21

± 0.45 kg) with PMA from 37.43 to 43.57 weeks (40.48
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± 1.43 weeks), gestational age from 37.00 to 42.14 weeks (39.14

± 1.31 weeks), postnatal age at MRI from 1 to 26 days (9.40

± 5.16 days), neonatal neurobehavioral score from 29 to 37 (34.34

± 2.40). Meanwhile, 30 adults (males/females, 13/17) with postnatal

age from 18.92 to 26.92 years (22.78 ± 1.46 years) were enrolled as

the reference for the calculation of Mahalanobis distances.

3.2 | Representative parametric maps

Representative parametric maps (DT, KT, and WMTI metrics) of a

neonate, an adult, and median maps in the template space were

shown in Figure 1. These parametric maps demonstrated contrast dif-

ferences across metrics. Meanwhile, tremendous differences could be

found between parametric maps of the neonate and those of the

adult. Furthermore, differences across white matter regions could also

be found, especially on neonatal parametric maps. Specifically, CST_IC

and F_major held higher regional values in AD, FA, AK, RK, MK, AWF,

Da,axial, FD, De,axial, and Tortuosity, while lower regional values in RD

and De,radial.

3.3 | DT, KT, and WMTI metrics: PMA-related
changes and combination patterns

3.3.1 | PMA-related changes

With the increase of PMA, changes in DT metrics (decreasing AD,

decreasing RD, and increasing FA) could be found on almost the

whole white matter skeleton, except for corpus callosum and CST

(Figure 2). As comparisons, KT (increasing RK and MK) revealed addi-

tional structural alterations on parts of corpus callosum and CST.

Compared with DT metrics, WMTI extra-axonal metrics showed simi-

lar change styles in voxels with FD ≥0.75: unchanged Da,axial, decreas-

ing De,radial, and increasing tortuosity (Figure 2: AD vs. De,axial, RD

vs. De,radial, FA vs. Tortuosity). AWF and intra-axonal WMTI metrics

provided complementary information: increasing AWF, increasing

Da,axial, increasing FD.

As for the ROI analysis, structural alterations on left and right

CST_IC occurred mainly in the radial direction (RD, RK, and De,radial),

while no significant changes could be observed in AD, AK, and De,axial

(Figure 3). In the axial direction, significant increase could found in

Da,axial. Similarly, PMA-related increase in Da,axial was also observed on

F_major, though changes in AD, RD, AK, FD, De,axial, and De,radial were

not significant (Figure 3c).

3.3.2 | Combination patterns of PMA-related
changes

Based on PMA-related changes in DT metrics, five combination pat-

terns could be found on the neonatal white matter (Figure 4a). Main

parts (Table S2, volume proportion: 62–90%) of CST_CR, F_major,

F_minor, ILF, and SLF underwent synchronously decreased AD and

RD, while main parts of left and right CST_IC (volume proportion:

85% on the left and 63% on the right) underwent unchanged AD and

decreased RD. Combination of PMA-related changes in KT metrics

revealed three patterns (Figure 4b). Except for regions without signifi-

cant changes, main parts of white matter underwent unchanged AK,

increased RK and MK (Figure 4b). In regions with FD ≥0.75, four pat-

terns were revealed by changes of AWF and intra-axonal metrics,

while two patterns by changes of extra-axonal metrics (Figure 4c).

ROI analysis demonstrated that the spatial distribution of combination

patterns for changes in extra-axonal WMTI metrics was similar to that

of DT metrics (Figure 3). Furthermore, AWF and intra-axonal WMTI

metrics demonstrated additional change patterns. ROI analysis rev-

ealed that left CST_IC, right CST_IC, and F_major underwent synchro-

nous PMA-related increases in AWF and Da,axial without significant

changes in FD.

3.4 | Mahalanobis distances: Regional values and
correlations with PMA, neurobehavioral score

3.4.1 | Regional values of DM,DT-KT and DM,DT

Higher DM,DT-KT than DM,DT could be observed in all the investigative

white matter regions (Figure 5a,b). Mahalanobis distance maps and

the ROI analysis also showed that regional values in DM,DT and DM,DT-

KT varied across white matter tracts. According to regional values in

DM,DT, CST_IC held lower DM,DT than CST_CP. According to regional

values in DM,DT-KT, the maturational sequence of the projection tracts

from lower to higher DM,DT-KT was as follows: left CST_CP, right

CST_CP, left CST_IC, right CST_IC, left CST_CR, right CST_CR; com-

missural tracts: F_major, F_minor; association tracts: left ILF, right ILF,

left SLF, and right SLF. Furthermore, projection tracts of left and right

CST_CP held lower DM,DT-KT than commissural and association tracts.

Additionally, asymmetry indices for CST_CP, CST_IC, ILF, and SLF

demonstrated left lateralization (Figure 5c, asymmetry index >0, left

tracts held lower DM,DT-KT than the right), while the difference in

DM,DT-KT between left and right CST_CR was not significant.

3.4.2 | Correlation with PMA

Negative correlation could be found between Mahalanobis distances

and PMA (Figure 6 and Figure S9). As shown in TBSS results

(Figure 6a), DM,DT-KT demonstrated more areas (e.g., genu and body of

corpus callosum) with significant correlation than DM,DT. Importantly,

absolute values of correlation coefficients revealed by DM,DT-KT (r:

�.32 to �.68) were higher than those revealed by DM,DT (r: �.23 to

�.56) (Figure S9). Relatively stronger correlation could be found on

projection and association tracts (e.g., corona radiate and external

capsule) (indicated by arrows in Figure 6a).
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F IGURE 1 (a,b) Representative images of DT, KT, and WMTI metrics. DT, diffusion tensor; KT, kurtosis tensor; WMTI, white matter tract integrity
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3.4.3 | Correlation with the neurobehavioral score

DM,DT-KT and DM,DT demonstrated significant negative correlation

with the neurobehavioral score (Figure 7 and Figure S10). Both TBSS

and ROI analyses showed that DM,DT-KT could reveal negative correla-

tion in almost all the white matter regions except for right CST_CP,

while DM,DT could only reveal the correlation on limited regions

(e.g., right ILF) (Figure 7b). Furthermore, absolute values of correlation

coefficients revealed by DM,DT-KT (r: �.28 to �.50) were higher than

those revealed by DM,DT (r: �.11 to �.40) (Figure S10). Relatively

stronger correlation could be found on ILF, anterior thalamic radiation,

and left SLF (indicated by arrows in Figure 7a).

4 | DISCUSSION

This study investigated the performance of DKI with the multi-

parametric analysis in assessing white matter maturational pro-

cesses and degrees on term neonates. KT and WMTI metrics

provided additional PMA-related change patterns in comparison to

DT metrics, which may be helpful for understanding maturational

processes on neonatal white matter. Furthermore, KT metrics

improved the performance of the Mahalanobis distance in quanti-

fying maturational degrees. Compared with DM,DT, DM,DT-KT dem-

onstrated advantages in revealing correlations with PMA and the

neurobehavioral score.

F IGURE 2 Postmenstrual age-related changes in DT (a), KT (b), and WMTI metrics (c) on white matter revealed by tract-based spatial

statistics. The statistics are performed by using the general linear model while adjusting for covariates of the gender and the birth weight. DT,
diffusion tensor; KT, kurtosis tensor; WMTI, white matter tract integrity
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4.1 | Changes in derived metrics and maturational
processes on neonatal white matter

Age-related changes in DT metrics in current work are in consistent

with previous studies (Ball et al., 2010; Berman et al., 2005; Dubois

et al., 2008; Geng et al., 2012; Kersbergen et al., 2014): increasing FA

and decreasing AD and RD. This work also provided combinations of

changes in different metrics (Figure 4): CST_IC and central part of the

F_major mainly underwent increasing FA, unchanged AD and decreas-

ing RD, while other regions mainly underwent increasing FA, synchro-

nously decreasing AD and RD. Myelination is one of the factors

influencing developmental changes in DT metrics. Postmortem studies

suggest that the telencephalon starts myelination at the posterior limb

of the internal capsule during the third trimester of gestation, while

other tracts (e.g., corpus callosum) start myelination after birth (Brody,

Kinney, Kloman, & Gilles, 1987; Kinney, Brody, Kloman, &

Gilles, 1988). The electron microscopic analysis on the monkey corpus

callosum suggests that at least 30% of axons in the posterior part are

myelinated at the end of the first postnatal month (LaMantia &

Rakic, 1990). Additionally, demyelination or dysmyelination causes

increased RD, but unchanged AD (Song et al., 2002; Song

et al., 2005). Together with these postmortem findings, myelination

may be the main factor causing developmentally increasing FA,

unchanged AD and decreasing RD on CST_IC and central part of the

F_major. However, the exact relationship between DT metrics and

myelination is not clear due to the limited specificity of these metrics.

Similar to previous findings (Dean III, Planalp, et al., 2017; Gilmore

et al., 2007; Hüppi et al., 1998; Kunz et al., 2014), increased FA,

accompanied with decreased AD and RD could be observed in unmy-

elinated regions (e.g., F_minor, ILF, and SLF). Prior to the myelination,

premyelination characterized by the proliferation of oligodendrocytes

has been assumed to be one of the main factors causing synchro-

nously decreased AD and RD (Dubois et al., 2008, 2014; Ouyang,

Jeon, et al., 2019). Although this combination pattern could be partly

interpreted by the premyelination process, the cell proliferation and

the myelin synthesis are difficult to be distinguished by DT metrics

when they are overlapped during the same period (Geng et al., 2012).

Additionally, increased AD has been observed during the fetal period,

F IGURE 3 Scatter plots of metrics with the postmenstrual age in various regions of interest. For metrics with significant correlation with the

postmenstrual age after controlling the gender and the birth weight, trend lines and 95% confidence intervals are added. Trend lines and 95%
confidence intervals are not provided in plots without significant correlation. L, left; R, right
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which may be related to the process of fiber organization (Zanin

et al., 2011). Different from the maturation in the fetal period, the

premyelination and/or myelination are intense during the first post-

natal month (Dubois et al., 2014), which would lead to rapid decreases

in AD and RD. This may cover up the increase in AD corresponding to

the process of the fiber organization (Dubois et al., 2008, 2014;

F IGURE 4 Combination patterns of postmenstrual age-related changes in DT (a), KT (b) and WMTI metrics (c). DT, diffusion tensor; KT,
kurtosis tensor; WMTI, white matter tract integrity

F IGURE 5 Median Mahalanobis distance maps (a), regional values of different white matter tracts (b), and asymmetry index on term neonates
(c). DT, diffusion tensor; KT, kurtosis tensor; DM,DT, Mahalanobis distances based on DT metrics; DM,DT-KT, Mahalanobis distances based on the
combination of DT and KT metrics; L, left; R, right
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Ouyang, Jeon, et al., 2019). Therefore, increasing AD was not

observed during the neonatal period in this work.

In comparison with DT metrics, KT metrics could provide addi-

tional information for investigating white matter maturation (Cheung

et al., 2009; Grinberg et al., 2017; Paydar et al., 2014). Consistent with

previous studies, RK and MK demonstrated relatively higher sensitiv-

ity to structural changes in several white matter regions (e.g., CP and

corpus callosum) of neonates. However, it is difficult to infer matura-

tional processes just based on KT metrics due to the limited specificity

(Fieremans et al., 2011). WMTI metrics are helpful for understanding

more detailed maturation processes than DT and KT metrics (Jelescu

et al., 2015). In the current work, AWF, Da,axial, FD, tortuosity

increased with PMA, while De,radial decreased with PMA. Increased

AWF may be related to the increase of the axonal packing density,

resulting from axonal growth and/or myelination. The reduction of

water content in the extra-axonal space during development is also a

factor contributing to the increased AWF (Ouyang, Jeon, et al., 2019).

As for changes in Da,axial, variation of the axonal structure could alter

regional values of the intra-axonal diffusivity (Hui et al., 2012). During

white matter maturation, neurofilaments are more organized medi-

ated by the myelin-directed outside-in signaling cascade, in addition

to the increased neighbor spacing of neurofilaments and the increased

axoplasmic flow (Garcia et al., 2003; Suzuki et al., 2003). Meanwhile,

the density of the microtubule and mitochondria also decreases with

the axonal growth (Andrews et al., 2006; Garcia et al., 2003; Stassart

et al., 2018). These alterations would reduce restrictions of diffusion

along the axon, which may increase Da,axial (as shown in the

Figure S11) (Garcia et al., 2003; Lee et al., 2020; Suzuki et al., 2003).

Age-related increases in FD on neonates may be associated with

increasing alignment of axons (Jelescu et al., 2015). As for changes in

the extra-axonal compartment, myelination accompanied with

decreases in the brain water content and increases in the concentra-

tion of macromolecules may be main factors leading to deceased

De,radial (Dubois et al., 2008; Ouyang, Jeon, et al., 2019). Changes of

F IGURE 6 Correlation between Mahalanobis distances and the postmenstrual age on term neonates revealed by tract-based spatial statistics
(a) and the region of interest analysis (b). Correlations are performed by using the partial Spearman correlation while controlling for effects of the
gender and the birth weight. DT, diffusion tensor; KT, kurtosis tensor; DM,DT, Mahalanobis distances based on DT metrics; DM,DT-KT, Mahalanobis
distances based on the combination of DT and KT metrics; r, correlation coefficient; L, left; R, right
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tortuosity may be associated with partly fiber organization and partly

the enhancement of myelin sheath around axons (Dubois et al., 2014;

Jelescu et al., 2015). Combinations of changes in DT, KT, and WMTI

metrics would provide additional information for assessing matura-

tional processes.

Although WMTI metrics have been used to assess white matter

development on children aged 0–3 years old (Jelescu et al., 2015), the

feasibility of WMTI on neonates remains to be validated (Fieremans

et al., 2011). Various conditions should be considered. Firstly, the model

is expected to be valid in regions with relatively aligned fibers and the

angular spread of less than 30�. Secondly, the exchange between intra-

axonal and extra-axonal spaces is neglected, which may be satisfied in

regions containing myelinated axons due to the myelin sheath with very

low permeability (Fieremans et al., 2011). The current work performed

the analysis on the alignment-invariant tract representation

(FA skeleton) (Smith et al., 2006) and restricted the analysis to voxels

with FD ≥0.75 (corresponding to angle ≤30�) (Fieremans et al., 2011;

Jelescu et al., 2015). As shown in the Figure S3, voxels with FD ≥0.75

mainly locate in the CST_IC and F_major. During the neonatal period,

these tracts hold a fraction of myelinated axons (Brody et al., 1987;

Kinney et al., 1988; LaMantia & Rakic, 1990). Combined with the rela-

tively small intersecting angle, the appearance of myelin sheath with

low permeability makes modeling by WMTI possible (Fieremans

et al., 2011). However, potential confounding factors should be taken

into consideration for the interpretation of changes in WMTI metrics:

As FD increased with PMA in CST_IC (Figure 2), more paralleled of

fibers would be one of the factors increasing Da,axial (Jelescu

et al., 2015). Meanwhile, there are also other confounding factors

influencing alterations in Da,axial. Caliber variation and/or undulation

along the axon have been found to be related to changes of Da,axial (Lee

et al., 2020). Additionally, considering that intra-axonal diffusivities

would be underestimated due to the axonal membrane permeability,

decreased permeability due to myelination in F_major would affect the

interpretation of the increase in Da,axial. Furthermore, although glial cells

were found to have small volume fractions (�5%) (Veraart et al., 2020),

there may possibly be a contribution to the intra-axonal space from glial

processes. The proliferation and maturation of glial cells may also be

another confounding factor.

F IGURE 7 Correlation between Mahalanobis distances and the neurobehavioral score on term infants revealed by tract-based spatial
statistics (a) and the region of interest analysis (b). Correlations are performed by using the partial Spearman correlation while controlling for
effects of the postmenstrual age, the gender and the birth weight. DT, diffusion tensor; KT, kurtosis tensor; DM,DT, Mahalanobis distances based
on DT metrics; DM,DT-KT, Mahalanobis distances based on the combination of DT and KT metrics; r, correlation coefficient; L, left; R, right
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4.2 | Mahalanobis distances and maturational
degrees on neonatal white matter

For the interpretation of values in the Mahalanobis distance, several

conditions should be considered: Firstly, the directionality of the dis-

tance depends on the selected reference. If the reference is the devel-

oping brain instead of the mature brain, values of distances in

younger and older subjects could be the same, though the distance

may also work to demonstrate developmental changes of neonatal

white matter. In a previous study, developing controls serve as the

reference (Dean III, Lange, et al., 2017). In this previous study, the

Mahalanobis distance is used to reveal relative differences across

groups instead of maturational degrees. Therefore, to interpret the

distance as the maturational degree, the reference should be the

mature brain. As age has impact on structural changes in the brain,

adults in the plateau period may be candidates of the reference. It also

depends on the type of measurements. For DT and KT metrics,

changes reach a plateau in late adolescence or in the twenties (Das

et al., 2017; Paydar et al., 2014; Tamnes et al., 2010). Secondly, the

interpretation of the distance can also be influenced by the investiga-

tive age range. Though the mature brain is the reference, values of

the distance may be interpreted as senescence if investigative partici-

pants are aged subjects. Another confounding factor is the direction

of developmental changes of the enrolled metric during the

Mahalanobis distance calculation. If the developmental change of the

metric is not in one direction (e.g., inverted U trajectory for the corti-

cal thickness: increasing in the early childhood and decreasing later), it

is difficult to determine maturational degrees just based on values of

distances. Therefore, the developmental change in each enrolled met-

ric should be in one direction toward the reference. In this study,

adults with age from 18.92 to 26.92 years were selected as the refer-

ence. The investigative participants were neonates. Developmental

changes in each metric was in one direction toward the reference

(Figures 1 and 2). According to these conditions, values of the

Mahalanobis distance mainly reflect maturational degrees in the

current work.

DKI is helpful to improve performances of the Mahalanobis dis-

tance in revealing correlations with PMA and the neurobehavioral

score. Similar to results of the comparison between univariate and

multivariate analyses (Dean III, Lange, et al., 2017; Kulikova

et al., 2015), the dependency of the Mahalanobis distance on the met-

ric selection was also found in this study. Compared with DM,DT,

DM,DT-KT revealed stronger negative correlations with PMA and the

neurobehavioral score. Additionally, this current work demonstrated

that including more metrics into the Mahalanobis distance calculation

could not definitely improve its performances. Figure S6 showed that

including MK could improve performances of the Mahalanobis dis-

tance, while including MD could not. This may be due to that MD can

be fully determined by AD and RD. Different from MD, MK provides

independent information from AK and RK (Nørhøj Jespersen, 2018).

Previous DKI studies also find that KT metrics could offer more sensi-

tive evaluation of the structural alterations during the brain matura-

tion, in comparison with DT metrics (Cheung et al., 2009; Grinberg

et al., 2017; Paydar et al., 2014). Specifically, DT metrics may provide

information related to microstructure alterations related to the oligo-

dendrocyte proliferation and myelination (Ouyang, Jeon, et al., 2019).

Besides these developmental events, KT metrics are also sensitive to

the diffusion heterogeneity associated with the axonal packing and/or

diffusion barriers (Ouyang, Jeon, et al., 2019; Paydar et al., 2014).

Results here further suggest that the improved sensitivity of the

Mahalanobis distance would benefit the characterization of the matu-

ration on developing brains.

The variation in regional values of DM,DT-KT demonstrates the

asynchronous maturation across white matter tracts, which is in

agreement with the myelination sequence (Brody et al., 1987; Kinney

et al., 1988). As reported in previous studies (Brody et al., 1987; Deoni

et al., 2011; Kinney et al., 1988), the cerebral peduncle holds higher

maturational degree than other white matter tracts in the telencepha-

lon. Therefore, CST_CP in this current study holds the lowest value of

DM,DT-KT than other regions. Additionally, mature myelin can already

be detected on neonates in the posterior limb of internal capsule

(Dubois et al., 2014; Hasegawa et al., 1992). This supports the rela-

tively lower Mahalanobis distances in CST_IC. Note that CST_CR

holds the largest DM,DT-KT and high decreasing speed. These results

confirm the previous finding that portions close to the cerebral cortex

along the CST achieve a lower maturation degree than portions close

to the cerebral peduncle on neonates (Geng et al., 2012). As for com-

missural tracts, F_major starts myelination from birth on, while

F_minor starts myelination around 6 months of the postnatal age

(Dubois et al., 2008, 2014). This sequence determines that F_major

holds smaller DM,DT-KT than F_minor. Association tracts involved in

the high-level processing always begin to myelinate at a relative late

stage (Dubois et al., 2008, 2014). Therefore, relatively larger

Mahalanobis distances can be found in ILF and SLF. Furthermore,

regional values of DM,DT-KT in CST_CP, CST_IC, ILF, and SLF also dem-

onstrate the inter-hemisphere asymmetry (i.e., left tracts hold lower

Mahalanobis distances than the right, Figure 5c). Among the investiga-

tive tracts, CST is the major motor projection tract (Jaspers, Byblow,

Feys, & Wenderoth, 2015). Asymmetry could be found on CST at the

cerebral peduncles and the internal capsule levels, but not the corona

radiata level. This may be related to the spatial spread of maturation

over the CST (Dubois et al., 2009). ILF connects temporal and occipital

lobes, related to functions of the visual modality, reading, lexical, and

semantic processing (Herbet, Zemmoura, & Duffau, 2018). SLF con-

nects frontal, occipital, parietal, and temporal lobes, associated with

attention and language (Urger et al., 2015). The leftward asymmetry

in DM,DT-KT of these tracts may be associated with the development

of functional lateralization of motor and language (Dubois

et al., 2009). The lateralized specialization has been thought to origi-

nate from evolutionary, developmental, hereditary, experiential, and

pathological factors (Toga & Thompson, 2003). Two-thirds of fetuses

are confined to a leftward fetal position in the third trimester

(Previc, 1991). The asymmetrical vestibular stimulation in utero might

produce behavioral asymmetries later in life (Previc, 1991). Moreover,

the neonatal brain has demonstrated leftward asymmetric efficiency

at both global and local levels (Ratnarajah et al., 2013). Specifically, left
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precentral gyrus holds more efficient communications than the right

homolog. Intercolumn connections are less tangled and more myelin-

ated on the left than the right in auditory cortex (Warrier et al., 2009).

Therefore, the left lateralization of the neonatal white matter matura-

tion may be partly a result of the adaption to lateralized functional

needs at birth (Ratnarajah et al., 2013).

White matter maturation has been found to correspond with the

development of neurobehavioral abilities in previous studies (Bassi

et al., 2008; George et al., 2018; Jin et al., 2019; Kelly et al., 2019).

Specifically, the structural maturation of optic radiation, corona radi-

ate, and corpus callosum on newborns is associated with visual,

motor, and cognitive outcomes, respectively (Bassi et al., 2008;

Kaukola et al., 2010; Thompson et al., 2012). In this current work, the

neurobehavioral score reflects comprehensively the ability to interact

with the environment (Bao et al., 1991). Negative correlations

between DM,DT-KT and the neurobehavioral score can be found in

almost all the white matter regions. Among the investigative white

matter tracts, ILF, anterior thalamic radiation, and left SLF hold rela-

tively stronger correlation with the neurobehavioral score (Figure 7a).

This may be related to the high order functions (e.g., the visual modal-

ity, attention, and language) of these tracts associated closely with the

neurobehavioral ability (Herbet et al., 2018; Urger et al., 2015). Impor-

tantly, DM,DT-KT demonstrated advantages than DM,DT in revealing the

correlation with the neurobehavioral score. Results in this work fur-

ther suggest that DM,DT-KT may serve as an objective metric to reveal

maturational degrees associated with neurobehavioral abilities.

4.3 | Limitations

Nevertheless, there are some limitations in this current study. Firstly,

this is a cross-sectional study. Further longitudinal study is needed to

confirm maturational processes revealed in this work. Secondly, the

finally enrolled neonates were sedated, as the natural sleep neonates

were excluded due to motion artifacts. Although structural properties

are not theoretically influenced by the sedation (Cavaliere

et al., 2015), diffusion MRI metrics here should be interpreted under

the sedation condition. Thirdly, diffusion MRI metrics are sensitive to

various maturational processes (Alexander et al., 2011; Alexander,

Lee, Lazar, & Field, 2007; Dubois et al., 2014; Jones et al., 2013;

Jones & Cercignani, 2010; Ouyang, Jeon, et al., 2019). Although

WMTI metrics offer relatively more specific than DT metrics, mapping

diffusion metrics onto specific maturational processes is still a difficult

inverse problem (Jones et al., 2013). Therefore, changes in diffusion

metrics should be interpreted with caution (Alexander et al., 2007,

2011; Jones et al., 2013; Jones & Cercignani, 2010). Additionally, this

study demonstrated maturation only on FA skeleton instead of the

whole brain, as the voxel-based analysis for the whole brain faces

problems caused by alignment inaccuracies and the lack of a princi-

pled way for choosing smoothing extent (Smith et al., 2006). And the

analysis for WMTI metrics was performed on voxels with FD ≥0.75

(corresponding to angle ≤30�) due to WMTI model assumptions

(Fieremans et al., 2011). Other regions remain to be investigated. The

acquisition voxel resolution in this study is not isotropic. This is

another limitation that may lead to underestimated parametric values

in areas with crossing fibers (Chiang et al., 2019; Oouchi et al., 2007).

Furthermore, this study calculated the Mahalanobis distance based on

DT and KT metrics. In fact, the Mahalanobis distance framework can

also include other metrics (Kulikova et al., 2015). During further appli-

cations, it is better to take more independent metrics into consider-

ation to fully reflect the brain maturation. Besides the Mahalanobis

distance, several other strategies (e.g., multiview clustering, indefinite-

ness elimination network, etc.) have also been proposed for

multimodality and/or multidimension analyses (Guo, Liu, Zhao, Guo, &

Liu, 2021; Li et al., 2019; Osman, 2019; Zhao et al., 2015). The indefi-

niteness elimination network has achieved impressing performance to

transfer the indefinite dimension feature into a fixed dimension fea-

ture (Guo et al., 2021). In the future, the deep learning-based strategy

combining with multimodality and clinical items may further improve

our ability to characterize the brain maturation.

5 | CONCLUSIONS

In conclusion, this work demonstrates the application of DKI with the

multiparametric analysis to characterize white matter maturational

processes and degrees on term neonates. Combinations of changes in

DT, KT, and WMTI metrics provide additional information for

assessing maturational processes. KT metrics could improve the per-

formance of the Mahalanobis distance in quantifying maturational

degrees. Results in current work would further benefit our under-

standing on white matter maturation of term neonates.
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