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We present an ambulatory cognitive state classification system to assess the subject’s mental load based on EEG measurements.
The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog) system that aims
to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive
states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection
and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample
estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson) at 2 difficulty
levels (low/high) demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to
94% cognitive load estimation accuracy.

Copyright © 2007 Tian Lan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Following the successful demonstration of a P300 oddball
detector [1], many brain computer interfaces (BCIs) are
designed on similar concepts [2]—evoked response poten-
tial (ERP) detection or sliding window classification. Arti-
fact removal using adaptive filtering source separation tech-
niques have been proposed [3, 4], wavelet coefficients [5],
short-term power spectrum [6–8], and chaos/fractal struc-
ture [9, 10] have been investigated as potential features. Var-
ious standard classifiers including linear discriminants, neu-
ral networks, and support vector machines are employed
[11–16], parametric and nonparametric approximate Bayes
classifiers and boosting techniques have been evaluated [17–
22]. Some benchmark datasets for BCI design evaluations
have been proposed [23] and have met reasonable accep-
tance.

Accurate assessment of cognitive load from ambulatory
electroencephalogram (EEG) could lead to a wide variety of
applications for brain interface systems [24]. Of specific in-
terest to us is the concept of augmented cognition (AugCog),
which is applicable where the cognitive load of human oper-
ators needs to be monitored to design optimal information

flow protocols from the computer to the human in order to
maximize task performance [25]. These applications include,
but are not limited to, vehicle drivers, machinery operators,
air traffic controllers, and robotic surgery operators. Opti-
mizing the information flow for seamless human-computer
interaction requires the real-time assessments of cognitive
states during the execution of certain tasks leading to a pre-
scribed goal. An accurate cognitive load estimator is essential
for the successful implementation of assistive systems that are
aware of the user’s status and environment. Instantaneous es-
timates of mental state and workload can be used to control
the rate and the modality of the information presented to the
operator, which in turn helps the operator allocate mental
resources to maximize performance [26]. As the envisioned
applications require ambulatory EEG recordings, special care
must be given to proper signal conditioning, noise and arti-
fact reduction.

The use of EEG, as the basis of assessment in brain-
computer interface (BCI) and AugCog systems, is predicated
on characteristics such as good temporal resolution, non-
invasiveness, low cost, and portability [27]. However, the
following factors make it particularly difficult to deal with
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ambulatory EEG signals: (1) noise resulting from motion ar-
tifacts; (2) contamination with muscular activities, including
the usual eye movements and blinks; (3) influence of con-
current but irrelevant neural activities; (4) environmental
noise; (5) nonstationarity. Under these circumstances, both
robustness and precision of the designed system are particu-
larly critical. Furthermore, the system must be portable and
able to work in real-time. The focus of this paper is on feature
and channel selection for real-time cognitive state classification
based on EEG in order to address items (1) to (4) in this list.
Note that nonstationarity could also be partially addressed to
the extent that training session provided sufficiently rich data
to represent various sources of nonstationarity.

From a machine learning point-of-view, an EEG char-
acterization system (such as a BCI) requires a robust pat-
tern recognition system to assess the cognitive states or the
intent of the operator. A typical classification system con-
tains five parts: preprocessing, feature extraction, dimension-
ality reduction, classification, and postprocessing. Although
any improvement in one of these parts can boost the perfor-
mance of the system, in this paper, our focus will be on dimen-
sionality reduction, because criteria such as accuracy, real-
time performance, and wireless networking require all rely
on a set of compact features. Furthermore, choosing the most
informative and stable feature subset can also partly solve the
subject-to-subject transfer, session to session transfer, and
nonstationarity problem. The other modules of the classifi-
cation system were designed following well-established tech-
niques. For example, we employed a standard adaptive filter-
ing technique for the removal of eye artifacts. We used FFT
based power spectrum density (PSD) estimation procedures
to estimate the power at various frequency bands broadly ac-
cepted to be associated with cognitive activity—these esti-
mates served as the primary features for classification. Addi-
tionally, we used Gaussian mixtures model (GMM), K near-
est neighbor (KNN), and Parzen window density estimate
(Parzen) methods for classification. The PSD features con-
stitute a high-dimensional vector that contains information
pertinent to the classification of cognitive states, as well as
irrelevant components and noise. Direct classification using
such input features is undesirable since the unwanted com-
ponents have an adverse effect on the overall classification
performance and the generalization ability of the system.
Consequently, a practical technique for extracting the rele-
vant information from these features is necessary.

We present the following: (1) a nonparametric sample
estimator for mutual information that combines fast lin-
ear ICA solutions with sample-spacing entropy estimators to
achieve computational simplicity; (2) EEG channel selection
and linear feature projection techniques based on mutual in-
formation to achieve dimensionality reduction for computa-
tional and generalization benefits.

2. METHODS

Hardware platform

A mobile wireless sensor suite was assembled using a va-
riety of off-the-shelf components. EEG was collected from

32 channels using a BioSemi Active Two system [28]. Verti-
cal and horizontal eye movements and blinks are recorded
with electrodes below and lateral to the left eye. This sys-
tem integrates an amplifier with an Ag−AgCl electrode—
this affords extremely low noise measurements without any
skin preparation. Information from the sensors is transmit-
ted (via a combination of Bluetooth, serial port, and USB)
to and recorded on a body-worn laptop (Pentium 4.3 GHz
with 1 GB RAM). A base station computer controls the ex-
periment and communicates with the laptop via an 802.11
wireless network.1

Signal processing and classification

All channels reference the right mastoid. EEG is recorded
at 256 Hz sampling frequency while the subject is perform-
ing tasks with various cognitive loads. EEG signals are pre-
processed to remove eye blinks using an adaptive linear fil-
ter based on the Widrow-Hoff training rule [18]. Informa-
tion from the VEOGLB ocular reference channel was used as
the noise reference source for the adaptive ocular filter. DC
drifts were removed using high-pass filters (0.5 Hz cut-off). A
bandpass filter (between 2 Hz and 50 Hz) was also employed,
as this interval is generally associated with cognitive activ-
ity. The PSD of the EEG signals, estimated using the Welch
method [29] with 1-second windows, is integrated over 5
frequency bands: 4–8 Hz (theta), 8–12 Hz (alpha), 12–16 Hz
(low beta), 16–30 Hz (high beta), 30–44 Hz (gamma). The
energy levels in these bands sampled every 0.2 seconds (i.e.,
sliding windows with 80% overlap) are used as the basic in-
put features for cognitive classification. The particular selec-
tion of the frequency bands is based on well-established in-
terpretations of EEG signals in prior experimental and clini-
cal contexts [24]. The overall schematic diagram of the signal
processing system is shown in Figure 1.

In the design phase, the PSD features are used to rank
and select EEG channels to reduce dimensionality. For this
purpose, we assume that training patterns are representa-
tive of the spectral patterns one would expect in the perfor-
mance environment. The final feature vector, with a much
lower dimensionality than the original input, is then fed to a
committee of three classifiers. Since the distribution of the
feature vectors is unknown, we used both parametric and
nonparametric classifiers in the committee: GMM, KNN,
and Parzen. The classification component signal flow is il-
lustrated in Figure 1. The GMM is a parametric approach
where the class probability distributions are approximated

1 A real-time AugCog system based on the selected channels is imple-
mented successfully in a communication-routing system that prioritizes
information and messages for timely delivery to the subjects in a high-
communication task, resulting in increased accuracy of situation aware-
ness (measured by correct responses to questions in postsession inter-
view). Besides EEG, the system incorporates a wearable arousal meter.
This unit senses a subject’s electrocardiogram (ECG) signals and outputs
interbeat interval data in conjunction with a derived measure of a subect’s
cognitive arousal. The details of this implementation and results are not
the subject of this paper.
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Figure 1: PSD-based feature extraction (left) and dimensionality reduction, classification, and postprocessing flow diagrams (right).

by a small number of Gaussians. KNN is a nonparametric
approach where the classification is based on the count of
nearest neighbors from each class (can be understood as a
variable-size rectangular Parzen estimate of the class distri-
butions). The Parzen classifier is a nonparametric approach
to estimate the posterior probability of a feature vector be-
longing to a given class, using Gaussian kernels in this case.
The estimate is a mixture-of-Gaussians with smooth contri-
butions from all samples and this represents a compromise
between discrete votes from nearest neighbors and the small
number of Gaussian components of the parametric model.
The details of the classifiers are discussed in the appendix.
We now describe the EEG channel selection and feature pro-
jection procedures in more detail, as this is the main focus of
this paper.

3. DIMENSIONALITY REDUCTION

Feature extraction is the process of discovering a statistical
pattern that can differentiate various classes that lead to dis-
tinct observations. In contrast, dimensionality reduction is a
process of finding optimal feature vectors with reduced di-
mensionality from a large pool of candidates to keep the use-
ful information and eliminate irrelevant information. This
reduces the computational load and increases the robust-
ness of the classification system. Both feature extraction and
dimensionality reduction are important steps in classifying
EEG signals. Note that some researchers use the term fea-
ture extraction to mean dimensionality reduction via linear
or nonlinear projections. In our terminology, feature extrac-
tion is the process of determining candidate features from
raw measurements (in this particular case, the act of calculat-
ing energies in five frequency bands from the PSD estimates
of all EEG electrodes).

The PSD features of EEG signals constitute a high-
dimensional vector (5 frequency bands for 32 EEG channels
yield 160 features) that contains information pertinent to the
classification of cognitive states, as well as irrelevant compo-

nents and noise. Direct classification using these raw input
features yields poor generalization performance. We there-
fore propose a mutual information based technique to pre-
serve channels and feature subspaces with maximal general-
izable. We, therefore, propose a mutual information based
learning technique for finite size training sets to preserve
channels and feature subspaces that maximize the general-
ization of discriminative power. Dimensionality reduction
can be achieved by feature transformations. The transforma-
tion generates either a new feature space, which is called fea-
ture projection; or generates a subset of the original feature
space, which is called feature selection. Feature selection is
a special case of linear projections where the projection ma-
trix is sparse with only one unit per row. Linear transforma-
tions are widely used due to their simplicity and robustness.
Therefore, they are often preferred to computationally com-
plex and more fragile nonlinear counterparts, especially with
small training sets.

Optimal feature selection coupled with a specific classi-
fier topology, namely the wrapper approach, is computation-
ally very complex (combinatorial complexity—overall 2n− 1
feature subsets to evaluate in selection for n candidate fea-
tures); thus, is in feasible for large number of features. In con-
trast, a filter-based approach, which selects features by opti-
mizing a given criterion, is independent of the classifier and
is more flexible, but might not yield classifier-tuned optimal
results. Since we use a committee of classifiers, the filter ap-
proach is found more suitable.

Principal component analysis (PCA) is a widely used di-
mensionality reduction technique [30, 31]; however, the pro-
jections it finds are not necessarily related to the class la-
bels, hence are not particularly useful in pattern recognition.
Linear discriminant analysis (LDA) attempts to eliminate
this shortcoming of PCA by finding linear projections that
maximize class separability as measured by Fisher’s criterion
that is based on a unimodal class conditional distribution
(e.g., Gaussian) assumption [32]. The LDA projections are
optimized based on the means and the covariance matrices
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Figure 2: Feature projections using ICA preprocessing and mutual
information sorting.

of classes, which are not descriptive of an arbitrary multi-
modal probability density function (pdf). Independent com-
ponent analysis (ICA) has also been used as a tool to find
linear transformations that maximize the statistical indepen-
dence of random variables [33, 34]. However, like PCA, the
projection that ICA finds has no necessary relationship with
class labels in itself, hence, are not able to enhance class sep-
arability [35].

In the filter approach, it is important to optimize a cri-
terion that is relevant to Bayes risk, which is typically mea-
sured by the probability of error (for equal class-error risks).
Therefore, a suitable criterion for assessing the quality of a
low-dimensional feature vector f (either in selection or pro-
jection) is the mutual information (MI) between f and the
class label c as defined by

IS(f ; c) = HS(f)−
∑

c

pcHS(f | c), (1)

where pc is the class prior, HS and IS denote Shannon’s defini-
tions of entropy and mutual information [36]. The justifica-
tion for (1) is intuitively found in argument that f should ex-
hibit maximal class label (i.e., cognitive load) relevant infor-
mation. More formally, lower and upper bounds in informa-
tion theory that relate mutual information to the Bayes prob-
ability of error pe [37, 38], such as pe(f) ≤ (HS(c)−IS(f ; c))/2
[38], as well as Fano’s bound, motivate the use of MI in
discriminative dimensionality reduction. Several MI-based
methods have been proposed for feature selection [39–43].
However, since features are typically not independent, these
approaches cannot guarantee optimal feature selection that
would maximize mutual information, and joint information
among multiple features (redundancy) is usually ignored or
approximated with pairwise mutual information estimates.
In this paper, we propose a greedy framework for feature se-
lection and dimensionality reduction based on maximal mu-
tual information as (1) suggests (Figure 2).

3.1. Estimating mutual information

A computationally efficient sample estimator for MI that ex-
ploits fast linear ICA algorithms to separate mixed features
into approximately independent features is proposed. The
estimator then employs a one-dimension entropy estimator.
In a square invertible ICA transformation y = WT f , the re-
lationship between the entropy of the low-dimensional fea-

tures f ∈ �d and the entropy of the transformed features y
satisfies [36]

HS(f) = HS(y)− log |W|,
HS(f | c) = HS(y | c)− log |Wc|, (2)

where W is the ICA separation matrix for all data, and Wc is
the ICA separation matrix for the data from class c (in case
classes are oriented differently).2 If the components of the
random vector y in (2) are approximately independent, the
joint entropy becomes the sum of marginal entropies. Sim-
ilarly, if y conditioned on c has approximately independent
components, the conditional joint entropy becomes the sum
of marginal-conditional entropies:

HS(f) =
d∑

l=1

HS
(
yl
)− log |W| − IS(y),

HS(f | c) =
d∑

l=1

HS
(
yl
)− log |Wc| − IS(y | c).

(3)

Above, IS(y) and IS(y | c) denote any residual mutual in-
formation after the linear ICA procedure. Overall, assuming
that these residual dependencies are negligible, we have

IS(f ; c) = HS(f)−
∑

c

pcHS(f | c)

≈
d∑

l=1

(
HS
(
yl
)−

∑

c

pcHS
(
yl | c

))

−
(

log
∣∣W

∣∣−
∑

c

pc log
∣∣W

c∣∣
)
.

(4)

For simplicity, in the following, we further assume that the
linear transformations satisfy W = Wc for all c. Thus,

IS(f ; c) = IS(y; c) ≈
d∑

l=1

IS
(
yl; c

)
. (5)

Consequently, the MI between the classes and d-dimensional
feature vector can then be computed by evaluating d one-
dimensional MI estimates as in (5).

Fast linear ICA solution

There are several efficient algorithms for solving the linear
ICA problem based on a variety of assumptions including
maximization of non-Gaussianity, minimization of mutual
information, nonstationarity of the sources, and so forth
[46–48]. The fourth-order statistical methods can be com-
pactly formulated in the form of a generalized eigendecom-
position problem that gives the ICA solution in an analytical

2 Given an arbitrary random vector f , one can always find a nonlinear trans-
formation y = g(f) that is invertible and results in independent compo-
nents y = {y1, . . . , yn} [44]. However, in small datasets, finding a robust
nonlinear ICA solution is difficult. An approximate linear ICA solution
can be sufficient [45].



Tian Lan et al. 5

form [49]. This formulation will be employed in this work
for its simplicity. Under the assumption of iid samples, the
separation matrix W is the solution to the following general-
ized eigendecomposition problem:

Rf W = Qf WΛ, (6)

where Rf is the covariance matrix of f and Qf is the cumu-
lant matrix estimated using sample averages: Qf =E[fTfffT],
Rf tr(Rf ), E[ffT]E[ffT], Rf Rf . Given these matrices, the ICA
solution can be easily determined using efficient generalized
eigendecomposition algorithms.3

Once the ICA transform is determined and employed to
obtain y such that (5) holds (approximately), the marginal
mutual information of each independent feature yi with the
class label c can be computed using (1) and a simple one-
dimensional entropy estimator. One needs to estimate the
overall feature entropy HS(yi) using all samples regardless of
class labels, and the conditional entropy of each class using
only the samples from the corresponding class.

Marginal entropy estimator

There exist many entropy estimators in the literature for
single-dimensional variables [50]. Here, we use sample-
spacings estimator, which is based on order statistics. This
estimator is selected because of its consistency, rapid asymp-
totic convergence, and its computational efficiency. Given a
set of iid samples {y1, . . . , yN} of a random variable y, the es-
timator first sorts the samples in increasing order such that
y(1) ≤ · · · ≤ y(N). The m-spacing entropy estimator is given
in terms of the sorted samples by [46]:

Ĥ(y) = 1
N −m

N−m∑

i=1

log
(N + 1)

(
y(i+m) − y(i)

)

m
, (7)

where N is a sample number. This estimator is based on
two assumptions: the true density p(y) is approximated by
a piecewise uniform density determined by m-neighbors and
outside of the sample range; the contribution of the true den-
sity is negligible and/or does not change the expected entropy
computed by (7). The selection of the parameter m is deter-
mined by a bias-variance tradeoff and typically m = N1/2.
In general, for asymptotic consistency, the sequence m(N)
should satisfy

lim
N→∞

m(N) = ∞ lim
N→∞

m(N)
N

= 0. (8)

3.2. EEG channel selection using mutual information

In real-time brain interface applications such as the ambu-
latory cognitive load estimation problem considered in this

3 Note that fourth-order cumulant-based ICA algorithms typically require
a much larger sample size than information theoretic methods such as
Infomax [49] and Mermaid [50], thus has much larger estimation vari-
ance for a given sample size. Also, joint diagonalization of more than two
higher-order cumulants is usually preferred.

Initialize ChannelSet to include all channel indices and
RankedChannelSet to empty set. Iterate the following
until ChannelSet is left empty.

(A) Select channel i from ChannelSet. Let
CandidateChannelSet i be the union of
RankedChannelSet and {i}. Estimate the joint MI
between all features obtained from the channels in
CandidateChannelSet i and let this estimate be Ii.
Evaluate Ii for all channels in ChannelSet.

(B) Include the channel index that has maximum Ii in
step (A) in RankedChannelSet and remove it from
ChannelSet.

Algorithm 1

work, the reduction in the number of input features is fur-
ther motivated by the limited data acquisition and process-
ing capabilities of the hardware. While collecting measure-
ments from all EEG channels and then projecting their com-
bined feature vector to a lower-dimensional linear or non-
linear manifold would be desirable, the hardware limitations
and the prohibitive cost of collecting and processing each
additional EEG channel signal beyond the capacity of the
hardware imposes us to focus on identifying the salient EEG
channels that contain the most useful information for ac-
curate estimation of the cognitive state in the design phase.
Each channel yields several (five in our case) features and
our goal is to find a quasi-optimal subset of EEG channels
such that the MI between features obtained from the selected
channels and class labels is maximized for the given number
of channels (our hardware can handle up to 7 channels):

max
{i1,...,im}

IS
(

f i1 , . . . , f im ; c
)
, (9)

where f i is the feature vector that contains all features from
channel i, c is the class label, and m is the number of EEG
channels being considered in fT = [f i1T , . . . , f imT]. IS(f ; c) can
be estimated using the method described in Section 3.1.

In order to determine an effective subset of the available
features or channels (which encompass multiple features),
we rank the channels using a forward incremental strategy.
We first select the channel whose features have maximum
mutual information with class labels and assign it rank 1.
Rank 2 is assigned to the channel that has maximum MI
when used in conjunction with the previously selected rank-
1 channel. The procedure then ranks iteratively all features or
channels taking into account the joint mutual information
with previously ranked channels.4 Algorithm 1 summarizes
the proposed method.

4 Note that when ranking channels, since all features associated with the
signals of an EEG channel must be included or excluded simultaneously,
the algorithm considers concatenating feature vectors of channels to form
candidate feature subsets. In contrast, if all channels could be measured,
one could also do feature subset selection using the same algorithm, this
time concatenating features individually to form candidate subset feature
vectors.
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The procedure results in an ordering of EEG channels
such that the rank-d channel is the optimum choice given
the previous d-1 channels. While the top d channels do not
necessarily have to be the best d-subset, determining the lat-
ter requires a combinatorial search, and is infeasible for very
large dimensional situations (such as with 32 EEG channels
or 160 features). Using the incremental ranking strategy, the
computational complexity is (n+1)n/2 (n is the total number
of EEG channels) instead of the (2n−1) of exhaustive search.
The search procedure could be modified easily to include a
channel subtraction phase where a previously ranked chan-
nel is removed to the unranked set if it does not contribute to
the joint information of the current ranked subset. Another
advantage of this method is that, using MI for ranking re-
sults in classifier-independent EEG channel ranking, thus it
is computationally efficient compared to wrapper techniques
(it uses a simple MI estimator and does not require repeated
classifier training).

3.3. Maximally informative linear feature projections

Even after channel selection, further dimensionality reduc-
tion might be desirable to improve classifier generalization
performance. This can also be achieved using the maximum
MI framework because an invertible transformation does not
change the mutual information. In particular, the linear in-
vertible ICA mapping guarantees that IS(f ; c) = IS(y; c) for
y = WT f . Furthermore, since (5) holds for the independent
features and since MI is a nonnegative quantity, the best d-
dimensional linear projection consists of the d components
of y, that have maximum individual mutual information
with c. After the ICA mapping, one needs to evaluate the mu-
tual information IS(yi; c) for i = 1, . . . ,n, n is the dimension
of the transformed features y. The projection matrix then
consists of the d columns of the ICA matrix W that corre-
sponds to the top d components of y. This projection scheme
is illustrated in Figure 2. Typically, the channel selection pro-
cedure described in Section 3.2 is employed for selecting the
useful sensors motivated by physical constraints; and the fea-
ture projection procedure described here is employed to the
selected channels to improve classifier robustness and gener-
alization capability in the availability of only a relatively small
training data set.

3.4. Bias analysis

The approximations in Section 2 introduce an estimation
bias to each MI evaluation step. From the derivation, we can
see that the bias, defined as the expected difference between
the estimation and the true MI, is

E
[
ÎS(f ; c)− IS(f ; c)

] =
(

log
∣∣W

∣∣−
∑

c

pc log
∣∣Wc

∣∣
)

+
(
IS(y)−

∑

c

pcIS(y | c)
)

,

(10)

where y = WT f is the ICA transformation.

4. EXPERIMENTS AND RESULTS

In this section, we present analyses carried out on data col-
lected from three subjects performing two tasks in multiple
sessions (used for training and testing). Note that in many
BCI experiments, reports are provided in terms of leave-one-
out performance on the complete data set due to scarcity.
However, in our experience, this overestimates actual gener-
alization performance (due to nonstationarity being nulled
by the leave-one-out procedure).

4.1. EEG channel selection

In this experiment, we demonstrate the performance of the
channel selection procedure outlined to examine the effec-
tiveness of the selection procedure outlined in Section 3.2.
Based on hardware limitations for real-time processing of
EEG, the goal of identifying up to 7 channels out of the 30
available ones (we omitted 2 extremely noisy channels in
this dataset) is set. Three subjects S1–S3 executed two mental
tasks called Larson and n-back [24, 51, 52]. In the Larson task,
the subjects are required to maintain a mental count accord-
ing to the presented configuration of images on the mon-
itor. The combination of mental activities during this task
includes attention, encoding, rehearsal, retrieval, and match.
The complexity of this task was manipulated by varying the
interstimulus interval (low and high). In the n-back task,
subjects are required to match the letter in either spatial lo-
cation or verbal identity in the previous trials. The easy task
only requires comparing the current stimuli with the first
one, involving the combination of mental activities include
attention and match. The difficult task requires comparing
the current stimuli with stimuli presented two trials previ-
ously, and involves a complex combination of mental activ-
ities that includes attention, encoding, rehearsal, retrieval,
and match. All three subjects performed both tasks at the
two designated difficulty levels. Each case consists of about
3000 data samples in a 150-dimensional feature space (30
EEG channels× 5 frequency bands) with two classes: low and
high workloads. We applied the EEG channel-ranking algo-
rithm to the data to study the subject and task dependency
of the selected channels. Prior work suggested that the op-
timal EEG channels may vary for different mental tasks and
different subjects.

We first applied the approach on individual subject-task
combinations, and obtained specialized EEG channel rank-
ings, designated as Local n (n is the number of the selected
EEG channels). To examine the ability to select optimal chan-
nels for all tasks and all subjects, we also used data from all
subjects and tasks to get another ranking called Global n.
An instance of Local 10 (optimal for subject-task pairs) and
Global 10 (optimal across subject-task pairs) EEG channels
are shown in Table 1. The 7 channels selected based on lit-
erature suggestions for these tasks (see Section 4.2) are also
listed for reference as Phy 7. Note that the individual best
channels vary for each subject and task combination as ex-
pected. Nevertheless, the global ranking strongly coincides
with these individual rankings as observed from Table 1.
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Table 1: Optimal EEG channels illustration. Phy 7: 7 EEG channels from physiological literature; Local 10: 10 best EEG channels evaluated
from individual subject-task pair; Global 10: 10 best EEG channels evaluated from pairs (boldface highlighted).

Phy 7 Cz, P3, P4, Pz, O2, PO4, F7

Local 10

S1
Larson CP5, Fp2, FC5, Fp1, C4, P4, F7, AF3, P7, FC6

n-back AF3, FC5, Fp1, Fp2, F8, F7, FC6, O1, CP6, P4

S2
Larson Fp2, O1, AF4, F7, C3, PO3, FC6, CP2, C4, Pz

n-back C4, O1, F8, Fz, F3, FC5, FC1, C3, Cz, CP1

S3
Larson Fp2, F8, F7, FC5, FC6, AF3, C3, F4, P4, AF4

n-back CP5, F8, C4, FC6, Fp2, FC5, P3, AF4, C3, P7

Global 10 Fp2, FC5, O1, F3, FC6, F8, F7, AF3, O2, CP6

Table 2: Correct classification rate for three subjects: S1, S2, and S3, in two mental tasks: Larson and n-back, for different subsets of EEG
channels. Average is arithmetic average of the 6 correct classification rates for a particular EEG channel subset.

Phy 7 7 Local 10 Local 7 Global 10 Global

S1
Larson 0.78 0.92 0.90 0.92 0.85

n-back 0.86 0.92 0.94 0.93 0.92

S2
Larson 0.76 0.83 0.88 0.83 0.87

n-back 0.56 0.75 0.74 0.79 0.73

S3
Larson 0.53 0.67 0.65 0.59 0.65

n-back 0.54 0.64 0.68 0.74 0.72

Average 0.67 0.79 0.80 0.80 0.79

To validate the proposed method, we employed a com-
mittee of 3 classifiers: GMM, KNN, and Parzen, with major-
ity vote and decision fusion on the selected EEG channels.
For jackknife evaluation of performance, the data for each
case is partitioned to five sets and each set is saved for test-
ing using the other four for training. The confusion matrices
are estimated and the correct classification rates are calcu-
lated. The classification accuracies averaged over the five test
sets are shown in Table 2. Note that the MI-selected channels
significantly outperform the literature-motivated channels.
On average, keeping 7 or 10 channels does not make signifi-
cant difference in accuracy. The MI-selected features perform
around 80% accuracy on average for all subjects; the spe-
cific subject-task optimal selections (local) are observed to
be similar to the global selections. This indicates that the pro-
posed channel selection method can partly solve the subject-
to-subject transfer and the session-to-session transfer prob-
lems.

To provide a wrapper-benchmark for the proposed ICA-
MI channel selection method, we also apply error-based
ranking to the ICA projections on the same EEG datasets.
The error based ranking method uses the same forward
search strategy described in the algorithm of Section 3.2. The
difference is, this method uses the classification error of the
committee-classifier as its ranking criterion instead of mu-
tual information. The classification results using different
channel ranking methods for different subjects and mental
tasks are shown in Figure 3 (we only show the classification
results for top 10 EEG channels). Horizontal axis denotes the
number of selected features used for classification; vertical
axis denotes the classification accuracy in percentage. The er-

ror based ranking yields more accurate ranking than ICA-MI
method. However, it is not practical because it is very slow
and inflexible (classifier specific).

4.2. Feature projections

In this section, we demonstrate how an optimal ICA-feature
subspace selected according to the mutual information cri-
terion performs in reducing feature dimensionality without
adversely affecting classification performance. Data was col-
lected from one subject as four predetermined ambulatory
tasks were executed: slow walking, navigating and counting,
communicating with radio, and studying written information
while standing. Tasks are assigned class labels from 1 to 4,
corresponding to the assigned task. After preprocessing and
feature extraction, approximately 6000 data samples were
obtained, each with 35-dimensional feature vectors (7 EEG
channels with 5 frequency bands each) and a desired class la-
bel. In this experiment, the channels corresponded to sites
CZ, P3, P4, PZ, O2, P04, F7. These were selected based on a
saliency analysis of EEG collected from various subjects per-
forming cognitive test battery tasks [53]. A randomly selected
one third of these samples were used as the training set for
feature projection and classification, and the remaining two-
thirds were used as the test set. The feature projections were
obtained as described in Section 3.3. Correct classification
rates for different dimensionality of optimally selected fea-
tures were evaluated using the classifier committee over 50
Monte Carlo runs (random partitions of training and test-
ing data). To provide benchmarks forthe proposed ICA-MI
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Figure 3: Correct classification rate versus number of optimally selected channels (up to 10, using ICA-MI and error based methods) for
three subjects performing two mental tasks.

linear projections, we also present results using other linear
feature projection methods. These are ICA transformation
followed by classification error based selection (instead of
MI), as a wrapper benchmark, and LDA (major generalized
eigenvectors of between and within class scatter matrices), as

a filter-type common contender. To compare these methods
fairly, we normalize the data before we apply the KNN classi-
fier to the projected features (see Appendix B).

The classification results for different feature ranking
methods are shown in Figure 4. The horizontal axis de-
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Table 3: Confusion matrix for classifiers on 4 cognitive states using 10, 14, and 35-dimensional input feature vectors.

Dimensions 10-dimensional input 14-dimensional input 35-dimensional input

Confusion matrix

⎡
⎢⎢⎢⎢⎣

0.38 0.33 0.25 0.04

0.03 0.82 0.15 0

0 0 1 0

0 0.01 0.24 0.75

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0.6 0.22 0.17 0.01

0.01 0.91 0.08 0

0 0 1 0

0 0 0.18 0.82

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0.6 0.29 0.1 0.01

0.02 0.83 0.15 0

0 0 1 0

0 0 0.02 0.98

⎤
⎥⎥⎥⎥⎦
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Figure 4: Correct classification rate versus dimensionality of opti-
mally selected features for different methods.

notes the number of selected features used for classification;
the vertical axis denotes the classification accuracy. From
Figure 4 we see that ICA-MI can yield an accuracy of 80%
with 14-dimensional projections, while the remaining 21 di-
mensions do not significantly contribute to the classification
accuracy. The classification results based on 10, 14, and 35-
dimensional optimally selected features using ICA-MI algo-
rithm are compared in Table 3 via the confusion matrix of
the classification results (The i jth entry of confusion ma-
trix P shows P (decide class i | true class is j)). Although in
this particular experiment keeping all 35 features yielded the
best performance, the classification results illustrated here
shows that this feature selection method is able to capture the
low-dimensional relevant components in the original feature
space. This suggests that the additional features may intro-
duce irrelevant and confusing information that might impair
the classification accuracy. In conclusion, mutual informa-
tion based feature projections are expected to eliminate un-
necessary dimensions from the feature vector if not improve
performance.

The classification result for ICA-error ranking expectedly
exhibits better performance than that of ICA-MI, however, it

takes much longer time.5 The result of LDA ranking is similar
to that of ICA-MI for the first 5 features, but the classification
performance decreases dramatically when the number of fea-
tures increases due to the unimodality assumption. In experi-
ments not shown here, we also compare the proposed feature
projection method to the Mermaid-SIG algorithm [54]. The
results show that the classification performances are similar.
However, the ICA transformation followed by MI sorting al-
gorithm is much faster.

5. DISCUSSION

We described a framework based on mutual information
maximization to solve the EEG feature/channel selection and
dimensionality reduction problems in order to perform cog-
nitive state classification. The initial real-time and offline ex-
periments suggest that the developed practical and fast al-
gorithm that combines ICA transformations and sample-
spacing entropy estimators can classify a small set of discrete
cognitive states with a reasonable accuracy when combined
with 3 parametric and nonparametric classifiers

The experiments demonstrated that the important EEG
sites are consistent with prior physiological knowledge—
frontal sites associated with working memory tasks are rated
high [24]. Some classification performance when using the
EEG channels, which were selected from ICA-MI method
are even better than the performance of using pre-defined
EEG channels. The actual ranking of the most salient sites
are highly dependent on subjects and particular tasks they
are performing. Nevertheless, a global ranking of EEG sites
using the MI principle resulted in virtually no performance
loss in classification accuracy on average (across subjects and
tasks). This is an important observation that needs to be vali-
dated by other BCI researchers, since it indicates that subject-
to-subject and task-to-task transfer might indeed be possible,
thus making predesigned BCI systems practical.

As a comparison, we also implemented the wrapper ap-
proach for feature/channel selection: use classification error
as the criterion. As expected, the wrapper approach exhibited
better performance than filter approach because it is optimal
to specific classifiers; however, it is much more slower, which
makes it infeasible in practice with dense array EEG systems

5 As an indication of the order-of-magnitudes of difference in speed, in this
experiment, it takes a few seconds for the ICA-MI projection, but it takes
tens of hours for ICA-error ranking.
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that are becoming increasingly popular in BCI research.6 The
proposed system is feasible; however, the nonstationarity of
the EEG data still poses a great challenge making session-to-
session transfer a difficult problem to solve. This means we
have to retrain the system for different subjects and different
sessions, unless a very large training set encompassing a vari-
ety of operating conditions, numerous subjects, and tasks is
available. We have utilized PSD-based features, and perhaps
higher-order statistics or wavelet-based time-frequency fea-
tures are more stationary and could lead to more robust de-
signs. Future work will focus on determining better features.

APPENDICES

A. CLASSIFIERS

Gaussian mixture model (GMM) classifier

Gaussian mixture models are widely used to model the prob-
ability density functions. In this paper, they are employed
to approximate class-conditional distributions. It is assumed
that each class distribution consists of four Gaussian mod-
els and the parameters of the mixture is optimized using
the expectation-maximization (EM) algorithm [55]. The es-
timated distributions are then utilized to form an approxi-
mate Bayes classifier.

K nearest neighbor (KNN) classifier

The KNN classification approach is a nonparametric tech-
nique that makes no assumptions about the form of the
probability densities underlying a particular set of data.
Given a particular test sample, the K nearest training samples
(usually in an Euclidean sense) are determined and the test
sample is assigned to the class which lends the most neigh-
bors to this set. It can be shown that if K is large, this classi-
fier will approach the best possible classification performance
given by the true Bayes classifier [56].

Parzen window classifier

Parzen windowing [57] is a nonparametric density estima-
tion technique. It is employed to estimate the class distri-
butions and to form a nonparametric approximation to the
Bayes classifier. In this context, it serves as a bridge between
the KNN where each sample contributes discretely to the de-
cision (depending on whether they are in the neighborhood
or not) and the GMM classifier where each sample indirectly
contributes to the Gaussian models. In our implementation,
we used Gaussian window functions, thus the Parzen classi-
fiers is essentially a KNN classifier with decreasing influence

6 We applied both classification error-based wrapper approach and our MI-
based filter approach on the same data set with the same computer plat-
form. The wrapper approach used more than one day. In contrast, the
proposed filter approach used only 20 minutes on the same computer us-
ing Matlab.

by distance, and at the same time it is a GMM itself, where a
Gaussian is placed on each sample.

Fusion

The classifiers output a decision at 10 Hz and the majority
vote determines the final cognitive state estimate. The Parzen
classifier decision was accepted when there was no agree-
ment. It is also assumed that this state will not change over a
period of 2 seconds, thus a median filter applied to the most
recent 10 decisions is utilized to smoothen the classification
output. This postprocessing step significantly improves per-
formance and reduces flickering.

B. SCALE NORMALIZATION ACROSS LINEAR
PROJECTIONS

When comparing different linear projection propositions us-
ing a classifier whose training and performance depends on
Euclidean sample distances and angles for the purpose of
having a controlled environment, it is important to guaran-
tee that the classifier performances are not affected by Eu-
clidean transformations of data across projection method-
ologies. Data normalization to satisfy this desirable property
is essential to conclude with certainty that differences in per-
formances of classifiers due to various linear projections are
invariant to affine transformations.

Suppose that a linear projection matrix W ∈ �m×n,
where m < n, is proposed as the optimal projection ac-
cording to the criterion of that particular technique (e.g.,
PCA, LDA, ICA, MI would yield different propositions). Let
W = UDVT be the singular value decomposition of this ma-
trix, where D is the diagonal matrix of eigenvalues, and U and
V are orthonormal left and right eigenvector matrices. De-
fine the multiplicative group inverse W+ = VD+UT , where
D+

ii = D−1
ii if Dii �= 0 and D+

ii = 0 if Dii = 0 (i.e., D+ is the
group inverse for diagonal matrices under multiplication).

In the comparison of linear projections using a particu-
lar classifier (e.g., KNN, SVM, etc.), instead of utilizing the
samples obtained by y = Wx, where y ∈ �m, utilize the
samples generated with z = W+Wx. Note that, although
z ∈ �n, since rank(W+W) = rank(VImVT) = m—where
Im = diag(1, . . . , 1, 0, . . . , 0) is n× n diagonal with m ones on
its diagonal—the samples of the random vector z lie on anm-
dimensional hyperplane determined by the rows of W. The
variable z is a scale-normalized version of the desired projec-
tion y, and its use eliminates the problems that might arise
from the scale dependency of particular classifier topologies
and improper training procedures that might not take these
into account.
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