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Abstract: The use of interbody implants for spinal fusion has been steadily increasing to avoid the
risks of complications and donor site morbidity when using autologous bone. Understanding the
pros and cons of various implant designs can assist the surgeon in choosing the ideal interbody for
each individual patient. The goal of these interbody cages is to promote a surface area for bony
ingrowth while having the biomechanical properties to support the axial skeleton. Currently, the
majority of interbody implants consists of metal or polyether ether ketone (PEEK) cages with bone
graft incorporated inside. Titanium alloy implants have been commonly used, however, the large
difference in modulus of elasticity from bone has inherent issues. PEEK implants have a desirable
surface area with the benefit of a modulus of elasticity closer to that of bone. Unfortunately, clinically,
these devices have had increased risk of subsidence. More recently, 3D printed implants have come
into the market, providing mechanical stability with increased surface design for bony ingrowth.
While clinical outcomes studies are limited, early results have demonstrated more reliable and
quicker fusion rates using 3D custom interbody devices. In this review, we discuss the biology of
osseointegration, the use of surface coated implants, as well as the potential benefits of using 3D
printed interbodies.

Keywords: orthopedics; spine; interbody; fusion; 3D printing

1. Introduction

Musculoskeletal conditions are among the most disabling and costly conditions expe-
rienced by Americans [1]. Spinal fusions have evolved into a viable treatment modality to
treat chronic back pain and restore patients’ quality of life [2–4]. While autologous bone
grafts are generally regarded as the standard augment for spinal fusion surgeries due to
their osteogenic capabilities, complications and morbidity to the donor site have given rise
to the use of substitutes and spinal implants [5,6]. As the baby-boomer generation continues
to age and comprise a disproportionate amount of the musculoskeletal complaints, there is
increased need for surgical technologies that utilize the intrinsic regenerative capacity of
mineralized tissues to provide more permanent solutions for spinal pathologies [7].

Osseointegration refers to the direct integration of bone to metal resulting in structural
and functional integration between the living bone and implant surface [8]. Advances in os-
seointegration have stemmed largely from the dental implant field, which has demonstrated
that achieving successful bone implantation requires a strong and direct interaction between
bone and implant surface [9–13]. Early literature on osseointegration was problematic, with
reports of formation of fibrous capsules around metallic or polymeric implants leading to
early failure [14–21]. There have also been reported cases in which significant osteolysis
developed, despite indetectable traces of wear debris [21–23]. More recently, these issues
have been minimized by controlling specific implant properties like surface roughness and
nanostructures to promote bone apposition directly onto implant surfaces [24–29].
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There are a variety of clinically available cages for spinal fusion that differ in shape,
texture, and chemical composition. The purpose of this review is to (1) evaluate the key
biological processes that occur around implants, (2) discuss the role that surface structure
plays on osseointegration, and (3) discuss current literature on custom 3D printed cages
and their impact on fusion rates.

2. The Biology of Osseointegration

Osseointegration begins with absorption of water molecules, proteins, and lipids to
the implant surface [30,31]. The specific host response to the implant surface is dependent
upon protein properties [31]. Proteins such as fibronectin and vitronectin tend to initiate
inflammation through the attachment of platelets [31–33]. These platelet attachments have
shown to lead to fibrin clot formation that contributes to a meshwork architecture, which
facilitates cell migration toward the implant surface [7,34]. Neutrophils and macrophages
utilize this meshwork to rid the area of pathogens and necrotic tissue [35,36]. Mesenchymal
stem cells (MSCs) arriving at the implant surface are exposed to these inflammatory
cytokines and influence subsequent differentiation into osteoblasts, chondrocytes, and
fibroblasts [37,38]. Gittens et al. demonstrated that these MSCs tend to form bone and
soft tissue in this environment, although the characteristics of the implant are thought to
influence this process [7].

Upon fibrin meshwork formation, bone can form on the bone surface surrounding
the implant (a process termed distance osteogenesis) and on the implant surface (contact
osteogenesis) [39]. Osteoblasts encountering these two surfaces may reproduce for a few
generations or lay down proteins to form the lamina limitans [39]. Often referred to as the
cement line [39–41], the lamina limitans contains a protein profile which further induces
osteoblast migration and maturation.

Bony remodeling then occurs, a process in which osteoclasts resorb the newly formed
bone to amend microcracks and prepare the surface for new bone formation (Figure 1) [42].
This involves creating resorption lacunae with nanotopography thought to signal os-
teoblasts that an appropriate surface has been established for new bone formation [7]. If the
surface properties are insufficient, migrating cells can form fibrous tissue between implant
and bone, resulting in degradation of surrounding bone and implant loosening [24].
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Figure 1. Lateral X-ray of the lumbar spine. (A) Demonstrating L2–S1 anterior interbody fusion us-
ing a combination of PEEK and titanium cages that is supported posteriorly with pedicle screw 
fixation. One year post-op CT sagittal (B) and coronal slices (C) demonstrate bridging callus be-
tween the interbody spaces showing successful fusion with osseointegration. 
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characteristics [40]. It is important to acknowledge that the region of the instrumented 
spine may have relevance for implant selection. Higher reported rates of subsidence and 
non-union in lumbar fusions compared to other parts of the spine underscores the need 
for careful implant development and selection when instrumentation of these levels is 
being planned.  

3.1. Titanium and Titanium Alloys 
Titanium and titanium alloy implants are widely used due to their suitable weight-

to-strength ratio and good biological performance (Figure 2). Brånemark et al. demon-
strated that the surface of titanium allows for osseointegration [9]. Upon exposure to air, 
titanium forms a thin oxide layer that inhibits further implant corrosion; the titanium ox-
ide film also restricts the release of ionic and molecular titanium species, protecting the 
biological surroundings from the highly reactive metal [43]. It is suggested that the oxide 
later provides titanium’s good biological performance by mimicking the ceramic proper-
ties of hydroxyapatite in bone [25]. Titanium is relatively agreeable to the spine because 
of its biocompatibility, robust repassivation, resistance to corrosion, and low density [44].  

The limitation of titanium alloys revolves around the mismatch in the elastic modu-
lus between titanium (100 GPa) and bone (10–30 GPa) [10]. This mechanical difference can 
lead to stress shielding around the implant, local inflammation, bone atrophy, subsidence, 
and implant failure [10]. Moreover, assessing successful fusion radiographically may be 
difficult due to titanium’s high radiodensity [45].  

Figure 1. Lateral X-ray of the lumbar spine. (A) Demonstrating L2–S1 anterior interbody fusion
using a combination of PEEK and titanium cages that is supported posteriorly with pedicle screw
fixation. One year post-op CT sagittal (B) and coronal slices (C) demonstrate bridging callus between
the interbody spaces showing successful fusion with osseointegration.
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3. Implant Composition

Patient-specific conditions such as old age, poor bone quality, and smoking can
threaten the outcome of successful fusion [40]. The goal of implant design is thus to
minimize the effects of patient variables and improve implant-bone osseointegration by
being cognizant of implant chemical composition, as well as the microscale (1 dimension
<100 µm), submicroscale (1 dimension <1 µm), and nanoscale (1 dimension <100 nm) sur-
face characteristics [40]. It is important to acknowledge that the region of the instrumented
spine may have relevance for implant selection. Higher reported rates of subsidence and
non-union in lumbar fusions compared to other parts of the spine underscores the need
for careful implant development and selection when instrumentation of these levels is
being planned.

3.1. Titanium and Titanium Alloys

Titanium and titanium alloy implants are widely used due to their suitable weight-to-
strength ratio and good biological performance (Figure 2). Brånemark et al. demonstrated
that the surface of titanium allows for osseointegration [9]. Upon exposure to air, titanium
forms a thin oxide layer that inhibits further implant corrosion; the titanium oxide film
also restricts the release of ionic and molecular titanium species, protecting the biological
surroundings from the highly reactive metal [43]. It is suggested that the oxide later
provides titanium’s good biological performance by mimicking the ceramic properties of
hydroxyapatite in bone [25]. Titanium is relatively agreeable to the spine because of its
biocompatibility, robust repassivation, resistance to corrosion, and low density [44].
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Figure 2. Cervical spine X-ray demonstrating a C5–C7 anterior discectomy and fusion using titanium
interbodies with plate fixation.
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The limitation of titanium alloys revolves around the mismatch in the elastic modulus
between titanium (100 GPa) and bone (10–30 GPa) [10]. This mechanical difference can
lead to stress shielding around the implant, local inflammation, bone atrophy, subsidence,
and implant failure [10]. Moreover, assessing successful fusion radiographically may be
difficult due to titanium’s high radiodensity [45].

3.2. Polyether Ether Ketone (PEEK)

Interbody cages are often made of polyether ether ketone (Figure 3), which is an inert
semicrystalline polyaromatic linear polymer. PEEK is an inexpensive, radiolucent material
that has a modulus of elasticity that approximates that of cortical bone [16]. Its comparable
modulus of elasticity to bone has contributed to comparable arthrodesis rates between
PEEK cages and autografts [16]. Unlike titanium, the radiolucent composition of these
cages allows monitoring of bone growth on post-operative serial radiographs. In contrast
to roughened titanium alloy surfaces that promote osteogenesis, PEEK surfaces result in
the formation of fibrous tissue [46]. As a result, PEEK cages are often packed with bone
graft to achieve vertebral fusion.
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Figure 3. Cervical spine X-ray demonstrating polyether ether ketone (PEEK) interbody after a C5–C6
anterior cervical discectomy and fusion.

Prospective clinical studies comparing PEEK to autograft have suggested equivalent
results in regard to patient-reported outcomes [47]. However, surgical outcomes have
suggested higher rates of PEEK cage subsidence, ranging from 32% to 38% of cases [48,49].
Suggested theories for this include over-distraction, overly aggressive endplate preparation,
or normal fusion processes [48].

Manipulation of the quantity and direction of fiber element to achieve desired material
properties provides PEEK cages with the potential to minimize stress shielding compared
to solid titanium implants [50]. Pelletier et al. performed a study comparing PEEK and
titanium anterior lumbar interbody fusion implants in sheep, demonstrating no difference
in initial biomechanics, mechanical properties, or fusion rates when similar amounts of bone
graft were used [50]. There are varying reports in the literature of the interaction between



Bioengineering 2022, 9, 108 5 of 11

PEEK and osteoblasts [51,52]. Olivares-Navarrete et al. found that osteoblasts differentiate
to a lesser phenotypic degree on PEEK versus titanium surfaces, suggesting that PEEK
cannot support osteogenic tissue as well as titanium [51]. However, Sagomonyants et al.
demonstrated that PEEK and roughened titanium have comparable in vitro bone forming
capacity [52].

Unlike comparisons between allograft/autograft and PEEK cages suggesting worse
subsidence rates with PEEK, comparisons with titanium compounds have had different
results [53]. A randomized controlled trial by Chen et al. comparing PEEK to titanium
cages in the cervical spine showed subsidence rates of 34.5% in titanium compared to 5.4%
in PEEK [53]. Several subsequent studies demonstrated that PEEK preserves intervertebral
heights and Cobb angles more effectively than their metallic counterparts [54,55].

3.3. Surface-Coated Cages

The development of surface-coated interbody cages arose from the abovementioned
conflicting evidence regarding PEEK cages and the literature comparing the advantages
and disadvantages of PEEK, metals, and biological supplements [53–55]. Surface-coated
interbody cages increase bone-to-implant contact ratio and bioactivity [53]. Interbody mod-
els may be covered with a thin layer of various metals including hydroxyapatite, titanium,
gold, titanium dioxide, diamond-like carbon, and tert-butoxides [56]. Hydroxyapatite is
the most commonly bioactive material used, with several studies demonstrating increased
osteoconductivity of hydroxyapatite-coated PEEK cages, in addition to potentially having
osteoinductive properties [56].

Surface-coated interbody cages are thought to induce bony overgrowth and arthrodesis
starting at the bone–cage interface due to the rough nanometer surface [55]. This surface
promotes bony fusion and induces calcium phosphate deposit [55–57]. Titanium and
gold coating, for example, has been shown to promote osteoblast adhesion on the PEEK
interbody graft [58]. Despite these promising results, surface-coated interbody cages have
been subject to scrutiny because their modulus of elasticity can range from 10 GPa to
100 GPa (compared to 1.0–2.4 GPa in cortical bone), depending on the density of the
coat [53]. Titanium-coated interbody cages have been shown to increase shear strength
between implant and bone, reducing the risk of pseudarthrosis, though there is risk of
delamination [53]. Kienle et al. performed a biomechanical study to simulate the impaction
process in titanium-coated PEEK cages [59]. In contrast to surface-etched implants, the
titanium-coated PEEK implants were susceptible to impaction-related wear debris, half
of which was of a size range that allows phagocytosis, thus promulgating a systemic
inflammatory reaction and possibly hindering arthrodesis [59].

4. Surface Modifications
4.1. Additive and Subtractive Manufacturing

The two primary types of manufacturing spine implants are additive and subtrac-
tive [60]. Additive manufacturing, often termed 3-dimensional (3D) printing, involves the
application using computer software or 3D material coating on the implant [61]. Subtrac-
tive manufacturing involves generation of surface features through removal of material,
producing submicron surface textures; examples of which include acid etching and grit
blasting of titanium surfaces, which have been shown to increase osteoblastic differentiation
and improve osseointegration and bone formation [62].

4.2. Microroughness and Nanostructures

Nanoscale surface modifications represent a developing subfield of fusion science
whereby host cells are able to interact with implants on a molecular level via cellular
membrane receptors to trigger osteoblastic-lineage [60]. This process occurs on nanoscale
(10−9 m) surfaces, as microscale (10−6 m) surface texture does not interact with cellular
membranes [60].
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Implant surface roughness can be manipulated to influence particular protein families
that stimulate certain types of cells to attach. This has been shown to occur with metallic
surfaces, PEEK, and hyaluronic acid [52]. In addition, surface roughness can influence
initial implant fixation by increasing friction and limiting micromotion [52]. Most com-
mercially available implants contain a surface modification to increase roughness, as this
has been demonstrated to have beneficial results with in vitro and in vivo analyses [12,26].
Moreover, surfaces with complex microtopography appear to be even more osteogenic
than surfaces with only one type of roughness. Surface modification techniques to in-
crease microroughness include acid etching, sand blasting, heat treatments, and anodic
oxidation [7].

Olivares-Navarrete et al. previously evaluated the effects of roughened surfaces on
implant types [38]. One study demonstrated that osteoblasts exhibit a more differentiated
phenotype when grown on machined or grit-blasted titanium aluminum vanadium alloys
than when grown on smoother titanium surfaces [38]. This was supported by Sykaras
et al., whom found that the highest levels of osteoclast inhibitors (transforming growth
factor beta and osteoprotegerin), angiogenesis factors (fibroblast growth factor 2, vascular
endothelial growth factor A, and angiopoietin-1), and bone morphogenetic proteins on
roughened titanium surfaces compared to smooth titanium and PEEK [12]. In addition,
multiple studies have shown that nanoengineered implants increase stimulation of local
growth factors, including bone morphogenetic proteins, vascular endothelial growth, and
transforming growth factor beta [63,64].

4.3. Bioabsorbable Interbody Cages

The notion of a bioabsorbable interbody fusion is appealing because these implants
serve to provide structure before being resorbed over time and replaced by host bone.
These structures are intended to recreate the extracellular matrix of bone [64]. However,
skepticism regarding the value of bioabsorbable implants and their limited use in clinical
practice stem from poor osteoconductivity and low primary stability with development
of cracks and foreign body reactions [65]. To improve osteoconductivity, nanosized β-
tricalcium phosphate (β-TCP) has been incorporated into polylactide (PLA) cages [66]. Cao
et al. developed a bioabsorbable cervical fusion cage from PLA and β-TCP that was shown
to have greater biomechanical stability in a sheep model, as compared with tricortical iliac
crest grafts and PEEK cages, allowing for resorption over time [66]. A subsequent in vivo
study by the same group compared the use of a novel polylactide/nano-sized β-tricalcium
phosphate bioabsorbable self-retaining cervical fusion cage (BCFC) to autologous bone graft
and PEEK cages [66]. The authors found that at 12 weeks post-operatively the BCFC group
yielded a significantly lower range of motion in axial rotation than both the autologous
bone graft and PEEK cage group. Histologic evaluation revealed an increased intervertebral
bone volume/total volume ratio and better interbody fusion in the BCFC group than in the
other groups [66]. However, this was proven in an animal model with no clinical data to
date [66].

4.4. Hydroxyapatite Coating

It is well established that bone demonstrates a strong affinity to implants composed
of sintered hydroxyapatite (HA) [67]. HA interbody spaces have been used, but the
mechanical properties of HA on its own are not well suited to this application because
resistance to fatigue failure is very low [67]. However, it is possible to utilize additive
techniques to attach HA to titanium. This HA coating technology has also demonstrated
increased bone apposition, increased resistance to pull-out forces, and increased extraction
torque for HA-coated stainless steel pedicle screws, though this has not been shown for
interbody spacers [68].
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5. 3D Printing

3D printing is a form of additive manufacturing in which multiple 2D layers are formed
atop one another to create a 3-dimensional product (Figure 4). 3D printing technology
in spine surgery can be used to create models of pathology for pre-operative planning,
individualized pedicle screw guides, and most commonly customized implants [69,70].
There are many techniques for 3D printing with the most common being extrusion printing,
in which a solid starting material is extruded as either a liquid or semi-liquid and then
rapidly cooled. However, orthopedic implants are often printed using powder bed fusion,
in which a thin layer of powdered material is deposited on a platform and an electron
beam is used to fuse the material to form the implant design [70]. While a predominant
amount of the literature on 3D implants utilize titanium, there have been promising reports
of PEEK printed implants [71,72].
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3D printed implants can be separated into two groups: patient specific (PS) and off-
the-shelf (OTS). OTS implants are similar to standard implants but utilize 3D printing
technology to impart a customizable porosity and stiffness [73]. Alternatively, PS implants
are designed using a patient’s pre-operative CT or MRI scans and allow for superior end-
plate matching, as well as customized amounts of lordosis and height [70]. OTS implants
are desirable as they allow for mass manufacturing and thus decreased costs. Current
studies investigating OTS 3D implants have been promising. Mokawem et al. utilized
OTS 3D printed TLIF and LLIF titanium interbodies impregnated with silicate-substituted
calcium phosphate and found solid fusion on CT at one year in 92 of 93 patients [74].
McGilvray et al. found increased fusion mass for OTS 3D printed titanium alloy cages at 16
weeks compared to PEEK and plasma sprayed PEEK in an ovine model [73].

Several case reports of successful implementation of PS implants in the cervical, tho-
racic, and lumbar spine for neoplasia, degenerative disease, infection, congenital anomaly,
and trauma have been published [72,73,75]. One of the greatest theorized benefits of cus-
tomized 3D printed implants is increased endplate-cage contact resulting in decreased
force point-loading. Mobbs et al created a customized ALIF cage and used finite element
analysis to compare pressure loading across the endplate [76]. They found that the custom
implant resulted in a more even distribution of force along the endplate compared to a
generic ALIF implant [76]. In corpectomy surgery, custom printed cages can be created in
concert with planned pedicle screw trajectories to allow for interposition of the posterior
construct with the corpectomy cage. 3D printing technology also allows for the creation of
multilevel cages made to match a corrected sagittal profile for patients undergoing large
corpectomies.
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Custom 3D printed implants have also been successfully used in atlantoaxial fusion.
Phan et al successfully used a 3D printed posterior implant with integrated screw holes
with a predetermined trajectory for a C1–C2 fusion [77]. While there have been no studies
in spine surgery comparing outcomes between OTS and PS implants, there is current
literature in knee arthroplasty suggesting PS implants have been associated with less
intraoperative blood loss and greater patient reported outcome measures when compared
to OTS implants [77]. Further research is warranted to determine if a similar effect is seen
in 3D printed spine implants.

While preliminary reports of 3D printed spinal implants have been promising, this
technology is not without its limitations. 3D printed implants, especially PS implants, are
more expensive than traditional implants, take longer to produce, and require the technical
skills to design and print the final product. As the use of this technology increases, costs
are likely to go down, however, it is uncertain if customized implants will gain traction for
more common cases with standard patient anatomy.

6. Clinical Implications and Future Perspective

As 3D printing continues to generate more sophisticated interbody shapes and ad-
ditive potential, the clinical applicability of 3D cages will continue to broaden. This is
expected to have significant clinical applicability, as augmenting implants on microscales
and nanoscales to improve fusion rates and decrease subsidence are likely to produce better
patient outcomes and satisfaction. Positive in vivo results are a promising first step to
bringing surface modifications to clinical practice, but long-term clinical studies are needed
to ascertain the full clinical implications of these difference surface features on implant
performance. Further prospective clinical studies with longer-term outcomes are needed
comparing OTS to custom 3D implants.

7. Clinical Implications

The purpose of this review was to evaluate the key biological processes that occur
around implants, discuss the role that surface structure plays on osseointegration, and
discuss current literature on custom 3D printed cages and their impact on fusion rates. This
review was deemed necessary due to rapidly evolving methods of augmenting implants
and clinical needs to decrease subsidence and generate quicker fusion rates. Cages afford
excellent load bearing of the vertebral column and height restoration of the intervertebral
space [4]. While they reduce stress on adjacent vertebral bodies, cages do not inherently
provide the stimulus for bone remodeling necessary for fusion [4]. Successful spinal fusion
utilizing interbody implants is dependent on several characteristics, including surface
roughness, material properties, and adequate endplate preparation. Osseointegration relies
on a biologic response of osteoblasts, fibroblasts and integrins to allow for new bone to form
within the interbody. This review demonstrates PEEK implants offer the benefit of better
visualization of fusion on x-ray with less subsidence than titanium implants. The downside
of using PEEK has been the lack of roughness for osseointegration. In the future, 3D printed
PEEK implants may be able to correct this downside with further clinical studies pending.
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