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Abstract: Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose
levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic
diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis,
and circulating levels of β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. Compliance to
KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous
ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements.
In this study, we tested the changes in blood glucose and ketone (βHB) levels in response to acute,
sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or
rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome
mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals
were also assessed across different age ranges. Experimental groups included KD, standard diet (SD)
supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), βHB mineral
salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with
MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower
blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the
KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and
KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted
in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study.
In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in
KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most
significantly reduced blood glucose levels, compared to control. These results indicate that exogenous
ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in
various rodent models of different ages, with and without pathology.
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1. Introduction

Glucose represents an important metabolic biomarker and is the primary fuel for most human
cells. Under “normal” fed conditions with a carbohydrate-rich diet, the concentration of circulating
β-hydroxybutyrate (βHB) is low, typically at <0.1 mM, and accounts for <3% of total cerebral
metabolism, with minimal brain uptake [1]. However, in periods of relatively low glucose availability,
such as starvation, fasting, or through the adherence of diets that reduce or restricts the ingestion
of carbohydrates, such as a ketogenic diet (KD), the body shifts towards fatty acid oxidation and
ketogenesis to meet metabolic demands. This fat-fueled hepatic ketogenesis elevates levels of the
ketone bodies, βHB, acetoacetate (AcAc) and acetone. βHB and AcAc are converted into acetyl-CoA in
the mitochondria, which enters the Krebs cycle and ensures sufficient ATP production during periods
of limited glucose and glycogen availability [2–4]. These ketone bodies can accumulate in the blood at
a combined concentration of >2 mM, and are subsequently transported across the blood brain barrier
(BBB) via monocarboxylic acid transporters (MCT 1–4) to meet the brain’s metabolic demands [5].

Certain conditions, such as inflammation, oxidative stress or seizure disorders can be exacerbated
by elevated blood glucose. Therefore, managing glycemia may be vital to mitigating patient risk
and improving prognosis. For example, several animal studies have shown that high blood glucose
levels can lead to low-grade inflammation, in addition to obesity, insulin resistance, and increased
gut permeability [6]. Human studies also describe the link between high blood sugar and higher
inflammatory markers. A study of 29 healthy people found that consuming only 40 g of added sugar
led to an increase in inflammatory markers, while 30 min after consuming a 50 g dose of fructose,
a spike in inflammatory markers, such as C-reactive protein (CRP), was described [7,8]. In another
study, hyperglycemia led to an increase in the inflammatory marker Nf-κB [9].

Inflammatory responses may promote neural hyperexcitability in the brain, which leads to
decreased seizure threshold in patients with seizure disorders [10]. Consequently, epileptic seizures
and inflammatory mediators can form a positive feedback loop, reinforcing each other [11]. In seizure
disorders, hyperglycemia is also associated with increased seizure frequency and lower seizure
threshold [12,13]. Positive correlation has been described between blood sugar level and frequency
and duration of seizures, while correction of hyperglycemia remains the main goal in the management
of seizures [14].

Diabetes is a category of diseases resulting in glucose mismanagement and hyperglycemia [15].
Previous trials have confirmed that lowering chronic markers of glucose elevation result in improved
long-term outcomes and lower incidence across common comorbidities. This effect has consistently
been attributed to hyperglycemia-induced inflammation and oxidative stress, amongst others [16].

High blood glucose level can lead to further problems if it persists over a longer period of
time [17,18]. In addition to inducing insulin resistance, persistent hyperglycemia impairs insulin
secretion by pancreatic β-cells [19]. Chronic hyperglycemia will also cause detrimental effects on
macrovascular and microvascular systems, inducing overproduction of NADH and mitochondrial
reactive oxygen species (ROS) that inhibit GAPDH activity [20–22]. This inhibition further activates
the alternative glucose metabolic pathways, which leads to increased ROS production involved in
glucotoxicity that is responsible for the exacerbation of diabetes and the development of diabetic
complications [22–25]. These and further studies support the concept that elevations in ROS and
oxidative stress can be fomented by high blood glucose and NADH overproduction. Another recent
study provides further evidence that inflammatory and oxidative stress biomarkers correlated with
preclinical increases in blood glucose levels [26].

Clinically, hyperglycemia increases the risk of cerebrovascular disease, while it is also associated
with increased infarct size in both myocardial infarction and stroke, increased surgical site infections,
and greater severity of traumatic brain injury [27–30].

Physical exercise has also been shown to be an important mediator of glucose homeostasis [31].
Previous studies describe how physical activity influences glucose uptake, transport, and
disposal [32–34]. It has been reported that intense exercise (VO2max > 80%) leads to an eightfold
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increase in hepatic glucose output, while glucose utilization may increase only threefold [35,36].
In healthy individuals, insulin secretion increases during the recovery period following intense exercise
to normalize plasma glucose, however this process can be impaired in diabetes, while individuals with
seizure disorders are exposed to greater risk of developing a seizure in response to exercise-induced
hyperglycaemia [36–39].

Improved glycemic control under baseline conditions and post-exercise can result in improved
disease outcome or survival in many of the above mentioned patient populations; however, the safe
reduction of blood glucose is difficult due to powerful homeostatic regulation [40]. Alternative
strategies are needed to reduce blood glucose levels since medication, consistent exercise, or weight
loss regimens are ineffective or difficult to maintain for many people.

While pharmacological solutions—such as metformin, insulin, SGLT2 inhibitors, and GLP
inhibitors—may be used to control blood glucose levels in these populations, the issues of drug tolerance,
effectiveness, compliance, and side effects can complicate the treatment in certain individuals [41,42].

A KD is a dietary strategy which promotes normoglycemia while attenuating postprandial glucose
spikes. The traditional KD is composed of a 3:1 or 4:1 ratio, by weight, of fat to a combination of protein
and carbohydrates that resembles some metabolic characteristics of fasting [43]. Initially, the KD
was used to specifically treat epilepsy and type 1 diabetes before the development of drug therapies;
however, emerging studies suggest that the KD could be a metabolic therapy for a wide range of
disorders [43–56].

Despite the success of ketone-based interventions, several factors limit the efficacy and utilization
of the KD as a metabolic therapy for widespread clinical use. Patient compliance to the KD can be low
due to its strict requirements, individual intolerance to high-fat diets, or a general lack of knowledge and
self-efficacy [57–60]. Furthermore, maintaining therapeutic ketosis can be difficult, as consumption of
even a small quantity of carbohydrates or excess protein can rapidly inhibit ketogenesis [61]. Enhanced
ketone body production and tissue utilization can take several weeks, and patients may experience
hypoglycemic symptoms during this transitional period [62]. As such, alternative methods to rapidly
establish and maintain ketosis in a patient are needed.

Previous studies have used murine models to describe changes in blood glucose and ketone levels
in a rested state in response to administration of exogenous ketones [63–65]. However, the physiological
response of glucose utilization might be different across varied physiological contexts [66–77]. Therefore,
it is important to study such changes in multiple model systems typically used in metabolic studies. The
effect of exogenous ketones has previously been shown on the blood glucose and ketone levels in rested
non-pathological murine model, Sprague Dawley (SPD) rats, and in Wistar Albino Glaxo/Rijswijk
(WAG/Rij; WR) rats. Absence epileptic activity is well-investigated in WR rats [78–82]. GLUT1
deficiency syndrome (GLUT1D) is a neurometabolic disorder associated with seizures, and has been
studied in GLUT1 deficiency syndrome mice (GLUT 1 mice), but the effect of exogenous ketones on the
blood glucose level in this animal model has not been studied yet. Patients with GLUT1D suffer from
low brain glucose levels, early-onset seizures, delayed development, spasticity, ataxia, and dystonia.
Therefore, it is important to find out how exogenous ketones might effect blood glucose and ketone
levels in this disease [83–85]. In previous and the present study, the rats have been exposed to acute,
sub-chronic, and chronic treatments in order to detect changes in blood glucose levels at various
time points [63,86]. Several studies reported moderate or long-term effects of different composition
of macronutrients in the diet, rather than the acute effects on blood kinetics [87–90]. These animal
models represent an important tool for understanding the link between disease pathophysiology and
glucoregulatory control.

Glucose metabolism and utilization is well known to be affected by aging [91–93]. Lack of adequate
glucoregulatory control remains a central problem of aging and chronic disease, while numerous
longevity interventions result in maintenance of glucoregulatory control [93]. To investigate the
putative effect of age on exogenous ketones-induced changes in glucose levels, 4-month and 1-year-old
SPD rats were studied. In this study, to further investigate the effect of KD and exogenous ketones
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on blood glucose and ketone (R-βHB) levels, we tested non-pathological (SPD rats) and pathological
(WR rats and GLUT1D mice) animal models in rested and in post-exercise state acute (1 h; SPD and
WR rats), sub-chronic (7 days; SPD and WR rats), and chronic treatments (10 weeks; GLUT1D mice)
(Table 1).

Table 1. Treatment groups in the different rodent models.

Acute Sub-Chronic Chronic

SPD (R)Ex (R)Ex (R)

WR R, Ex R, Ex

GLUT1D R

Ex: exercised, R: Rested, SPD: Sprague-Dawley rats, WR: WAG/Rij rats, GLUT1D: GLUT1D deficiency syndrome
mice, (R): Rested state in parenthesis indicates that data is already described in earlier literature.

2. Material and Methods

2.1. Animals

SPD male rats (4-months-old and 1 year old, 320–360 g and 540–660 g, respectively, Harlan
Laboratories), WR male rats (6-months-old, 320–360 g, breeding colony, Eötvös Loránd University,
Savaria University Centre, Szombathely, Hungary), and GLUT1D male mice (3–5-months-old, 17–27 g,
breeding colony, University of South Florida (USF), Morsani College of Medicine, Tampa, FL, USA)
were used. Animals were housed at either the USF College of Medicine Animal Facility, (Morsani
College of Medicine, USF, Tampa, FL, USA) or the Savaria Department of Biology (Eötvös Loránd
University, Savaria University Centre, Szombathely, Hungary). Animals were housed in groups of 2–4
under standard laboratory conditions (12:12 h light-dark cycle) in air-conditioned rooms at 22 ± 2 ◦C.

Procedures were performed in accordance with the guidelines set forth by the Institutional Animal
Care and Use Committee (IACUC; Protocol #0006R) of the University of South Florida (University of
South Florida, Tampa, FL, USA), the Hungarian Act of Animal Care and Experimentation (1998. XXVIII.
Section 243/1998), and the regulations for animal experimentation in the European Communities
Council Directive of 24 November 1986 (86/609/EEC). All experiments were approved, and all efforts
were made to reduce the number of animals used.

The experimental design was approved by the Animal Care and Experimentation Committee of
the Eötvös Loránd University (Savaria University Centre) and National Scientific Ethical Committee
on Animal Experimentation (Hungary) under license number VA/ÉBNTF02/85-8/2016.

2.2. Diets and Ketogenic Compounds

Animals were allowed ad libitum access to water and standard rodent chow (SD, 2018 Teklad
Global 18% Protein Rodent Diet; #2018, Harlan), ketogenic rodent food (KD, Table 2), or SD mixed
with ketone supplementation.

Table 2. Macronutrient ratios of rodent standard diet and ketogenic diet used.

Macronutrient Information Standard Diet (SD) Ketogenic Diet (KD)

% Cal from Fat 18.0 77.1

% Cal from Protein 24.0 22.4

% Cal from Carbohydrate 58.0 0.5

Caloric Density (Kcal/g) 3.1 4.7

The ketone ester (KE) R, S 1, 3-butanediol-acetoacetate diester was synthesized as previously
described by D’Agostino et al. [94]. The ketone salt Na+/K+– R, S βHB mineral salt (KS) is a novel agent
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that was mixed into a 50% solution, supplying approximately 375 mg/g of pure R-βHB and 125 mg/g of
Na+/K+ in a 1:1 ratio. Both KE and KS were developed and synthesized in collaboration with Savind
Inc. Human food-grade medium chain triglyceride (MCT) oil (~60% caprylic triglyceride/40% capric
triglyceride) was purchased from Now Foods (Bloomingdale, IL, USA). KS or KE were mixed with
MCT in a 1:1 ratio, generating the KSMCT and KEMCT combinations. KE was mixed with KS in a 1:1
ratio to create KEKS. R, S-1, 3-butanediol (BD) was purchased from Sigma (Milwaukee, WI, USA).

2.3. Treatment Groups

To habituate the rodents to intragastric delivery, animals were orally gavaged with water for five
days prior to treatment (Figure 1). After habituation and baseline measurements (on the 5th day of
habituation), the rodents were orally gavaged either once with exogenous ketones (acute treatment;
5 g/kg for SPD rats and 2.5 g/kg/day for WR rats) and the effect was measured after 1 h, or they were
gavaged once daily for 7 days (sub-chronic treatment; 5 g/kg/day for SPD rats and 2.5 g/kg/day for WR
rats) and the effect on blood glucose and ketones was recorded after 24 h and after 7 days (Figure 1).
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Figure 1. Schematic drawing of the experimental design. Abbreviations: BL: Baseline measurement;
RR: rotarod.

For the acute treatment on 1-year-old SPD rat experiment with exercise, the treatment groups
included water (control, n = 10), BD (n = 8), KE (n = 12), KSMCT (n = 8), KEKS (n = 12), and KEMCT
(n = 8). For the sub-chronic treatment on 4-month-old SPD rats experiment with exercise, the treatment
groups included control (n = 11), KD (n = 10), KE (n = 9), KS (n = 9), and KSMCT (n = 10) while on
standard diet (SD). For acute and sub-chronic experiments on rested 6-month-old WR rats, the rodents
were orally gavaged with either water (SD: control, n = 9), KE (n = 9), KS (n = 9), or KSMCT (n = 9)
while on SD. For the exercised WR experiments, the rodents were fed either a SD (n = 9) or a diet
supplemented with either KE (n = 9), KS (n = 9), KSMCT (n = 9), KEKS (n = 9), or KEMCT (n = 9). The
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GLUT1D mice were fed for 10 weeks (chronic treatment) on either a ketogenic diet (KD, n = 12), SD
(n = 12), or the SD supplemented with 20% KS (n = 12) or 10% KE (n = 12).

2.4. Exercise with Accelerated Rotarod

For all trials involving exercise (SPD or WR rats), the rodents were exercised on a rotarod Rotamex
5 (Columbus Instruments, Columbus, OH, USA). The animals were trained on the rotarod for five
consecutive days before treatment began to acclimate them to the equipment and the task (habituation
to rotarod test was parallel with habituation to oral gavage; Figure 1). To evaluate exercise-induced
fatigue, the rotarod was set to accelerate from zero to 40 rpm over a protracted period of 180 s for all
training periods and trials, across all experiments. Each session of training and testing consisted of
three trials, with a two-minute rest period between each trial. Blood measurements were collected
within 10 min after last trial.

2.5. Measurement of Blood R-βHB and Glucose

Whole blood samples (~10 µL) were taken from the saphenous vein of rats and from the tail vein of
mice for analysis of blood glucose (mg/dL) and R-βHB (mmol/L) levels using a commercially available
glucose and ketone monitoring system, Precision XtraTM (Abbott Laboratories, Abbott Park, IL, USA).
Note that the Precision XtraTM only measures R-βHB levels—not S-βHB, AcAc or Acetone—therefore,
total blood ketone levels may be higher than measured. For all experiments, blood was initially drawn
prior to the beginning of the intervention (on the 5th day of habituation), with this value used as the
established baseline.

Blood was drawn after treatment was started either 1 h, 24 h, or after 7 days (Figure 1). In exercised
trials, blood was drawn within 10 min after last trial was completed. During chronic treatment, blood
was drawn at week 1 before treatment started (baseline), and at week 2, week 3, week 6, and at week
10 after the beginning of the intervention.

2.6. Statistics

All data is presented as the mean ± standard error of the mean (SEM). The effects of ketogenic
compounds on blood R-βHB and glucose levels were compared to experimental controls and respective
baseline levels. Data analysis was performed using GraphPad Prism version 6.0a. Blood ketone and
glucose levels were compared using a one or two-way ANOVA with Tukey’s multiple comparisons
test. Results were considered significant when p values were less than 0.05. Results are indicated on
figures using the following notations: *-p < 0.05, **-p < 0.005, ***-p < 0.0005, or ****-p < 0.0001.

3. Results

3.1. Acute Effect of Ketone Supplements on Blood Glucose and R-βHB Levels in Exercised Sprague-Dawley Rats

The effect of different combinations of exogenous ketone supplements on blood glucose levels
following a single gavage administration (acute treatment) in an exercised state was first tested in
one-year-old SPD rats (Figure 2). After 1 h, in all treatment groups (Control: p = 0.0064; BD: <0.0001;
KE: p = 0.025; KSMCT: p < 0.0001; KEKS: p = 0.0048), except in KEMCT, the blood glucose levels were
significantly elevated, compared to their baseline level (Figure 2A). Depending on the group, the blood
drawn from the rats 1 h after administration of supplements, although insignificant, showed either a
trend of decreased (KE, KEMCT, and KEKS groups) and increased (BD and KSMCT groups) percent
change in blood glucose levels when compared to the control group (Figure 2B). However, the percent
change in blood glucose levels in KEMCT group was significantly lower than in BD (p = 0.0364) and in
KSMCT (p = 0.0328), respectively. The rats also showed significantly higher levels of blood R-βHB
levels after exercise compared to baseline in all treatment groups, except in BD, compared to the control
group (KE: p < 0.0001; KEMCT: p < 0.0001; KSMCT: p = 0.004; KEKS: p = 0.0119) and their respective
baseline (KE: p < 0.0001; KEMCT: p < 0.0001; KSMCT: p = 0.0099; KEKS: p = 0.0021) with the KE and
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KEMCT groups resulting in the highest increase in blood ketone levels (Figure 2C). The percent change
in blood R-βHB levels was significantly higher in KE (p = 0.0005) and KEMCT (p < 0.0001) groups,
compared to control (Figure 2D).
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3.2. Sub-Chronic Effect of Ketone Supplements on Blood Glucose and R-βHB Levels in Exercised
Sprague-Dawley Rats

The ability of a KD or exogenous ketones to reduce blood glucose levels following sub-chronic
gavage administration and rotarod training was tested in 4-month-old SPD rats. The animals were fed
either with SD or KD diet, or SD combined with daily gavage administration of ketone supplements for
seven days, while blood levels were measured after 24 h and after seven days of treatment (Figure 3).
Rats fed a KD (p < 0.0001) or SD with KE supplement (p < 0.0001) had significantly decreased levels
of blood glucose after 24 h, compared to control (Figure 3A). At the end of the seven-day treatment,
only the KSMCT group had a significantly lower level of blood glucose, compared to control group
(p < 0.0001). KE group had lower blood glucose levels at 24 h (p = 0.0047), compared to its baseline.
However, after seven days the level increased in this group, compared to the 24 h level (p = 0.0049).
KSMCT was significantly lower after seven days, compared to its baseline (p < 0.0001), compared to the
24 h level (p < 0.0001), and compared to the control group (p < 0.0001; Figure 3A). The percent change
of blood glucose level was significantly decreased in KD (p = 0.02) and KE (p = 0.007) groups after 24 h,
compared to control (Figure 3B). The percent change of blood glucose level in KSMCT was significantly
lower at day 7 than at 24 h (p = 0.041) and the control group at day 7 (p = 0.007) (Figure 3B).

Rats fed a KD exhibited an increase in R-βHB after 24 h (p = 0.038), compared to baseline,
and compared to control at 24 h (p < 0.0001), while rats given SD supplemented with KE showed
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elevated levels at 24 h (p = 0.0325), compared to control (Figure 3C). Rats fed a KD (p < 0.0001), SD
supplemented with KS (p = 0.0194), and KSMCT (p < 0.0001) showed a significant increase in R-βHB
levels after seven days, compared to control. KSMCT also showed a significant increase, compared
to its baseline (p < 0.0001) and the 24 h level (p < 0.0001). The percent change in R-βHB levels was
significantly higher only in KSMCT at day 7, compared to 24 h (p < 0.0001), and compared to control
group (p < 0.0001) at seven days (Figure 3D).
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WR rats were tested in acute and sub-chronic conditions, and in both a post-exercise and rested 
states with exogenous ketone supplements. In trials without exercise, following acute exposure (1 h 
after oral gavage), all ketone supplemented treatment groups had significant reductions in blood 
glucose levels and significant increases in blood ketone levels, when compared to the control (Figure 
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Figure 3. Changes in blood glucose and R-βHB levels of 4-months-old SPD rats after 24 h and seven
days of treatment, in post-exercise state. (A) The change in glucose levels in SPD rats, with exercise,
for the baseline, 24 h, and seven days post-intervention. (B) The corresponding percent change in
glucose levels. (C) The resulting blood R-βHB levels. (D) The percent change in the blood R-βHB
levels. Abbreviations: SPD: Sprague-Dawley rat; SD: standard diet (control); KD: ketogenic diet; KE:
ketone ester; KS: ketone salt; KSMCT: ketone salt and medium chain triglyceride, 1:1 ratio. *: p < 0.05,
**: p < 0.01, and ****: p < 0.0001 level of significance.

3.3. Acute Effect of Ketone Supplements on Blood Glucose and R-βHB Levels in Rested WAG/Rij Rats

WR rats were tested in acute and sub-chronic conditions, and in both a post-exercise and rested
states with exogenous ketone supplements. In trials without exercise, following acute exposure (1 h
after oral gavage), all ketone supplemented treatment groups had significant reductions in blood
glucose levels and significant increases in blood ketone levels, when compared to the control (Figure 4).
The most significant reduction in blood glucose was in KSMCT group, compared to control (p < 0.0001),
and compared to baseline (p < 0.0001; Figure 4A). The elevation in blood βHB was most significant
in KE and KSMCT treatment groups, compared to control (p < 0.0001) and to baseline (p < 0.0001;
Figure 4C). Reduction in blood glucose levels could be observed in KE group, compared to its baseline
(p = 0.0119), and compared to control (p = 0.0002) at 1 h (Figure 4A). KS and KSMCT caused lowered
blood glucose at 1 h, compared to control (p = 0.0322 and p < 0.0001, respectively). The percent change
in blood glucose levels showed reduction in KE (p = 0.0005), KS (p = 0.0068), and KSMCT (p < 0.0001)
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groups as well (Figure 4B). All treatment groups had significantly elevated R-βHB levels after 1 h,
compared to their baseline (KE: pp < 0.0001; KS: p = 0.0053; KSMCT: p < 0.0001) and to control (KE:
p < 0.0001; KS: 0.0034; KSMCT: p < 0.0001; Figure 4C). The percent change in blood R-βHB levels
showed increase in all treatment groups (p < 0.0001; Figure 4D).
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= 0.0004) after 24 h (Figure 5A). At 24 h, KSMCT as well had lower blood glucose levels, compared to 
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Figure 4. Changes in blood glucose and R-βHB levels of 6-months-old WR rats after 1 h of treatment,
in rested state. (A) The change in glucose levels in WR rats, with no exercise, for the baseline and
1 h post-treatment. (B) The corresponding percent change in glucose levels. (C) The resulting blood
R-βHB levels. (D) The percent change in the blood R-βHB levels. Abbreviations: WR: WAG/Rij rat;
SD: standard diet (Control); KE: ketone ester; KS: ketone salt; KSMCT: ketone salt and medium chain
triglyceride, 1:1 ratio. *: p<0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001 level of significance.

3.4. Sub-Chronic Effects of Ketone Supplements on Blood Glucose and R-βHB Levels in Rested WAG/Rij Rats

The effect of sub-chronic exposure of ketone supplementation by oral gavage in WR rats on blood
glucose and R-βHB levels were documented after 24 h and seven days, without exercise (Figure 5).
Blood glucose levels decreased in KE group compared to its baseline (p = 0.029) and to control
(p = 0.0004) after 24 h (Figure 5A). At 24 h, KSMCT as well had lower blood glucose levels, compared
to control (p < 0.0001). The blood glucose level in KSMCT was lower at 24 h, compared to its baseline
(p < 0.0001), but higher at seven days, compared to the level at 24 h (p = 0.001). The percent change of
blood glucose level showed a significant decrease in all treatment groups at 24 h (KE: p = 0.0026; KS:
p = 0.0353; KSMCT: p < 0.0001; Figure 5B). Blood R-βHB levels were elevated at 24 h in all treatment
groups, (KE: p < 0.0001; KS: p = 0.02; KSMCT: p < 0.0001) and after seven days (p < 0.0001), compared
to control (Figure 5C). All treatment groups had increased R-βHB levels at seven days, compared
to their baseline (p < 0.0001). KS had elevated R-βHB level at 24 h, compared to its baseline level
(p = 0.0294) and at seven days, compared to the level at 24 h (p < 0.0001). The percent change of R-βHB
level was higher than control in KE and KSMCT at 24 h (p < 0.0001), while it was higher than control in
all treatment groups at seven days (p < 0.0001; Figure 5D). The percent change of R-βHB level was
higher in KS group at seven days than at 24 h (p = 0.0122).
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Figure 5. Changes in blood glucose and R-βHB levels of 6-month-old WR rats after 24 h and seven
days of treatment, in rested state. (A) The change in glucose levels in WR rats, with no exercise, for the
baseline, after 24 h and after seven days of daily treatment. (B) The corresponding percent change in
glucose levels. (C) The resulting blood R-βHB levels. (D) The percent change in the blood R-βHB
levels. Abbreviations: WR: WAG/Rij rat; SD: standard diet (Control); KE: ketone ester; KS: ketone salt;
KSMCT: ketone salt and medium chain triglyceride, 1:1 ratio. *: p < 0.05, **: p < 0.01, ***: p < 0.001 and
****: p < 0.0001 level of significance.

3.5. Acute and Sub-Chronic Effects of Ketone Supplements on Blood Glucose and R-βHB Levels in Exercised
WAG/Rij Rats

Exercised WR rats were examined at 1 h and seven days after exogenous ketone treatment
(Figure 6). All treatment groups had lower blood glucose levels at the 1 h mark (KE: p = 0.0002; KSMCT:
p < 0.0001; KEKS: p = 0.022; KEMCT: p < 0.0001), except KS, compared to control, and compared to
their baseline (KE: p = 0.03; KSMCT: p < 0.0001; KEKS: p = 0.0003; KEMCT: p < 0.0001; Figure 6A).
Blood glucose was lower only in KEKS (p = 0.0034) and KEMCT (p < 0.0001) groups at seven days,
compared to control and compared to their baseline (p < 0.0001). KSMCT had increased glucose level
at seven days compared to the level at 24 h (p = 0.0006). The percent change of blood glucose levels
decreased at 1 h in all treatment groups (KE: p = 0.0033; KSMCT: p < 0.0001; KEKS: p = 0.0001; KEMCT:
p < 0.0001), except in KS, compared to control, and decreased only in KEKS (p = 0.0004) and KEMCT
(p < 0.0001) at seven days, compared to control (Figure 6B). The percentage change of blood glucose
was significantly reduced in KEKS (p < 0.0001) and KEMCT (p < 0.0001) groups compared to their
baseline as well, while KSMCT was lower at seven days than at 1 h (p = 0.0048).

All treatment groups had significantly elevated blood R-βHB levels at 1 h (p < 0.0001), except
KS, and after 7 days (p < 0.0001), compared to control (Figure 6C). Also, all treatment groups had
elevated R-βHB levels at 1 h (p < 0.0001), except KS, and at seven days (p < 0.0001), compared to their
baseline. The percent change of blood R-βHB was elevated in all, except in KS at 1 h (p < 0.0001; KEKS:
p = 0.0002) and was elevated in all treatment groups at seven days (p < 0.0001, KEKS: p = 0.0029),
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compared to control (Figure 6D). Also, all treatment groups were elevated at seven days (p < 0.0001,
KEKS: p = 0.0026), compared to the control at 1 h (p < 0.0001). The R-βHB level in KS was higher at
seven days than at 1 h (p = 0.0421).
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3.6. Chronic Effects of Ketone Supplements on Blood Glucose and R-βHB Levels in G1D Syndrome Mice 

Figure 6. Changes in blood glucose and R-βHB levels of 6-month-old WR rats after 1 h and seven
days of treatment, in post-exercise state. (A) The change in glucose levels in WR rats, with exercise,
for the baseline, 1 h and seven days of the treatment. (B) The corresponding percent change in glucose
levels. (C) The resulting blood R-βHB levels. (D) The percent change in the blood R-βHB levels.
Abbreviations: WR: WAG/Rij rat; SD: standard diet (Control); KE: ketone ester; KS: ketone salt; KSMCT:
ketone salt and medium chain triglyceride, 1:1 ratio; KEKS: ketone ester and ketone salt, 1:1 ratio;
KEMCT: ketone ester and medium chain triglyceride, 1:1 ratio. *: p <0.05, **: p <0.01, ***: p <0.001 and
****: p < 0.0001 level of significance.

3.6. Chronic Effects of Ketone Supplements on Blood Glucose and R-βHB Levels in G1D Syndrome Mice

The effect of chronic feeding of KD or exogenous ketone supplements on blood glucose levels
was assessed in GLUT1D mice for 10 weeks (Figure 7). There was a trend of lower blood glucose
levels in every treatment group at every week after treatment started, however, the differences reached
significance only at a few time points (Figure 7A). The KE group had the largest reduction in blood
glucose at week 2 (p = 0.0017), compared to control, and to baseline, week 1 (p < 0.0001), while it was
significantly lower at week 6 (p = 0.0098), compared to its baseline (Figure 7A). The percent change in
blood glucose levels was significantly decreased at week 2 in KE (p = 0.0004) and at week 6 (p = 0.024),
compared to the baseline control level (Figure 7B).

The KS treatment caused a significant and rapid elevation of blood ketone levels at week 2
(p = 0.0342), week 3 (p = 0.0215), and at week 6 (p = 0.0161), compared to control group at week 1. The
KD group had a slow, but constant increase in blood R-βHB levels, reaching significance at week 6
(p = 0.0017), compared to control group at week 1. KE caused consistent, but slight elevation in blood
R-βHB levels, compared to its baseline, however it did not reach significance (Figure 7C,D).
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chronically exposed to various ketone supplements. (B) The corresponding percent change in blood 
glucose levels. (C) The resulting blood R-βHB levels. (D) The percent change in blood R-βHB levels. 
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These results demonstrate the blood glucose lowering effect of the ketogenic diet and ketone 
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Figure 7. The effect of chronic feeding of ketogenic compounds on blood glucose and R-βHB level
was assessed in glucose transporter type 1 (G1D)-deficiency syndrome mice during 10 weeks long
experiment, in rested state. (A) The change in blood glucose levels in GLUT1D mice, without exercise,
chronically exposed to various ketone supplements. (B) The corresponding percent change in blood
glucose levels. (C) The resulting blood R-βHB levels. (D) The percent change in blood R-βHB levels.
Abbreviations: SD: standard diet (Control); KD: ketogenic diet; KS: ketone salt; KE: ketone ester.
*: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001 level of significance.

4. Discussion

These results demonstrate the blood glucose lowering effect of the ketogenic diet and ketone
supplements in SPD and WR rats, as well as in GLUT1D mice, after acute, sub-chronic, or chronic
administrations. These murine model systems are frequently used in studies where therapeutic
ketosis and glucoregulatory control are important influencers of disease management or prevention of
symptoms. The glucoregulatory effects of ketone supplementation was variable between treatment
groups (rested and post-exercise state), suggesting that the different physiological states influence
ketone-induced alterations in blood glucose levels. The results confirm and extend our previously
reported results of decreased blood glucose in SPD and WR rats receiving ketone supplements, and were
also extended to GLUT1D mice [63]. The exogenous ketone-induced blood glucose lowering effects in
rats varied depending on the strain, administration, the type of supplement, age, and exercise state.

In a previous study in juvenile SPD rats, we found no significant change in the baseline blood
glucose or ketone levels after 4-week gavage [63]. However, blood glucose levels were reduced after
acute gavage administration with KSMCT and MCT groups. KS significantly lowered blood glucose
only at 8 h/week 1 and 12 h/week 3. Significantly reduced blood glucose levels were observed in KE
group, compared to controls between weeks 1–4. BD did not have a significant effect on blood glucose
levels at any time point during the 4-week study.

Glucose production and utilization can change with age, therefore we tested different age groups
of rodents [93]. During exercise, the control of glucose homeostasis is dictated by a complex interaction
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between multiple hormonal regulators (e.g., insulin, glucagon, catecholamines, and glucocorticoids),
the nervous system, and various molecular regulators within skeletal muscle and liver, that maintain
precise control of glucose concentration during most activities. In order to better understand the
glucose homeostasis during exercise, we used the rotarod exercise to simulate post-exercise state in
murine models. During the present study, in exercised 1-year-old SPD rodents, after acute treatment,
all treatment groups had increased blood glucose levels, except in the KEMCT group. In exercised
4-months-old SPD rats with sub-chronic exposure, at 24 h of intervention, the KD and KE groups had
significantly lower glucose levels, while these same groups had significantly higher R-βHB levels.
It is conceivable that higher doses would have decreased blood glucose and increased R-βHB levels
in the remaining groups, but this needs further validation. However, after seven days of treatment,
only KSMCT had a significant reduction in blood glucose and significant increase in βHB, implying
that short-term and long-term use of various ketone supplements may have different effects on blood
glucose. In acutely exposed WR rats, without exercise, all groups had significantly reduced glucose
levels compared to the control, while all treatments increased R-βHB levels. In the sub-chronically
treated WR rats without exercise, after 24 h, only KE and KSMCT lowered blood glucose significantly,
while KE, KS, and KSMCT increased R-βHB significantly. After seven days of treatment, none of
the treatment groups had significantly lower glucose levels, while all treatments caused a significant
increase in R-βHB levels. It is also possible that a higher dose would be more effective to achieve the
blood glucose lowering effect, but this would be approaching the maximum tolerable levels. In WR rats,
with exercise, all groups had a significant reduction in blood glucose levels and significant increases in
R-βHB after one hour, except KS. However, after sub-chronic (seven days) exposure, only the KEKS and
the KEMCT treatments reduced blood glucose significantly, while all treatments significantly elevated
βHB. For the GLUT1D mice with a chronic 10-week exposure schedule, KE significantly reduced blood
glucose at two weeks and six weeks. The blood ketone levels were not elevated significantly in most
cases (suggesting greater ketone utilization), therefore higher doses might be used in the future to
more effectively lower blood glucose levels and elevate blood ketone levels in this animal model.

Regarding age, while KD, KE, and KSMCT decreased glucose in exercised young adult SPD rats
after 1 h, it was ineffective in the older (1-year-old) SPD rat cohort after 24 h; KEMCT was the only
supplement that didn‘t cause elevated blood glucose in the older animals. Interestingly, in rats with
pathology (WR) after acute treatment and exercise, the blood glucose level was lower in KE, KSMCT,
KEKS, and KEMCT treatment groups compared to control, further supporting the hypothesis that
age and pathological state might influence the bodies’ response to nutritional supplements. Rested
GLUT1D mice, which is a model of human GLUT1D, exhibited a sustained, although not significant,
decrease in blood glucose levels over several weeks when consistently given ketone supplements [95].
Based on these results, we can speculate that there are differences in ketone-induced lowering of blood
glucose between the various age groups and pathologies. The mechanisms of action may change as
the organism ages. However more mechanistic studies are needed that focus specifically on the effect
of aging on glucose disposal and hepatic gluconeogenesis.

A KD replicates some aspects induced by fasting, including a reduction in glucose fluctuations,
and is frequently used to treat drug-resistant seizures [48]. Efficacy of KD has been positively correlated
to the levels of circulating ketone bodies [96], however, using this dietary therapy can still be problematic
for many patients.

Recent studies using ketone esters of βHB or AcAc have shown they are effective in inducing
rapid and sustained ketosis, and that they are safe and well-tolerated in rats and humans [94,97,98].
Previously, we have reported successful use of KE in studies on tumor proliferation, central nervous
system oxygen toxicity, and absence epileptic activity [53,80,94]. In this report, we present data showing
that ketone supplementation may represent an alternative strategy to control blood glucose levels.

By far the most prevalent disorder of hyperglycemia is diabetes mellitus (DM), comprised of
both insulin-dependent (type 1 or IDDM) and non-insulin-dependent (type 2 or NIDDM), with type
2 diabetes making up the majority of cases, especially in the western world. Glucose toxicity is the
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primary cause of most diabetic vascular complications, and strong glycemic control can significantly
improve patient outcomes [99]. Interestingly, in addition to treating epilepsy, KD was also the standard
treatment for DM until the advent of insulin treatment [44]. Recently it has been reported that in Type-1
and Type-2 diabetic patients, a low-carbohydrate, KD results in improved glycemic control [56,100,101].

Other clinically relevant states in which glycemic control is compromised include traumatic injury
and post-surgical recovery, in which elevated blood glucose levels associated with poorer outcomes
in each [29,30]. Currently the mechanism of glucose toxicity is unclear, but strict glycemic control
is associated with improved outcomes in critically ill patients [40]. The ability to improve glycemic
control in patients via a dietary supplement, such as exogenous ketone supplementation, could be
advantageous, since it may help to reduce over-dependence on aggressive insulin therapy [102].
Further studies are needed in order to determine whether exogenous ketone supplements could
improve glycemic control and provide a beneficial adjunct to these patients.

These results, taken together, indicate that the ketone-induced ability to acutely lower blood
glucose is likely present, even in post-exercise state, and likely has different mechanisms based on the
type of ketogenic formulation and disease pathology. The observation that KE reduced glucose levels
in exercised SPD rats in this study is consistent with previously reported results in non-exercised SPD
rats [86].

Some have suspected that a ketone induced elevation of insulin may be mediating the
glucose-lowering effect of exogenous ketones, especially if given acutely as a large dose [103],
although an increase in insulin sensitivity could also be a factor [104]. However, it has also been
demonstrated that βHB-infusion in Type-1 Diabetic children resulted in significant reductions in blood
glucose, suggesting exogenous βHB may lower BG independent of endogenous insulin secretion [105].

The availability of ketone bodies as alternative fuels for neuronal metabolism is postulated to
be the mechanism of the therapeutic effect of KD on GLUT1DS [106]. It is reasonable to predict that
ketone supplements would provide a similar effect on this neurometabolic disorder by elevating blood
ketones. In addition to future functional and behavioral tests in GLUT1D mice, it will be important to
determine if there are ketone-induced changes in GLUT1D cerebrospinal fluid glucose levels.

Overall, these results confirm the previous observation of ketone supplements reducing blood
glucose levels [63,86]. We report that exogenous ketones can be used to reduce blood glucose and elevate
blood ketone levels effectively to a variable degree, in a variety of pathological and non-pathological
rodent models, in both rested and post-exercise states, across age groups. These results support
the conclusion that exogenous ketone supplements have potential value in inducing therapeutic
ketosis and reducing blood glucose levels. Further studies are needed to elucidate the ketone-induced
glucoregulatory mechanism these compounds have, and if the benefits can be extended to humans.
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Abbreviations

βHB beta-hydroxybutyrate
GLUT1D GLUT1 deficiency syndrome
KD ketogenic diet
KE 1, 3 butanediol-acetoacetate diester
KS ketone salt
SD standard diet
SPD rats Sprague-Dawley rats
WAG/Rij Wistar Albino Glaxo/Rijswijk rats
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