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Abstract

Background: The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming
ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is
reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were
studied and added to available marsupials’ cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in
situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were
complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of
interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial
phylogenetic tree.

Results: No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH.
Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes.
Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions
of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are
unrelated to fusion events.

Conclusion: Although the lack of interstitial signals in D. gliroides’ karyotype does not prove absence of past fusions,
our data suggests its non-rearranged plesiomorphic condition.

Keywords: Microbiotheridae, Repetitive DNA, Telomeric sequence, self-Genomic in situ hybridization, Constitutive
heterochromatin

Background
Chromosome numbers among marsupials ranges from
2n = 10 to 32, with a modal 14-chromosome number
(followed by 2n = 22) for the Australian and South
American radiation [1–3]. These karyotypes share exten-
sive resemblance in chromosome morphology [4, 5] and
G-banding patterns [6], leading to the hypothesis that
2n = 14 is ancestral for marsupials [6, 7]. Thus, larger
diploid numbers are assumed to be derived by fissions,
as suggested strongly by cytogenetic and phylogenetic
comparisons [8–10]. An opposing view on the

hybridization patterns of telomeric sequences claimed
ancestrality for the 22-chromosome karyotypes and
propose subsequent fusions to explain lower numbers
[11]. In fact, the 22-chromosome species exhibit only
telomeric signals whereas additional centromeric and
interstitial telomeric sequences (ITS) suggesting fusion
events were detected in 14- and 18-chromosome species
[12, 13]. Nevertheless, the colocalization of ITS in het-
erochromatic pericentromeric regions has been consid-
ered to be part of the satellite DNA rather than true
telomeric sequences [14–16]. Consequently, interstitial
signals outside pericentromeric regions have turned
karyotypic ancestrality of American marsupials into an
open question [17]. Based on the early divergence of the
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didelphid Glironia ventusa (2n = 18) and by ensuing at
least four centric fission/fusion events, a bidirectional
trend of karyotypic evolution has been proposed [18, 19].
Nevertheless, the phylogenetic information demands an
explanation for the convergence to 2n = 18 in the Mono-
delphis clade [19].
Recent comparative metatherian and eutherian genome

assemblies have falsified the fusion hypothesis, thus sup-
porting the ancestrality of the 14-chromosome karyotype
[20]. This putative ancestral karyotype is shared by micro-
biotherians, caenolestids, peramelemorphians, vombatids,
and pygmy possums [10]. It includes six large, six
medium-sized, and two small sex chromosomes, as in-
ferred from extensive G-banding studies [2, 4, 6] including
Dromiciops gliroides (2n = 14) [21].
The Microbiotheria is one of the three orders of

American marsupials, comprising 12 extinct species and
the sole surviving, D. gliroides [22, 23]. To inquire
whether traces of past fusions could still be detected in
D. gliroides, fluorescent in situ hybridization (FISH)
using telomeric probes on mitotic plates were assayed.
Since major structural chromosomal rearrangements are
associated with cytogenetically detectable heterochro-
matic regions and repetitive sequences [24–27], we
explored both issues by C-banding and self-genomic in
situ hybridization (self-GISH) [28, 29]. This heterochro-
matic characterization was complemented with AT and
CG-rich banding procedures and centromere identifica-
tion. To further explore the relationships between fusion
events and ITS, their ancestral presence using the phylo-
genetic tree of Mitchell et al. [30] was reconstructed.

Material and methods
Chromosomes
Mitotic plates of two males and one female D. gliroides col-
lected in San Martín experimental station of Universidad
Austral de Chile (39°38′S, 73°07′W) were used in this
study. Chromosomal material was obtained from primary
fibroblast cultures derived from ear tissue stored at −196 °C
following Verma and Babu [31]. Metaphase spreads for
immunofluorescense were prepared according to Zakhar-
ova et al. [32]. The ear cell material was collected and cul-
tured previously to this work according to the protocol of
the Animal Experimentation Ethics Committee of the Uni-
versidad Austral de Chile (UACH) No. 11/09. Cells cul-
tured were cryopreserved for six years in mammal tissue
collection of the UACH from where it was thawed and re-
covered [31].

FISH, Self-GISH, and immunofluorescence
Telomeric sequence detection by FISH on metaphase
chromosomes was performed with the universal telomeric
probe (TTAGGG)n, generated by PCR and labeled with
fluorescein 12-dUTP (Roche Applied Science) [33, 34].

Three different posthybridization washed times (5, 2, and
1 min) with formamide 50 % were used to increase the
sensitivity for telomere detection. Unspecific repetitive se-
quences were detected by self-GISH through hybridization
of total genomic DNA probes of D. gliroides over its own
mitotic plates [29]. Both FISH and self-GISH chromo-
somes were counterstained with DAPI (4′, 6-diamino-2-
phenylindole) and mounted with Vectashield antifade.
Mitotic plates were digitally captured at 100x with
adequate filters using an Axiolab epifluorescence micro-
scope (Carl Zeiss) equipped with an Axiocam camera.
Centromeres were detected with anti-centromere of

polyclonal human antibody (ACA; Cat. No. 15–235, Anti-
bodies Incorporated). Goat anti-human IgG conjugated
with Texas Red (Cat. No.23773-2, Bioscience) was used as
secondary antibody. Both antibodies were diluted in 1:100
PBS and applied on mitotic plates [32]. Mitotic plates were
mounted and captured as described previously.

Chromosome banding
C-banding was conducted using the Ba(OH)2 treatment
at 46 °C for 3–4 min [35]. Given that AT and CG stain-
ing denote chromatin’s nucleotide composition, blocks
of AT-rich sequences were detected with methyl-green/
DAPI [36] whereas CG-rich regions were identified
through chromomycin [37]. C-bands were observed
under the microscope with a halogen lamp whereas a
mercury lamp with adequate filters was used for chro-
momycin and methyl-green/DAPI staining. Banding im-
ages were captured as described above.

Ancestral state reconstruction
To inquire onto the ancestrality of diploid numbers and
ITS presence in American marsupials, Bayesian trait re-
construction onto the phylogeny of Mitchel et al. [30]
was performed using BayesTraits v2.0 [38]. This phyl-
ogeny includes the largest number of characters and
marsupial species. The MCMC multistate module was
implemented using a compilation of cytogenetic data
listed in Additional file 1: Table S1. The analysis was run
for 106 iterations, sampling every 103. The stationary
phase was checked using Tracer version 1.6 [39] and
sample points prior to the plateau phase were discarded
as burn-in. To test significance, Bayes Factor (BF), was
estimated as the difference in the log’s marginal likeli-
hood between the data and the theoretical model con-
taining restricted transition rates. Marginal likelihoods
were estimated using stepping stone sampler [38, 40].

Results
FISH, Self-GISH, and immunofluorescence
Telomeric, but no centromeric or interstitial signals
were detected on all chromosomes of D. gliroides
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(Fig. 1a), regardless of stringency conditions (Additional
file 2: Figure S1).
Intensive signals of high repetitive sequences in telo-

meric/subtelomeric regions together with dot-like fluor-
escent patterns in all chromosomes (except in pair 3)
were detected by Self-GISH. Signals were also observed
in the short arms of X-chromosomes and on the long
arm of chromosomes 5 and 6 (Fig. 1b).
As expected, immunoassays allowed the detection of

D. gliroides’ centromeres in primary constrictions devoid
of heterochromatin (compare Figs. 1c and 2a).

Chromosome banding
No centromeric/pericentromeric, but sparse distribution
of heterochromatin along all chromosomes resulted
from the C-banding procedure (Fig. 2a). Nevertheless,
weak heterochromatic areas were observed in telomeric/
subtelomeric regions of chromosomes 1–3, and in both
arms of chromosome 4 (Fig. 2a).
Large AT-rich blocks were detected in the interstitial

regions of chromosomes 1, 2, 4, and 6. Stronger signals
were observed in the long arm of chromosomes 1 and 2,
and in both arms of chromosomes 3 and 4 (Fig. 2b). GC
signals were restricted to telomeric/subtelomeric regions
of all chromosomes (Fig. 2c). As reported previously, the
Y chromosome was not detected in any of the 150 meta-
phase plates of each adult male analysed [41].

Ancestral state reconstruction
Both ITS presence and ancestral chromosome number for
the American marsupials are shown in Fig. 3. Thus, 2n = 14
probably represents the ancestral diploid number of all
marsupials including Paucituberculata, Didelphimorphia,

and Australidelphia (Fig. 3, green branches). The transition
from 14 to 22 chromosomes occurs in clades A and B, at
about ∼ 24 and ∼ 18 Mya, respectively (Fig. 3, purple
branches). The transition from 14 to 18 chromosomes
would occur about ∼ 36 Mya in the Glironia venusta’s
lineage and about ∼ 26 Mya in theMonodelphis clade (Fig. 3,
orange branches). Considering the distribution of telomeric
sequences in only 17 American species, low confidence (log
BF <2) was obtained by ITS reconstruction. Nevertheless,
the probability for each ancestor having ITSs is given, such
that their highest probabilities would indicate ITS’ ancestral
presence (Fig. 3, derived lineages within A and C clades).

Discussion
Sparse heterochromatin distribution and few dispersed
repetitive sequences on interstitial and centromeric re-
gions characterize the karyotype of D. gliroides (Figs. 1b
and 2a). This features are coherent with DNA annealing
data depicting few repetitive DNA and higher effective
concentration of single-copy sequences in D. gliroides
relative to other marsupials [42]. The sparse labeling
pattern detected by self-GISH along some chromosomes
suggests a correspondence with specific genomic repeti-
tive sequences (e.g. interspersed transposons and dis-
persed repetitive sequences; Fig. 1b). In fact, a dot-like
fluorescent pattern is associated with the enrichment of
retroelements on some chromosomes of the rodent Oct-
omys mimax [43], Chionomys nivalis [44], and several
Microtus species [45]. The lack of both repetitive
sequences and pericentromeric heterochromatin has
been associated with centromeric shifts and neocentromeri-
zation in cattle and in the marsupial genus Petrogale [46, 47].
This pattern is intriguing considering its role as

Fig. 1 Molecular cytogenetic analyses on D. gliroides chromosomes. a FISH over a male mitotic plate, using the telomeric probe. Note the absence of
interstitial signals in all chromosomes. b Self-GISH on a female mitotic plate. Note the strong fluorescent signals in some telomeric regions and a dot-like
fluorescent pattern in all chromosomes, except pair 3. c Immunoassay over male mitotic plates using the anti-centromere of polyclonal human antibody.
Colocalization of red fluorescent signals with the primary constriction is observed
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substrates and as possible stabilizer for centromere
formation and function [48]. Further satellite DNA
studies, the analyses of centromere DNA-binding pro-
teins, and the epigenetic studies of centromeric chro-
matin will shed light on the factors that have shaped
this peculiar heterochromatic pattern.

GC-rich telomeric sequences detected in all D. gliroides’
chromosomes colocalize with most repetitive sequences
detected by FISH and self-GISH (Figs. 1a, b and 2c). Since
neither centromeric nor interstitial signals were detected
by any technique applied, the lack of ITS is strongly sug-
gested (Figs. 1a, b and 2c). It could be argued that this

Fig. 2 Banding patterns of Dromiciops gliroides. a C-banding of a female mitotic plate. Note the sparse distribution pattern and absence of pericentromeric
heterochromatin. b CG- fluorescent banding of a male mitotic plate. Note the intensively stained blocks of CG-rich sequences in telomeric/subtelomeric
regions. c AT- fluorescent banding of a male mitotic plate. Note that AT-rich sequences are the inverse of the CG- banding pattern

Fig. 3 Phylogenetic tree of American marsupials [30] depicting ancestral diploid number and ITS presence reconstruction. Branch colors indicate diploid
number reconstructed with BayesTraits. Numbers above branches represent probability for each ancestor having ITSs. Cytogenetic data depicted at right
follows: 1 = Sousa et al. [56]; 2 = Carvalho and Mattevi [12]; 3 = Svartman and Vianna-Morgante [13]; 4 = Pagnozzi et al. [15]; 5 = this study.
Additional information is listed and coded in Additional file 1: Table S1
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might be due to either loss or chromatin modification after
fusion, as reported in Mus [25]. Assuming fusions, it seems
unlikely that all ITS expected in D. gliroides were lost.
Thus we hypothesize that ITS have never existed in D. glir-
oides chromosomes and support the notion that its karyo-
type does not fit into the fusion model. The undetection of
ITS fits well with the cytogenetic/phylogenetic inference
and genome assemblage comparison [10, 20]. This hypoth-
esis is further supported by the lack of interstitial C-bands
(Fig. 2a), as the opposite is predicted if fusions took place
[25–27]. Our results agree with the cytogenetic studies on
Australian genera Macropus, Petrogale, and Thylogale [16,
46, 49] that support the ancestrality of the 14-chromosome
karyotype. Chromosome painting onto the chromosomes
of D. gliroides will clarify its ancestral 14-chromosome con-
dition by showing conserved regions and possible
inversions.
Previous and varied phylogenetic studies have indicated

that D. gliroides is more related to the Australasian than
to the South American radiation [21, 30, 42, 50, 51]. This
is consistent with the microbiotherid’s oldest fossil known
from the Early Paleocene, when Australia, South America
and Antarctica were still connected [52]. These two facts
support D. gliroides as a living fossil that links the Ameri-
can and the Australian radiations. Consequently, its cyto-
genetic features might well be supporting data for the
marsupial ancestral state reconstruction. In fact, the
shared 14-chromosome karyotypes of Dromiciops, Caeno-
lestes, Rhyncholestes, and Caluromys allow us to confi-
dently (>90 %) support their ancestrality, also extended to
the Didelphidae and Caenolestidae, as previously ad-
vanced [10, 20].
The lack of ITS in Dromiciops and Caluromys makes

improbable their existence in the basal nodes of marsupial
phylogeny (Fig. 3). Assuming their absence (P < 0.5), its
onset would have been after the divergence of Glironia
venusta from the remaining didelphids, more recent
than ∼ 36 Mya (Fig. 3). Given the small probability for ITS
presence, the transition from 14 to 18 chromosomes
would be unrelated to fusion events (Fig. 3, orange
branches). In the same line, the onset of marsupial ITS
would be traced after the dispersion from South America
to Australia, during the Paleocene [53, 54], falsifying the
predictions derived from the fusion hypothesis [11–13].
The 14-chromosome ancestors of Gracilanus and

Marmosops have a high probability of having ITS
while the 14-chromosome ancestor between them and
Metachirus has a low corresponding probability
(Fig. 3). A similar situation is observed in the ancestor
of the Micoureus clade with respect to Marmosa murina.
Both instances illustrate the conservation of 14 chromo-
somes, indicating that ITS acquisition was unrelated to the
fusion events. ITS presence might well represent signals of
satellite DNA associated to constitutive heterochromatin,

as advanced [14–16, 55]. Since ITS presence colocalizes
with the constitutive heterochromatin, and its presence oc-
curs in derived 14- and 18-chromosome species depicted
in the phylogenetic tree, the fusion hypothesis rendered
highly improbable.

Conclusions
Neither centromeric nor interstitial signals reflecting
fusions were detected in the “living fossil” D. gliroides by
either classical or molecular cytogenetics. The ancestral re-
construction of diploid number as well as the ITS absence
suggested their decoupling from past fusion events. There-
fore, our data give additional support to the notion that fis-
sion events from an ancestral 14-chromosome condition
explain the high chromosome numbers in the karyotypic
radiation of American marsupials.

Additional files

Additional file 1: Table S1. Cytogenetic data used for the
reconstructions of ancestral diploid numbers and presence of interstitial
telomeric signals (ITS). Multi states codes used in BayesTraits were A: 2n = 14,
B: 2n = 18, C: 2n = 22, D: 2n = 10, E: 2n = 12, F: 2n = 16, G: 2n = 18, H: 2n = 20, I:
2n = 24, J: 2n = 32; K: presence of ITS, L: absence of ITS. Missing data code (−)
was used for diploid numbers and/or ITS of species without these cytogenetic
data. (XLS 44 kb)

Additional file 2: Figure S1. Fluorescent in situ hybridization over D.
gliroides mitotic plates using the telomeric probe. Posthybridization washes
with formamide 50 % for a: 5 min, b: 2 min, and c: 1 min were tested. Note
the absence of interstitial signals in all chromosomes. (JPG 691 kb)
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