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Abstract: Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection
has become one of the most important techniques for monitoring its levels in the aqueous solutions
associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified
with molybdenum selenide/reduced graphene oxide (MoSe2/rGO) was fabricated for in situ
determination of bisphenol A in several beverages. The surface area of the electrode dramatically
increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe2. Adding
phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and
reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear
range of BPA was from 0.1 µM–100 µM and the detection limit was 0.015 µM (S/N = 3). When
using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments,
the recoveries ranged from 98–107%, and the concentrations were from below the detection limit to
1.7 µM, indicating its potential prospect for routine analysis of BPA.

Keywords: electrochemical sensor; molybdenum selenide; reduced graphene oxide; bisphenol A;
beverage

1. Introduction

Bisphenol A (BPA), an endocrine-disrupting chemical (EDC) [1], has been of great concern
as a result of its adverse physiological effects and frequent detections in various environmental
mediums [2–4]. Since BPA has been widely used for the production of cups and packing materials [5–7],
its migration from storage or packaging material to food or beverage [8] has been proposed as one of
the important exposure pathways for human beings. The European Food Safety Authority (EFSA) has
established a temporary Tolerable Daily Intake (t-TDI) of 4 µg/kg b.w./day for BPA [9]. Therefore,
BPA usage in some infant food packages and bottles has been banned by legislation [10].

To monitor the environmental levels, behaviors and fate of BPA, many methods, such as
capillary electrophoresis [11], gas chromatography coupled with mass spectrometry (GC-MS) [12],
high performance liquid chromatography mass spectrometry (HPLC-MS) [13], enzyme linked immune
sorbent assay (ELISA) [14], electrochemical methods [15,16], etc., have been developed. Combined with
pretreatment procedures of solid-phase extraction [17], liquid-liquid extraction [18] and immunoaffinity
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chromatography [19], GC-MS, HPLC-MS and ELISA can be used for selectively and sensitively
determining BPA in complex matrices [20,21]. However, the complementary pretreatments and
expensive equipment have restricted their application.

Electrochemical methods are some of the preferable techniques for routine analysis of some
chemical compounds owing to the inherent advantages of the low cost of the instrument, ease of
preparation, high sensitivity, simplicity for operators and in situ monitoring [22]. To improve the
response signals of substances, a series of modified electrodes has been developed. For example,
electrodes based on graphene nanomaterials present excellent electric conductivity, as well as chemical
and thermal stability [23,24]. Electrodes modified with molybdenum-selenide (MoSe2) show very
good sensitivity as a result of increasing the surface active sites [25,26].

MoSe2/graphene composites are proposed as useful materials for fabricating electrochemical
sensors and biosensors due to their excellent physical and chemical properties of large surface
and better conductivity [27]. In this paper, a novel electrochemical sensor based on molybdenum
selenide/reduced graphene oxide (MoSe2/rGO) nanocomposites has been developed for in situ
determination of BPA in beverages. The performance of the electrode has been evaluated by analyzing
BPA in some commercial beverages without any pretreatments or purification.

2. Experimental

2.1. Reagents and Materials

BPA, phosphotungstic acid (H3[PW12O4], PTA), graphite powders, Se powder, sodium molybdate,
sodium hydroxide (NaOH), potassium permanganate (KMnO4), sulfuric acid (H2SO4, 98%), sodium
nitrate (NaNO3) and phosphoric acid (H3PO4) were purchased from Sinopharm Group Chemical
Regent Co. Ltd. (Shanghai, China). BPA was dissolved in ethanol and kept at 4 ◦C. PTA (1 mM) and
phosphate buffer solution (PBS, 1 M, pH = 6.5) were used as reduced and supporting electrolytes. All
chemicals used were at least analytical grade. Ultrapure water (18.2 MΩ·cm, obtained by Milli-Q Water
Purification System, Billerica, MA, USA) was used for preparing all buffers and standard solutions.

2.2. Instruments

All cyclic voltammetry (CV) measurements were performed using a CHI660E electrochemical
workstation (Chenhua Instruments, Shanghai, China) with a conventional three-electrode system.
A glassy carbon electrode (GCE) was used as the working electrode, with an Ag/AgCl electrode and a
platinum wire electrode as the reference electrode and counter-electrode, respectively. Measurements
of pH were carried out by a Mettler Toledo Delta 320 pH meter (Shanghai, China). The morphologies
of materials and electrodes were obtained using transmission electron microscopy (TEM) (Hitachi
H-7650, Hitachi High-Technologies Corporation, Japan). The X-ray diffraction (XRD) of the samples
was carried out using Bruker XRD (Bruker D8 advance Diffracto meter, Bruker Germany).

2.3. Preparation of MoSe2/rGO Composite

The MoSe2 nanoparticles (NPs) were synthesized by the hydrothermal method [28]. Briefly,
Se solution (5 mL, 0.4 M in hydrazine hydrate) was added dropwise to sodium molybdate solution
(50 mL, 0.02 M). The mixture was transferred into a 100 mL Teflon-lined autoclave and heated at 180 ◦C
for 48 h. The black MoSe2 nanoparticles were obtained after washing with distilled water and drying
in a vacuum. The graphite oxide (GO) was prepared according to previous reports [29].

The preparation of the MoSe2/rGO was completed as below. The synthesized MoSe2 nanoparticles
(0.5 mL, 1 mg/mL in water) were mixed with GO (10 mL, 1 mg/mL in water) and stirred for 2 h.
MoSe2/GO (5 µL) was cast onto the pre-polished and cleaned GCE surface and dried naturally. Then,
MoSe2/rGO nanoparticle films were prepared on the GCE surface by the electrochemical reduction
process. The electrolytes were phosphate buffer solutions. The reduced potential was −1.2 V, and the
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time was 120 s, respectively. A similar procedure was also used to fabricate modified electrodes of
MoSe2 NPs/GCE and rGO/GCE.

2.4. Analysis of Real Sample

Coffee, soybean milk powder, prepared juice, liquid milk and orange juice samples obtained
from a local supermarket were used for evaluating the performance of the prepared electrode. Liquid
samples of liquid milk and orange juice were directly mixed with PBS solution for analysis without
any pretreatment. For coffee, soybean milk powder and prepared juice, certain amounts (2.5 g) of
these solid samples were firstly mixed with 25 mL ultrapure water in plastic bottle and then heated
to 100 ◦C for 1 h. Finally, the obtained solutions were cooled to room temperature (25 ◦C) for further
analysis after spiking with BPA standard solutions.

3. Results and Discussion

3.1. Characterization of Electrode Materials

The TEM images showed that MoSe2 nanoparticles possess flower-like structures being composed
of ultra-thin nanosheets, and their diameters were about 200 nm (Figure 1A). In the MoSe2/GO
composites, it was obvious that the layered MoSe2 nanosheets have been well wrapped in the thin
graphene film (Figure 1B). The characteristic diffraction peaks were indexed to (002), (100) and (110)
planes from the XRD pattern of MoSe2/rGO composites corresponding to that of rGO and monoclinic
MoSe2 nanoparticles (JCPDS: 77-1715), indicating the successful combination of MoSe2 and rGO.
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Figure 1. Characterization of the prepared electrode materials. (A) TEM images of MoSe2 nanoparticles;
(B) TEM images of the MoSe2/rGO composite; and (C) XRD spectrum of the rGO, MoSe2 and
MoSe2/rGO composite.

3.2. Enhanced Electrochemical Properties of MoSe2/rGO/GCE

Cyclic voltammogram (CV) were employed to study the electrochemical properties of the bare
GCE and modified electrode (Figure S1) in 5 mM K3[Fe(CN)6]3−/4− solution (containing 0.1 M KCl).
The electrochemical response of the ferricyanide probe was a reversible process. At a scan rate of
100 mV/s, the pairs of redox peak currents of bare GCE, rGO/GCE and MoSe2/rGO/GCE were 6.3 µA,
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15.6 µA and 39.7 µA, respectively. The higher redox current responses of MoSe2/rGO/GCE than the
bare GCE and rGO/GCE could be attributed to its larger surface area due to the introduction of the
hierarchy structures of MoSe2 nanoparticles. The better electron transfer resulting from rGO also led
to the smaller peak-to-peak potential separation (∆Ep) value of the MoSe2/rGO/GCE (0.089 V).

PTA is proposed as a recommend substance for improving the sensitivity, stability and
repeatability of the electrodes [30]. Here, its contribution to the oxidation peak of BPA has also
been evaluated. In the detection system, the electrolyte was composed of 1 mL PTA (0.1 mM), 1 mL
BPA (0.01 mM), 1 mL PBS (1 M, pH = 6.5) and 7 mL H2O. Such a low level of PTA had no effect
on the pH value of the electrolyte adjusted by PBS. In the absence of PTA, the cyclic voltammetric
was carried out in the potential range of −0.2 V–0.8 V using GCE as the working electrode. A single
smaller oxidation peak (2.9 µA) appeared at about 0.6 V in the beginning due to the oxidation potential
of the irreversible phenolic hydroxyl of BPA (Figure 2A) [31], and it disappeared completely after
the fourth run. The reversible redox peaks around 0–0.2 V (Figure 2B), which did not interfere with
determination peak of BPA, were due to the conversion between hydroxyl and carboxyl groups on
the graphene [32]. The attenuated oxidation currents of BPA at around 0.6 V were observed for
rGO/GCE after several runs, though the oxidation current was much higher (16.8 µA) at the first scan
(Figure 2B). The attenuated signals can be largely attributed to the serious surface deactivation of the
electrodes for BPA. In the presence of PTA (0.1 mM), the CV signals of both rGO/GCE (Figure 2C)
and MoSe2/rGO/GCE (Figure 2D) presented much better stability. After the fifth run, the oxidation
currents still reached up to 88% (RSD = 5.48%, n = 5) and 98.7% (RSD = 0.43%, n = 5) of the initial peak
current for rGO/GCE and MoSe2/rGO/GCE, respectively. The enhancement of the stability of the
oxidation signals of BPA should be attributed to the anti-fouling capacity of PTA, which can oxidize
the phenoxyl radical to the carbocation [32]. Additionally, the better stability (RSD = 0.43%, n = 5)
and sensitivity (26.5 µA) of MoSe2/rGO/GCE compared to rGO/GCE could be ascribed to the larger
surface of MoSe2 nanoparticles, which can increase the active sites and facilitate the electron exchange.
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Figure 2. CVs of different electrodes for detecting BPA (0.01 mM in PBS solution, pH = 6.5) at a scan
rate of 100 mV/s. (A) bare GCE; (B) rGO/GCE in the absence of phosphotungstic acid (PTA); (C)
rGO/GCE in the presence of PTA; (D) MoSe2/rGO/GCE in the presence of PTA.
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3.3. Reaction Mechanism of BPA on the Surface of MoSe2/rGO/GCE

It has been reported that the reaction of BPA on the surface of MoSe2/rGO/GCE is
proton-dependent (0.1 mM), and the oxidation potential would change with pH variations of the
electrolyte [22]. As shown in Figure 3, the highest oxidation current toward the oxidation of BPA on
the surface of MoSe2/rGO/GCE appeared at a pH of 6.5. Additionally, the oxidation potentials (Epa)
of BPA were inversely associated with the pH values (Figure 3B). The regression equation could be
expressed as Epa (V) = −0.0554 pH + 0.9641 (R2 = 0.994). The slope of 0.0554 V/pH was close to the
theoretical value of 0.0576 V/pH [22], indicating that the electron transfer was accompanied by an
equal number of proton consumption in the electrode reaction of BPA.

Figure 3. (A) CVs of BPA (0.1 µM) using MoSe2/rGO/GCE with different pHs (from 5.5–7.5); (B)
variation of peak current (a) and peak potential (b) with different pHs. The scan rate was 100 mV/s,
and the electrolyte was 0.1 M PBS.

The relationship of currents and the scan rate was investigated to understand the reaction kinetics
of BPA on the surface of MoSe2/rGO/GCE. The peak currents (Ipa) increased linearly with the
scan rates (υ) in the range of 10–300 mV/s (Figure 4A), indicating that the reaction should be an
adsorption-controlled process (Figure 4B) [33]. Additionally, there is a linear relationship between the
oxidation peak potential (Epa) and the nature logarithmic scan rate (lnυ) (Figure 4B). The relationship
can be expressed using the following regression equation: Epa (V) = 0.0229 lnυ + 0.4594 (R2 = 0.995).
According to the Laviron equation, Epa of an irreversible electrode process can be defined by the
following equation:

Epa = E0 +

(
RT
αnF

)
In
(

RTκ0

αnF

)
+

(
RT
αnF

)
Inυ

where α is the transfer coefficient, k0 is the rate constant of the electrochemical reaction, n is the number
of electrons transferred, υ is the scan rate and E0 is the formal potential. Other symbols have their usual
meanings (R = 8.314 J mol−1 K−1, T = 298 K, F = 96,480 C mol−1). Based on the slope of 0.0229, the
calculated αn (α = 0.5) was 1.1213, indicating that the electron transfer number (n) for BPA oxidation
was around two.
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3.4. Interference Analysis

Under the optimum conditions (pH 6.5), the influence of the coexisting ions and BPA analogs for
determining BPA (10.0 µM) by MoSe2/rGO/GCE has been tested, and the results are shown in Table S1.
The inorganic substances of KCl, NaCl, CaCl2, BaCl2, CuCl2, FeCl3 and NaOH (1 mM) presented little
effect, with the peak current suppression or enhancement less than 2.71%. More interestingly, it was
also found that there was no obvious effect on the peak current variations of BPA oxidation when
the concentration was 10-times BPA for its analogs of phenol, bisphenol S, bisphenol F and bisphenol
B. The results suggested that the MoSe2/rGO/GCE possesses good selectivity and anti-interference
ability towards BPA oxidation.

3.5. Analytical Performance

Under the optimized conditions, CVs of BPA with different concentrations were recorded.
As expected, the anodic peak current of BPA (Ipa) at MoSe2-rGO/GCE gradually increased,
accompanied by BPA levels increasing. The Ipa of the BPA was the average value determined by
five measurements. As no anodic peak appeared in the absence of BPA, no baseline correction was
performed in our experiment. Ultimately, a linear regression equation Ipa (µA) = 0.78 C (µM) + 36.64
(R2 = 0.988) was obtained when BPA concentrations ranged from 0.1 µM to 100 µM (Figure 5). The
detection limit (DL) (S/N = 3) was 0.015 µM. Compared with other modified electrodes for BPA analysis
detection limits (DLs > 0.04 µM) [34–38], the MoSe2/rGO/GCE electrode presented comparable or
even better sensitivity, except for the Ni2Al-layered double hydroxide/GCE electrode [39] and the
AuNPs/MoSe2/GCE electrode [40].
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BPA (from the bottom to top: 0.1, 0.5, 1, 5, 10, 50, 100 µM); (B) the calibration line of the response Ipa

vs. CBPA.
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MoSe2/rGO/GCE also presented good stability, repeatability and reproducibility when analyzing
dissolved BPA. After storing in refrigerator at 4 ◦C for two weeks, the response of MoSe2/rGO/GCE
only reduced by less than 10%. The RSD of the response signals of individual MoSe2/rGO/GCE
towards BPA oxidation (0.43%, n = 5) was much lower than some modified electrodes (Table 1). RSD
obtained from three parallel prepared MoSe2/rGO/GCE was only 2.2%, still at a lower level for those
modified electrodes determining BPA (Table 1).

Table 1. Comparison of the MoSe2/rGO modified electrode for BPA determination with other modified
electrodes (CBPA = 100 µM).

Modified Electrode Linear Range
(µM)

Detection
Limit (µM)

Repeatability
(RSD)

Reproducibility
(RSD) Medium Reference

Magnetic non-imprinted
NPs/CPE 0.6–100 0.1 n = 7, 1.4% 4.3% water [34]

polypyrrole/graphene
quantum dots/GCE 0.1-50 0.04 2.2% - water [23]

AuNPs/MoS2/GCE 0.05–100 0.005 n = 10, 2.35% 4.72% rubber, water [40]

β-cyclodextrin
(β-CD)-ionic liquid/CPE 0.1–11 0.083 n = 6, 2.35% 5.09% water, food

package [35]

Pt/graphene-CNTs 0.06–10, 10–80 0.042 n = 5, 5.3% - thermal printing
papers [36]

AuNPs/tacked graphene
nanofibers/GCE 0.08–250 0.035 n = 10, 2.55% 4.46% bottles [37]

Ni2Al layered double
hydroxide/GCE 0.02–1.51 0.0068 n = 5, 4.3% - milk [39]

Hydroxylated-MWCNT/GCE 1–24 0.81 n = 11, 1.81% - water, bottles [38]

MoSe2/rGO 0.1–100 0.012 n = 5, 0.429% 2.2% beverages This work

3.6. Samples Analysis

Before adding BPA into the solutions containing liquid milk, orange juice, coffee, soybean milk
and prepared juice, BPA in almost all these solutions was below the detection limit except that in
the orange juice with a detectable BPA concentration of 1.7 µM (Table 2). The detected BPA was
further identified and quantified by using HPLC-LTQ-MS (Figure S2). Based on the identification
of the standards, BPA was observed at a retention time of 7.8 min with the specific ions at m/z of
227 ([M-H]−), 211.9 ([M-H-CH3]−) and 182.9 ([M-H-C2H4O]−) [41], and its concentration was about
1.8 µM. After spiking at three levels (10, 15 and 20 µM), BPA could be detected in all the solutions
(Table 2). The recoveries ranged from 98% to 107%, and the calculated RSDs were all lower than 3%.
These results indicated that the MoSe2/rGO/GCE sensor could be a potential strategy for routine
analysis of BPA, especially in some liquid samples [41].

Table 2. Determination results of BPA in real samples.

Sample Added (µM) Found (µM, n = 5) RSD (%, n = 5) Recovery (%)

Liquid milk

0 <LOD
10 10.08 ± 0.243 2.40 100.8
15 15.09 ± 0.067 0.45 100.6
20 20.69 ± 0.361 1.18 103.5

Orange juice

0 1.7
10 10.16 ± 0.102 1.00 101.6
15 15.66 ± 0.523 3.34 104.4
20 20.73 ± 0.264 1.27 103.7
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Table 2. Cont.

Sample Added (µM) Found (µM, n = 5) RSD (%, n = 5) Recovery (%)

Coffee

0 <LOD
10 10.30 ± 0.282 2.75 103.0
15 15.21 ± 0.212 1.39 101.4
20 20.98 ± 0.552 2.62 104.9

Soybean milk

0 <LOD
10 9.88 ± 0.145 1.47 98.8
15 15.41 ± 0.260 1.68 102.7
20 20.47 ± 0.250 1.25 102.4

Prepared juice

0 <LOD
10 10.64 ± 0.306 2.87 106.4
15 14.95 ± 0.342 2.29 99.8
20 20.57 ± 0.291 1.42 102.9

4. Conclusions

In summary, a simple electrochemical sensor based on MoSe2/rGO-modified GCE has been
successfully fabricated for in situ determination of BPA in aqueous samples. Combined with the
good conductivity of rGO and the positive catalysis of MoSe2, the MoSe2/rGO composites provided a
favorable sensitivity for analyzing BPA. The prepared MoSe2/rGO/GCE sensor displayed a wide linear
range, low detection limit, good stability, repeatability, reproducibility and high recoveries. The good
performance for in situ determination of BPA in real samples indicated that the MoSe2/rGO/GCE
sensor could be a potential strategy for routine analysis of BPA.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/5/1660/
s1, Table S1: Analytical results of BPA in the presence of interfering substances, Figure S1: CVs of (a) bare electrode,
(b) rGO/GCE and (c) MoSe2/rGO/GCE in 5 mM [Fe(CN)6]3−/4− containing 0.1 M KCl at a scan rate of 100 mV/s,
Figure S2: Confirmation of bisphenol A in orange juice by HPLC-LTQ-MS.
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