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Simple Summary: Colon cancer is a complex disease with high incidence rates and mortality
worldwide. Although some medical methods have been used for screening, prevention and treatment,
its molecular mechanism is still unclear. Among all dysfunctional factors, the change of mutual
regulation relationship between RNAs is an important factor affecting the development of cancer.
Therefore, the purpose of this study is to find RNAs related to colon cancer that have not been
verified. We used differential expression analysis to screen mRNAs, miRNAs and lncRNAs and
further constructed a heterogeneous interaction network among these three kinds of RNAs. The
network propagation algorithm RW-DIR was then developed to mine the biological information
contained in the network and to identify RNAs closely related to colon cancer. The research results
have provided some theoretical support for disease research and provide a basis for narrowing the
research scope of medical experiments.

Abstract: Colon cancer is considered as a complex disease that consists of metastatic seeding in
early stages. Such disease is not simply caused by the action of a single RNA, but is associated with
disorders of many kinds of RNAs and their regulation relationships. Hence, it is of great significance to
study the complex regulatory roles among mRNAs, miRNAs and lncRNAs for further understanding
the pathogenic mechanism of colon cancer. In this study, we constructed a heterogeneous network
consisting of differentially expressed mRNAs, miRNAs and lncRNAs. This contains three kinds of
vertices and six types of edges. All RNAs were re-divided into three categories, which were “related”,
“irrelevant” and “unlabeled”. They were processed by dynamic excitation restart random walk
(RW-DIR) for identifying colon cancer-related RNAs. Ten RNAs were finally obtained related to colon
cancer, which were hsa-miR-2682-5p, hsa-miR-1277-3p, ANGPTL1, SLC22A18AS, FENDRR, PHLPP2,
hsa-miR-302a-5p, APCDD1, MEX3A and hsa-miR-509-3-5p. Numerical experiments have indicated
that the proposed network construction framework and the following RW-DIR algorithm are effective
for identifying colon cancer-related RNAs, and this kind of analysis framework can also be easily
extended to other diseases, effectively narrowing the scope of biological experimental research.

Keywords: colon cancer; heterogeneous network; random walk; differential expression analysis

1. Introduction

Due to the continuous improvement of medical standards, people’s life expectancy
has increased. Currently, people’s diet has changed greatly and not only leads to higher
incidences of cancer but also to younger individuals with higher incidence. Colon cancer is
a common digestive tract malignant tumor occurring in the colon and about a tenth of all
cancer cases, thus making it among the top three cancers in terms of incidence as well as
mortality [1]. Metastatic seeding of colon cancer often occurs early when carcinoma is clini-
cally undetectable and occurs years before diagnosis and surgery [2]. Although there are
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many effective screening means, a further understanding of its occurrence mechanism will
promote the further development of innovative screening methods, prognostic indicators
and treatment. However, the molecular mechanism of colon cancer formation is still not
completely and clearly elucidated.

There are many discussions about the relationship among mRNAs, miRNAs, lncRNAs
and diseases, because more and more studies show that these RNAs play key roles in
many important biological processes and diseases. The association of mRNAs with cancers
has been widely studied, and evidence has been accumulated, with the exception of the
relationship of mRNAs and other non-coding RNAs. The microRNAs (miRNAs) are
a class of non-coding small RNA molecules encoded by endogenous genes with about
22 nucleotides in length. In animals and plants, it is mainly involved in the regulation of
post-transcriptional gene expression [3]. Benefiting from the regulatory function of miRNAs,
there are many studies using miRNAs in building networks for identifying disease-related
miRNAs, such as the BNPMDA algorithm [4] and NTSMDA algorithm [5]. Long non-
coding RNAs (lncRNAs) are defined as RNAs that are longer than 200 nucleotides and
that are not translated into functional proteins. It has been found that lncRNAs are closely
related to cell cycle, such as differentiation, development, reproduction, aging and many
human diseases [6,7]. With the increasing understanding and attention to lncRNAs, the use
of network modelling to predict their relationship with diseases has also increased in recent
years, such as the GANLDA algorithm [8] and the BPLLDA algorithm [9].

At present, increasing attention has been paid to the data mining algorithms of graphs.
Among them, random walk is a very classic algorithm for mining graph structures, which
has widely been used. Random walk(RW) models have also been applied in various
domains, such as locomotion and the foraging of animals, the dynamics of neuronal
firing and decision-making in the brain, descriptions of financial markets, evolution of
research interests ranking systems, dimension reduction and feature extraction from high-
dimensional data and even sports statistics. RW theory can also help predict the arrival
times of diseases spreading in networks [10].

Many current methods for analyzing RNA interaction networks ignore the heteroge-
neous characteristics of the network. They either only use the interactions between two
types of RNAs, which ignore the interactions within the same type of RNA [11], or do not
treat different types of RNAs (nodes) differently, which render the obtained results in a
state of non-equilibrium. For instance, the label reasoning models often need to calculate
entropy, but they cannot conduct the global random at the same time [12]. To overcome of
this, this study proposes to combine the idea of maximum entropy with a tag inference by
using random walk to identify key RNAs related to colon cancer by considering the overall
property of mRNAs, miRNAs, and lncRNAs in the heterogeneous network. The results of
different types of RNAs were balanced.

To be more specific, this study first proposed to construct a colon cancer-specific RNA
interaction heterogeneous network. The traditional random walk algorithm was then
improved to find and analyze the RNAs related to colon cancer. The details are provided
as follows. Firstly, we constructed a heterogeneous biological network for colon cancer, in
which mRNAs, miRNAs and lncRNAs are the vertices of the network, and the interactions
between every two types of RNAs and within each RNA served as the edges. There were
three types of vertices and six kinds of edges. Then, we designed a random walk transfer
matrix for heterogeneous networks, and labelled all vertices as three categories, namely
“related”, “irrelevant” and “unlabeled”, according to whether the vertices are related to
colon cancer. Applying the idea of traditional random walk, different measures were
taken for different category vertices encountered in the process of walking so as to achieve
the purpose of classifying the “unlabeled” RNAs. Figure 1 indicates the processes of
identifying colon cancer-related RNAs in this study, where part A is the process of building
the heterogeneous network, and part B is the process of RW-DIR.



Biology 2022, 11, 1003 3 of 14

RNA

Expression Data

DE mRNA

DE miRNA

DE lncRNA

Differential

expression!analysis

mRNA-miRNA    mRNA-mRNA

mRNA-lncRNA   miRNA-miRNA

miRNA-lncRNA  lncRNA-lncRNA

3 categories "#!$"%&'

6 categories of edges

Construct a

Heterogeneous network

“related” RNAs

“irrelevant” RNAs

“unlabeled” RNAs

RW-DIR

Transition matrix for

heterogeneous network

Random Walk

Labeled RNAs

A

B

mRNA-miRNA-lncRNA

Interaction network

Top 10 colon cancer related

“unlabeled” RNAs

1. has-miR-2682-5p  (miRNA)

2. has-miR-1277-3p  (miRNA)  

3. ANGPTL1               (mRNA)

4. SLC22A18AS         (mRNA)

5. FENDRR               (lncRNA)

6. PHLPP2                 (mRNA)

7. has-miR-302a-5p  (miRNA)

8. APCDD1                 (mRNA)

9. MEX3A                   (mRNA)

10.has-miR-509-3-5p (miRNA)

Figure 1. This is the workflow of this study. (A) Construct the mRNA-miRNA-lncRNA interaction
network. (B) RW-DIR algorithm was applied to obtain the results of colon cancer-related RNAs.

2. Materials and Methods
2.1. RNA Expression Data

In this study, mRNA expression data, miRNA expression data, lncRNA expression
data and clinical data were collected from the open-access dataset of The Cancer Genome
Atlas (TCGA) database [13]. The project ID was “TCGA-COAD”.

For mRNA and lncRNA expression data, the experimental strategy we downloaded was
“RNA-Seq”, the data type was “Gene Expression Quantification”, and the data category was
“transcriptome profiling”. The data from the Ensemble database [14] annotated the type of
all RNAs in the gene expression data, and it was downloaded from TCGA. In this study, we
selected “protein-coding gene” and “lncRNA” as mRNA and lncRNA for subsequent analysis.

For miRNA, the data type we downloaded was “Isoform Expression Quantification”,
the workflow type was “BCGSC miRNA Profiling”, and the data category was “Transcrip-
tome Profiling”.

The clinical data of colon cancer were also obtained from TCGA. The original clinical
data contained a variety of clinical information items of the samples, and only the informa-
tion about sample ID and cancer stage was selected. The sample ID was used to map the
RNA expression data of the particular sample, and the information of the cancer stage was
used to distinguish whether the samples were cancerous or paracancerous tissue; the latter
will be used as normal samples.

2.2. The Relationship of RNAs

The connection in this study could divide into two categories. One was the connection
between different kinds of RNA, and the other was the connection within the same type
of RNA. The relationship and data source databases are shown in Table 1. The relation-
ships between “miRNA-miRNA” and “lncRNA-lncRNA” are obtained by the Deepwalk
algorithm [15], and their respective associations are related to their target genes.
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Table 1. RNA association and interaction database.

Types of RNA Associations Database

mRNA-miRNA multiMiR [16]
mRNA-lncRNA starbase V3.0 [17]
miRNA-lncRNA LncBase V2.0 [18]
mRNA-mRNA STRING [19]

2.3. Classification of RNA

The mRNAs, miRNAs, and lncRNAs that are related to colon cancer and are verified by
experiments were obtained from the databases shown in Table 2. We selected known colon
cancer-related RNAs as RNAs with “related” labels and randomly selected an equal amount
of RNAs that related to other diseases and excluded colon cancer-related RNAs as RNAs
with an “irrelevant” label. The remaining vertices were marked with the “unlabeled” label.

Table 2. Colon cancer-related RNAs and database.

Types of RNA Database

mRNA Comparative Toxicogenomics Database [20]
miRNA miR2disease [21]
lncRNA LncRNADisease [22]

2.4. Data Preprocessing

Since deeper sequencing always produces more sequence fragments, in differential
expression analysis, the row counts were rarely used directly. In practice, the counts are
usually normalized to eliminate sequencing differences due to sequencing depth. The
log-CPM normalization method was used in this study.

The R package edgeR [23] was used for data preprocessing. In all datasets, there would
be a mixture of expressed genes and non-expressed genes. Reducing these noises would
not only significantly improve the accuracy of statistical inferences from RNA-seq but also
allow mathematical models in the data to be more accurately estimated and reduce the
amount of RNA analyzed downstream; thus, this study used the “filterByExpr” function in
edgeR package to filter RNAs with low expression counts [24]. For each group of data,
the TMM (Trimmed Mean of M-values) [25] algorithm was also considered to ensure that
each sample has a similar distribution of expression data. After the data preprocessing, the
number of three RNAs and the number of samples in their respective datasets are shown
in Table 3.

Table 3. Edge Information in Heterogeneous Networks.

Type of RNA Number of RNA Number of Normal
Samples

Number of Tumor
Samples

mRNA 116591 41 443
miRNA 302 8 444
lncRNA 1526 41 443

2.5. Differential Expression Analysis

Differential expression analysis [23] refers to obtaining normalized read count data
and performing statistical analysis to discover quantitative changes in expression levels
between experimental groups. There were two main parameters for using this method to
screen differentially expressed RNAs: one is |logFC| and the other one is the p-value.

In this study, the exact test method that is based on the negative binomial distribution
in R package. EdgeR was used to identify differentially expressed RNAs. The threshold
selection of the three differentially expressed RNAs was different. Specifically, the mRNA
that had p-value < 0.05 and |logFC| ≥ 2 could be chosen as the differentially expressed
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(DE) mRNA; the miRNA that had p-value < 0.05 and |logFC| ≥ 2 could be chosen as the
DE miRNA; the lncRNA that had p-value < 0.05 and |logFC| ≥ 1 could be chosen as the DE
lncRNA. Finally, 1372 DE mRNAs, 175 DE miRNAs and 137 DE lncRNAs were obtained in
this study.

2.6. Construct Heterogeneous Network

This study was based on the exploration of the complex regulatory relationship among
mRNAs, miRNAs and lncRNAs. Therefore, a heterogeneous network was first constructed
to express the relationship among the three in the form of a network for subsequent data
mining. The heterogeneous network was shown in Figure 2. In this study, this network
was defined as G(V,E), where V represents all vertices and E represents all edges. The
adjacency matrix H can be obtained by assigning a value of 1 if there was an edge between
two vertices, and it is 0 otherwise.

Figure 2. The heterogeneous network of RNA interactions. Orange vertices are mRNAs, pink vertices
are miRNAs, and blue vertices are lncRNAs. The grey edges represent the connection within the
same kind of RNAs, the yellow edges represent the relationship between mRNA and lncRNA, the
green edges represent the relationship between mRNA and miRNA, and the purple edges represent
the relationship between miRNA and lncRNA.

2.7. RW-DIR

Similarly to traditional random walk, RW-DIR required a transition matrix [26] for the
subsequent walk in the network, but the transition matrix in this study was designed based
on heterogeneous networks. A diagram of the calculation method is shown in Figure 3.
In the figure, s represents the number of mRNAs, m represents the number of miRNAs, n
represents the number of lncRNAs, and h represents the number of all RNAs. Obviously,
h equals to the sum of s, m, and n. Three parameters, λ, δ and θ, are used to adjust the
transition probability of different types of RNAs. The λ is the transfer parameter between
mRNA and miRNA, the δ is the transfer parameter between mRNA and lncRNA, and the θ
is the transfer parameter between miRNA and lncRNA. Specifically, we have the following.

λ = |mRNA−miRNA|/(|mRNA−mRNA|+ |miRNA−miRNA|) (1)

δ = |mRNA− lncRNA|/(|mRNA−mRNA|+ |lncRNA− lncRNA|) (2)

θ = |miRNA− lncRNA|/(|miRNA−miRNA|+ |lncRNA− lncRNA|) (3)
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The method to calculate transition matrix W is written as Equation (4):

W(i, j) = X · H(i, j)

∑b
k=a H(i, k)

, (4)

where X = {x | x ∈ {A, (1− A− B)}, A 6= B}}, {A, B} ∈ {λ, δ, θ}, {i, j} ∈ {{1, . . . , s}, {s+
1, . . . , s + m}, {s + m + 1, . . . , h}}, a ∈ {1, s + 1, s + m + 1} and b ∈ {s, s + m, h}. The
selection of parameter X, a and b could be more intuitive according to the Figure 3. Since H
was comprised 9 sub-matrices, the sub-matrices should be calculated separately.

1 - λ - δ  

1 - λ - θ

1 - θ - δ

λ

θ

δ

δ

λ

θ

m

s

n

s

m

n

mRNA-mRNA mRNA-miR mRNA-lncR

lncR-mRNA

miR-mRNA miR-miR miR-lncR

lncR-miR lncR-lncR

!

!

Figure 3. This is a diagram of the transition matrix calculation. Nine sub-matrices form a complete
transition matrix. λ is the transfer parameter between mRNA and miRNA, δ is the transfer parameter
between mRNA and lncRNA, and θ is the transfer parameter between miRNA and lncRNA. The
transfer parameters in each small square correspond to the parameters that could be used to calculate
the percentage of summarized weight corresponding to the sub-transition matrix.

Random walk is a discrete-time Markov process where a walker located at vertex i
at a certain moment will jump to adjacent vertex j at the next moment with probability
W(i, j). This jump is independent to the past. Before exhibiting random walk with dynamic
incentive restart (RW-DIR), we introduced the random walk with restart (RWR) method [27]
first. The difference between RWR and traditional random walk is that there is a certain
probability of returning to the starting point after each step of walking. In RWR, based on
the transition matrix W and the hopping process P(t + 1) = αWP(t) + (1− α)P(0), where
P(t) is a vector that represents the probability of walker at all vertex at time t, and P(t) will
converge, which means RWR will reach a stationary distribution.

Next, we would introduce RW-DIR. The vertices in the studied heterogeneous network
have certain prior knowledge about colon cancer; thus, we considered that in the process
of walking. Different measures should be taken for vertices with different labels such that
the reliable colon cancer-related vertices can be finally obtained. The specific algorithm
process is defined in Algorithm 1. In the initial round of the algorithm, we assigned
the value of 1 in P0 to the colon cancer-related RNA with the largest degree, and the
rest was 0. In each round of the algorithm, judging which vertices the current round
walks to was based on whether there were any changes in P(t) compared with P(t− 1).
Considering that the random walk process could spread the information of labelled RNAs,
we used known knowledge for random walk and information dissemination. We inflated
the effect of the “related” vertex, which was gradually added to P0. It enhanced its global
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influence in the process of repeatedly restarting. We shrunk the effect of the “irrelevant”
vertex, which included adding a penalty value to the “irrelevant” vertex in each iteration to
make it smaller; this would reduce their impact of the global process. For the “unlabeled”
vertex, we referred to the idea of maximum entropy by calculating the entropy value of
each vertex after each iteration, and the inference result of the vertex with the largest
entropy value represented the highest uncertainty. The transition probability matrix W
is recalculated according to the entropy value in each round iteration. The larger the
entropy value, the larger transition probability matrix value of the vertex. It should be
noted that the calculation of entropy needs to be started after walking to the global process;
that is, the calculation of the transfer matrix also needs to wait until the process of walking
to all vertices. It would help the vertex with the “unlabeled” result in collecting more
information for further inferences.

Algorithm 1 Random Walk with Dynamic Incentive Restart (RW-DIR)
Input: transition matrix W, initial P0, “related” label vertices set Vr, “irrelevant”

label vertices set Vi, unlabeled vertex set Vu.
Output: The label weight set m(vi) of vertex vi ∈ Vu

1 repeat
2 Comparing P(t) with P(t−1), the vertex whose value has changed is the vertex

that the t-th round traveled to, denoted as Vneighbor;
3 Vrn = {vi | vi ∈ Vr ∩Vneighbor}, Vin = {vi | vi ∈ Vi ∩Vneighbor}, Vun = {vi | vi ∈

Vu ∩Vneighbor}.
4 for vi ∈ Vrn do
5 P0(vi)← initial value 0.1 ; // vi is a vertex with "related" label
6 Pt+1 ← αWPt + (1-α)P0 ;
7 end
8 for vi ∈ Vin do
9 P′t+1 ← αWPt + (1-α)P0 ; // vi is a vertex with "irrelevant" label

10 P′t+1[index(vi)]← P′t+1[index(vi)] ×
1

degree(vi)
;

11 Pt+1 ← P′t+1 ;
12 end
13 for vi ∈ Vun do
14 calculate E(vi) ; // vi is an unlabeled node
15 for vi ∈ Vun do
16 update W ; // update transition matrix by entropy
17 calculate m(vi, vj)

18 end
19 calculate m(vi) ; // score two types of labels for vertex vi
20 end
21 until P(t) Converge;

The entropy value E(vj) of the vertex vj can be calculated by Equation (5), where
mk(vi) represents the possibility that vertex vi belonged to label k. In this study, we set
k = 1 represent the “related” vertex, and k = 2 represent the “irrelevant” vertex. When the
E(vi) value of vertex vi is calculated for the first time (the tth round walk), where vi was
the “unlabeled” vertex, we obtain initial m1(vi) = h−ascending rank o f Pt [index(vi)]

h , and m2(vi) =
1−m1(vi). For “related” vertex vr, we set m1(vr) = 1 and m2(vr) = 0. For “irrelevant” vertex
vl , we set m2(vl) = 1 and m1(vl) = 0.

E(vi) = −
2

∑
k=1

mk(vi)log2mk(vi), (5)
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When the random walk process had covered the entire network (in the tth round
walk), transition matrix W needed to be updated according to the entropy value of E by
Equation (6), where vj represented all neighbor vertices of vi, including vi.

W(vi, vj) =
E(vi)

∑vj∈N+(vi)
E(vj)

, (6)

After that, it was necessary to update and calculate the probability that each vertex
belonged to each label. As shown in Equation (7), mk(vi, vj) represented the probability
that label k propagated from vertex vi to vertex vj, which could be used to further calculate
the probability of vertex vi with label k, i.e., mk(vi), in Equation (8).

mk(vi, vj) = mk(vi)×Wvi ,vj , (7)

mk(vi) =
∑vj∈N−(vi)

mk(vi, vj)

∑2
k=1 ∑vj∈N−(vi)

mk(vi, vj)
, (8)

In summary, at the beginning of the algorithm, we started the RW-DIR algorithm with
one known colon cancer-related vertex. In the subsequent iterative process of the walker,
compared to the previous round, we classified the type of vertices that had been “walked”.
If it was a “related” vertex that has never been reached before, it would be added to P0
and assigned a value of 0.1. If it was an “irrelevant” label, add a penalty value to Pt; that
is, we divide it by its degree. If the walker “walked” to vertices with no label, its entropy
value would be calculated, and the transition matrix should be updated by the entropy
value. Finally, the algorithm would stop after Pt convergence. The m1 sorting result of the
unlabeled vertex will be used as an indicator for screening colon cancer-related RNAs.

3. Results
3.1. The Heterogeneous Network

The relationships of “miRNA-miRNA” and “lncRNA-lncRNA” were obtained by
constructing the interaction network of their respective target genes and then applying
the Deepwalk algorithm. After applied the Deepwalk algorithm in miRNA-target genes
interaction networks, we obtained 273,431 edges and 740 miRNA vertices. Moreover, the
miRNA-target gene database was miRtarbase. The DE miRNAs obtained in this study
were screened out; finally, the miRNA functional similarity network had 81 vertices and
389 edges, which was shown in the pink circle part in Figure 2. We also applied the
Deepwalk algorithm in the lncRNA-target genes interaction network. The lncRNA-target
gene database was starBase, and the relationship of “lncRNA-target” was screened with
a threshold greater than 0.5; we obtained 63,546 edges and 357 lncRNA vertices. In this
study, we set the edge weight of the threshold value to be greater than 0.9 in the network
and selected DE lncRNAs. Finally, we obtained 65 lncRNA vertices and 604 edges, which
are shown in the blue circle in Figure 2.

The RNA interaction heterogeneous network constructed in this study had 1521 ver-
tices and 9651 edges, as shown in Figure 2. Among them, the number of mRNA vertices
was 1340, the number of miRNA vertices was 80, and the number of lncRNA vertices was
101. The edge’s information is shown in Table 4.
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Table 4. Edge Information in Heterogeneous Networks.

Type of Edge Number of Node Number of Edge

mRNA-mRNA 1300 (mRNA) 7408
miRNA- miRNA 81 (miRNA) 389
lncRNA-lncRNA 389 (lncRNA) 604
mRNA-miRNA 56 (mRNA) - 326(miRNA) 569
mRNA-lncRNA 33 (mRNA) - 70(lncRNA) 94
miRNA-lncRNA 99 (miRNA) - 57(lncRNA) 587

3.2. The Result of RW-DIR

We selected the top 10 RNAs in descending order with respect to the m1 value as
candidate colon cancer-related RNAs, where m1 represented the probability that the vertex
was classified as colon cancer-related RNAs. These RNAs were hsa-miR-2682-5p, hsa-miR-
1277-3p, ANGPTL1, SLC22A18AS, FENDRR, PHLPP2, hsa-miR-302a-5p, APCDD1, MEX3A
and hsa-miR-509-3-5p. Among them, FENDRR is lncRNA; hsa-miR-2682-5p, hsa-miR-
1277-3p, hsa-miR-302a-5p and hsa-miR-509-3-5p are miRNAs; ANGPTL1, SLC22A18AS,
PHLPP2, APCDD1 and MEX3A are mRNAs.

3.2.1. Colon Cancer Related mRNAs

ANGPTL is a family of proteins similar to angiopoietins. They affect angiogenesis,
inflammation, metabolic disturbances, hematopoiesis, and cancer development. Studies
have shown that ANGPTL1 can act as an anti-angiogenic factor and a tumor suppressor [28].
ANGPTL1 has been reported to suppress migration and invasion in lung, breast and
colorectal cancer, acting as a novel tumor suppressor candidate [29]. For SLC22A18AS,
high expression levels are significantly associated with worsening disease progression.
In addition, low levels of SLC22A18AS are also correlated with better overall survival for
lung adenocarcinoma patients [30]. For PHLPP2, maintaining balanced PHLPP2 expression
levels is critical for disease prevention, as changes in steady-state levels of PHLPP2 are
associated with many diseases, including diabetes, hepatic steatosis, and cancer. Recently,
many studies have shown that the expression of PHLPP2 is universally absent in a variety
of cancers and plays a key role in a wide range of biological processes, including cancer
cell proliferation, metastasis, autophagy and apoptosis [31]. For APCDD1, there is a study
that suggested that APCDD1 regulated breast cancer progression by targeting canonical
WNT signaling and modulating breast cancer cell invasion [32]. For MEX3A, it may
promote glioma development by regulating cell proliferation, cell apoptosis, cell cycle
and cell migration, and MEX3A has been identified as a potential tumor promoter in
glioma development and therapeutic target in glioma treatment [33]. Taken together,
these mRNAs are all related to the survival process of cells and play important roles in
some cancers.

3.2.2. Colon Cancer Related miRNAs

Hsa-miR-2682-5p and hsa-miR-1277-3p are the top two results. The neighbor ver-
tices of hsa-miR-2682-5p and hsa-miR-1277-3p in the heterogeneous network, which were
constructed in this study, were all “related” vertices. For hsa-miR-2682-5p, the study has
suggested that miR-2682-5p promotes cell proliferation and migration in oral squamous
cell carcinoma, and its target mRNA and lncRNA in this study were all known colon cancer-
related RNAs [34]. For hsa-miR-302a-5p, some studies showed that the miR-302 family,
which includes miR-302b, miR-302c, and miR-302d, exerts antitumor effects in several can-
cers, such as endometrial carcinoma, glioma and breast cancer. MiR-302a has been shown
to function as a tumor suppressor by regulating diverse cellular functions [35]. For example,
HMGA2 has been implicated as a driver of tumor metastasis; however, hsa-miR-302a-5p
is the powerful post-transcriptional regulator of HMGA2 [36]. For hsa-miR-509-3-5p, the
decreased expression of miR-509-3-5P promoted the colony, migration and invasion abili-
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ties of gastric cancer cells in vitro as well as tumorigenesis and lymph vertex metastasis
in vivo [37]. In summary, the regulation of miRNAs on cancer is generally reflected in the
regulation of their target genes. The four candidate colon cancer-related miRNAs obtained
in this study were basically closely related to the occurrence of some common cancers, and
their relationship with colon cancer deserves further study.

3.2.3. Colon Cancer Related lncRNAs

Table 5 has summarized the top 10 RNAs and related diseases. We can see from the
table that FENDRR is the only lncRNA among the top 10 candidate colon cancer-related
RNAs. Studies have shown that the low expression of the FENDRR occurs in gastric
cancer and is associated with poor prognosis; thus, FENDRR plays an important role in
the progression and metastasis of gastric cancer [38]. FENDRR is expressed in a variety
of cancers and is significantly associated with different clinical features. Furthermore,
FENDRR has shown potential as a biomarker for cancer diagnosis, prognosis and treatment.
Therefore, FENDRR is a potential candidate lncRNA for studying colon cancer-related
RNAs [39].

Table 5. Top 10 RNAs and Related Diseases.

Top 10 RNAs Number of RNA Related Diseases

hsa-miR-2682-5p miRNA Oral squamous cell carcinoma
hsa-miR-1277-3p miRNA /

ANGPTL1 mRNA Lung cancer, breast cancer,
colorectal cancer

SLC22A18AS mRNA Lung adenocarcinoma

FENDRR lncRNA
Gastric cancer, lung cancer,
hepatocellular carcinoma

(HCC), gastric cancer

PHLPP2 mRNA Diabetes, hepatic steatosis,
and cancer

hsa-miR-302a-5p miRNA Endometrial carcinoma,
glioma and breast cancer

APCDD1 mRNA Breast cancer
MEX3A mRNA Glioma

hsa-miR-509-3-5p miRNA Gastric cancer

3.3. Performance of RW-DIR

In this study, the ROC curve was used to visually display the classification performance
of the algorithm, and the AUC value was used to measure the classification ability of the
algorithm [40]. In this study, we used LOO-CV(Leave-One-Out Cross-Validation) to test
the performance of RW-DIR. Specifically, we placed one “related” vertex into “unlabeled”
vertices each time and tested its m1 value. Equal amounts of RNAs were randomly selected
from the candidate RNAs related to other cancers, with the exception of colon cancer as
negative samples, and checked their m1 value. After the results were obtained, the ROC
diagram was made, as shown in Figure 4, in which the color of the curve is red, and AUC
is 0.8212.

We also evaluated the performance of the traditional restart random walk (TRWR)
algorithm [27] on heterogeneous networks with a traditional transition matrix and the
performance of the RW-DIR algorithm without using entropy. In detail, the process of
using TRWR algorithm on the RNA interaction heterogeneous network was as follows:
first, in order to obtained the relationship between “unlabeled” RNAs and “related” RNAs,
the “related” vertices in P0 all were assigned a value of 0.1, and the transition matrix was
calculated according to the degree of the vertex that needed to meet the standardization
rules of the transition matrix; finally, walker can walk according to Equation (6) until
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convergence. The leave-one-out method was used during testing and the ROC diagram is
shown in Figure 4, and the color of its curve is blue.

Pt+1 = αWPt + (1− α)P0 . (9)

The yellow curve in Figure 4 referred to the method that lacked the part of entropy in
RW-DIR (lack of processing for “unlabeled” nodes). Specifically, the idea of not considering
maximum entropy was to only consider RNAs that are known to be associated with colon
cancer, and we only expand or shrink these vertices at this time, and perform nothing else
for the “unlabeled” vertex. We also performed the leave-one-out to test the performance of
the method.

False positive rate
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Figure 4. The prediction performance for prioritizing colon cancer causal RNAs. The ROC curves
illustrating the performance in distinguishing “related” label RNAs from “irrelevant” label RNAs.
Red curve represented RW-DIR; the blue curve represented TRWR, which was directly used on the
basis of the heterogeneous network that is constructed in this study; the yellow curve represented
RW-DIR without entropy.

It can be seen from the results that designing a transfer matrix for heterogeneous
networks is very necessary for the network’s propagation algorithm, which can try to avoid
the deviation of the results caused by the difference in the number of different types of
vertices or edges. For the three types of RNAs, the number of mRNAs was far greater than
that of miRNAs and lncRNAs, and the number of edges in different subnetworks was also
very different. On the other hand, it was reasonable to use the idea of maximum entropy for
final RNA screening. If only the walk probability (Pt) ranking was used as the final result,
the aggregation or dispersion of vertices will be ignored, and the results were average,
while in this study, the m1 value was used as the parameter for the final comparison, which
was obtained by aggregating the information of the global vertices and not the score that
transferred from the rank of Pt. Comparing the AUC values of the three methods, it could
be seen that RW-DIR performed the best, and RWR performed poorly.

4. Discussion

Colon cancer has become the third most common cancer in the world. In recent years,
the characteristics of its younger patient population, urbanization and easy metastasis in
the early stage have attracted our attention. At present, its molecular mechanism is still
unclear. Cancer-related RNAs are the key to targeted therapy. Therefore, this study is
committed to find mRNAs, miRNAs and lncRNAs that are closely related to colon cancer.
Based on RNA expression data, we analyzed and mined it at the data level and topology
level in order to obtain relevant results and applied them to medical experiments, provide
data evidence and narrow the research scope of medical experiments.
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In this study, we started with RNA expression data and conducted differential ex-
pression analysis to obtain DEmRNA, DEmiRNA and DElncRNA. Combined with the
RNA interaction database and the graph-embedding method, the heterogeneous network
of mRNA-miRNA-lncRNA interaction was constructed. On this basis, we designed an
innovative network propagation and data mining algorithm. The main idea is to treat the
vertices with different types and labels differently, and finally, we obtained the relevant
RNAs that are most related to colon cancer but not confirmed by research. We obtained
the top ten unproven RNAs associated with colon cancer. They are hsa-miR-2682-5p, hsa-
miR-1277-3p, ANGPTL1, SLC22A18AS, FENDRR, PHLPP2, hsa-miR-302a-5p, APCDD1,
MEX3A and hsa-miR-509-3-5p. Moreover, most of them have a certain inhibitory effect on
the development of other types of cancer, and some can even be used as biomarkers.

For miRNAs in the results, there was increasing evidence that indicated that hsa-miR-
2682-5p acted as a tumor suppressor in various cancers, such as non-small cell lung cancer
(NSCLC) and Pancreatic cancer (PC) [41,42]; hsa-miR-302a-5p also suppresses proliferation
and invasion in NSCLC [35], and hsa-miR-509-3-5p can suppress lung cancer by inhibiting
the proliferation and migration of lung cancer cells [37]. The first two are regulated by
targeting mRNA, while the last one regulates cancer cells through the relationship with
lncRNA, which also showed that the competitive and cooperative relationship between
different RNAs was close and further strengthens the possibility that the experimental
results are likely to be related to colon cancer. For the mRNA results obtained in the study,
we found that the mRNA of the top four has been experimentally verified, and when it is
highly expressed in other types of cancer, it has positive significance for the development
and prognosis of cancer. The top four mRNAs are ANGPTL1, SLC22A18AS, PHLPP2 and
APCDD1. They have proved that they could inhibit the proliferation and metastasis of
cancer cells in many other cancers, such as lung cancer, breast cancer and colon cancer.
The last ranked mRNA, MEX3A [33], is a promoter for glioma and a therapeutic target in
the treatment of glioma.

The model constructed in this study needs to be supported by a large number of
databases. For some diseases, the amount of data may not be large enough, resulting
in inaccurate results in data mining. However, at present, the cancer-related databases
are relatively complete, and the information about RNA is relatively perfect. Therefore,
most common cancers can find relevant mRNA, miRNA and lncRNA by this method.
Moreover, the current RNA interaction network was built on the basis of differentially
expressed RNA, and some cancer-related RNAs had not been screened by differential
expression analysis. In addition, there are still some problems in using machine learning
and other computing methods to identify cancer-related RNAs, such as little data quantity,
unbalanced sample data, and difficult modeling. Moreover, it still requires follow-up
biological experiments for further verification. Therefore, it is necessary to find a better
method to screen the vertices of the interaction network in the future.

The network topology model and global heterogeneous network analysis algorithm
proposed in this study provided new inspiration and ideas for finding RNA related to
colon cancer and other diseases. Although there were some limitations in the data, they
still did not affect the reliability of the final result.

5. Conclusions

Colon cancer is a complex disease with a high incidence rate and high mortality.
Although there are certain medical methods for its prevention and treatment, its molecular
mechanism has not been clear. The complex regulation between RNAs is an important cause
of cancer. Therefore, the purpose of this study is to find RNA related to colon cancer that
has not been verified. We used the regulatory relationship between mRNA, miRNA and
lncRNA screened by differential expression analysis to construct a heterogeneous network,
and then we analyzed its topological characteristics and used the RW-DIR method to find
RNAs that are closely related to colon cancer. The results can provide some theoretical
support for disease research and provide a basis for medical experiments.
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