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Warming of hot extremes alleviated by expanding
irrigation
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Irrigation affects climate conditions – and especially hot extremes – in various regions across

the globe. Yet how these climatic effects compare to other anthropogenic forcings is largely

unknown. Here we provide observational and model evidence that expanding irrigation has

dampened historical anthropogenic warming during hot days, with particularly strong effects

over South Asia. We show that irrigation expansion can explain the negative correlation

between global observed changes in daytime summer temperatures and present-day irri-

gation extent. While global warming increases the likelihood of hot extremes almost globally,

irrigation can regionally cancel or even reverse the effects of all other forcings combined.

Around one billion people (0.79–1.29) currently benefit from this dampened increase in hot

extremes because irrigation massively expanded throughout the 20th century. Our results

therefore highlight that irrigation substantially reduced human exposure to warming of hot

extremes but question whether this benefit will continue towards the future.
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Irrigation is one of the land management practices with the
largest biogeophysical effect on climate1. Imprints of irrigation
on local climates have been detected from in-situ temperature

and energy flux observations2–4 as well as in remotely sensed soil
moisture datasets5,6. Several independent climate modelling stu-
dies have moreover shown that intense irrigation in the Indian
subcontinent can delay the onset of the Indian Summer Mon-
soon7–10, but also influences precipitation patterns in areas away
from irrigation hotspots9–12. While the influence of irrigation on
annual mean temperatures remains limited, emerging evidence
reveals a large impact of irrigation on temperature extremes, with
a particularly strong cooling during the hottest days of the
year2,3,10,13,14.

Despite this accumulating evidence, irrigation—and land
management in general—have historically not been considered in
assessments of drivers of observed climate change15,16. This is
remarkable, since the irrigated area massively expanded from
0.63 million km2 in 1900 to 3.06 million km2 in 200517,18, thereby
covering an area about the same size as India.

In this study, we use observational data and global climate
simulations to isolate the climatic effects of irrigation from the
warming induced by all other combined forcings, the latter
dominated by anthropogenic greenhouse gas emissions15. We
reconstruct the contribution of irrigation expansion to the
observed change in average daily maximum temperature during
the hottest month of the year (TXm) by applying a recently
developed window searching algorithm19,20 to the global gridded
CRU temperature dataset (see ‘Methods’). A major advantage of
this method is that it can isolate an individual forcing from a
lumped signal based on information from the surrounding area,
which means that it can be directly applied to observations and
multi-forcing climate simulations. We then perform a number of
earth system model experiments that enable the comparison of
irrigation effects on climate against other anthropogenic forcings
and that can be analysed on daily instead of monthly time scales
(see ‘Methods’). Observational and model results consistently
highlight a strong irrigation-induced cooling effect during warm
extremes in intensely irrigated regions. In some regions, irrigation
expansion cancels or even reverses the effects of all other forcings
combined.

Results
Observational analysis. We find that daytime temperatures
during the hottest month of the year (TXm) have warmed less
during the 20th century over areas with substantial irrigation
expansion (>25% of grid cell area; Fig. 1a). This effect is strongest
over Pakistan, India, Nepal and Bangladesh (Fig. 1b, hereafter
referred to as South Asia), a global hotspot of irrigation activity
(Supplementary Fig. 1). While constituting only a small portion
of the global land area (0.5%), pixels with an increase in irrigated
grid cell fraction above 35% generally experienced a cooling
trend. These results suggest that irrigation has played an
important role in the evolution of high temperatures on land.

Results of applying the reconstruction method indicate that
irrigation expansion has a cooling influence on TXm which
increases with greater irrigation extent (Fig. 1c, d). Subtracting
the irrigation-induced cooling (ΔTXmirr) from the total change
(ΔTXm) indeed largely removes the initially observed negative
relationship (Supplementary Fig. 2), confirming that much of the
cooling of TXm in the observational record can be explained by
irrigation expansion throughout the 20th century.

Earth system modelling. Since global-gridded observations either
omit daily extremes or lack spatio-temporal coverage in irrigation
hotspots (see Supplementary Note 1), we turn to earth system

modelling for investigating irrigation influences on the occur-
rence of daily temperature extremes (TX) rather than the inten-
sity of monthly hot extremes (TXm). We perform targeted model
experiments with the Community Earth System Model (CESM)
to isolate the effects of irrigation expansion from the global
warming signal (see ‘Methods’), and analyse hot extremes on
daily instead of monthly time scales. Although the irrigation-
induced cooling in monthly temperature extremes is larger in
CESM than in the observation-based estimate, the two lines of
evidence yield consistent results (Fig. 1, Supplementary Fig. 3)
and are corroborated by the comparison of simulated and
satellite-based land surface temperatures showing consistent and
substantial irrigation-induced cooling in intensely irrigated
regions (Supplementary Note 2, Supplementary Figs. 4–6). These
analyses reaffirm earlier conclusions10 that the model can be used
to study the effects of irrigation on climate extremes, while the
exact magnitude of the effect needs to be interpreted with caution.
To compare the effect of irrigation to the anthropogenic warming
signal, we use the well-established probability ratio (PR)
metric21,22, which characterises the factor by which the prob-
ability of an event has changed under a given forcing (see
‘Methods’).

Nearly everywhere across the globe, global warming has
increased the likelihood of hot extremes, here defined as the
local 99th TX percentile in the early 20th century (that is, the
daytime temperature expected on average once every 100 days)
(Fig. 2a). Simultaneously, expanding irrigation led to a reduction
of the likelihood of these hot extremes (Fig. 2b). Unlike the global
warming signal, this reduction is mostly limited to present-day
irrigation hotspots (Supplementary Fig. 1), with only the Sahara
as a notable exception (Fig. 2b). Over South Asia, irrigation
locally reduced the likelihood of hot extremes by a factor of 2–8,
with particularly strong effects over the Indo-Gangetic Plain.
Combining these two competing effects highlights that in some
regions, irrigation partly or completely reverses the anthropo-
genic warming of hot extremes (Fig. 2c). Consequently, irrigation
expansion has prevented these regions from experiencing
strong(er) warming rates during hot days.

The median PR from global warming is between 2 and 3 for the
99th percentile TX across various regions (Supplementary Fig. 7).
This implies that, without irrigation, hot days occurring 3–4 times
a year in the early 20th century would now be expected 6–10
times a year. The global warming-induced PR moreover increases
for higher percentiles (Fig. 3), meaning that frequency changes
are larger for high-end extremes. This partly follows from the
definition of the metric: the rarer the event in the reference case,
the larger the potential for strong relative changes (see Eq. 3)22. In
addition, however, extremes are warming consistently faster
compared with mean temperatures23, which has previously been
attributed to increasing sensitivity to soil desiccation in the tail of
the temperature distribution24,25. When considering total global
land area, irrigation expansion had limited influence on global
median PR values (Fig. 3a). However, across irrigated lands, as
well as over entire South Asia, it resulted in a substantial
reduction in the likelihood of hot extremes (Fig. 3b, c). Similar to
the global warming signal, the more intense the definition of the
extreme the greater the reduction due to irrigation expansion.
This can be understood from the nature of irrigation and land-
climate dynamics: first, more water is applied during hot days
(Supplementary Fig. 8) as their occurrence typically coincides
with crop growing seasons and in many regions also with
precipitation deficits26. Second, irrigation will reduce the land-
atmosphere coupling strength of a given region and thereby its
sensitivity to temperature variability24 (Supplementary Fig. 9;
Supplementary Note 3). Combining the effects of global warming
and irrigation suggests that there has been virtually no change in
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the likelihood of hot extremes across South Asia and irrigated
lands (Fig. 3b, c). In other regions of the world these effects lead
to a reduction in the overall PR (Supplementary Fig. 7). Our
findings are robust even when accounting for spatial variability by
considering spatial boxplots instead of medians (Supplementary
Fig. 10). Moreover, excluding irrigation from the early 20th
century control simulation—thereby increasing the relative global
warming effect—only strengthens the main conclusions of our
analysis (Supplementary Fig. 11). However, we note that our
results only refer to the forced response, that is, we average across
a range of ensemble members to reduce the effect of natural
variability, whereas the actual observed frequency change at the
local to regional scale is additionally influenced by natural
variability superimposed on the forced pattern.

Discussion
Disentangling individual contributions to observed temperature
changes is needed to unravel the historic influence of anthro-
pogenic greenhouse gas emissions and to improve the reliability
of future climate projections. It has for instance been reported
that historical deforestation increased the likelihood of hot
extremes in northern mid-latitudes in a set of observationally
constrained Earth system models20,27. This is a priori not
incompatible with the cooling effect of irrigation which is found
mainly in South Asia, but future work is needed to formally
attribute observed temperature changes2–4,16 to individual land

cover and land management changes using a consistent multi-
model framework28–30.

While conducted with a state-of-the-art Earth system model
and with great care of achieving realism, our simulations remain
characterised by a number of limitations. To start, we assume
fixed irrigation extent (of the year 1915 and 2000, respectively) in
our otherwise transient simulations as the current model version
cannot handle transient irrigation area. Furthermore, we consider
only one crop type (generic C3 crops) and we do not account for
variations in irrigation water sources (such as groundwater
pumping or rainwater tanks31,32), and irrigation techniques (such
as sprinkler, drip, flood or ponding irrigation33–38). Instead
CESM extracts required irrigation amounts from surface runoff
and applies it directly to the soil surface, where it can either
infiltrate, evaporate or runoff. We thus ignore potential local
water availability limitations, but note that regional patterns of
applied irrigation amounts are realistic when compared with
census data10. This is confirmed by a set of land-only sensitivity
experiments showing that the default irrigation parameter set-
tings are most suited for representing irrigation quantities in
South Asia (see Supplementary Fig. 12 and Supplementary
Note 4). However, even though our simulated irrigation quan-
tities closely match observed values over South Asia10, water
ponding is currently disabled in CESM, which likely leads to an
underestimation of irrigation impacts on temperature in South,
East, and Southeast Asia where paddy fields are widespread36.
Comparison of simulated and satellite-based land surface

Temperature change between 1901–1930 and 1981–2010
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Fig. 1 Observed warming rates affected by irrigation. Boxplots of the total (ΔTXm, a, b) and irrigation-induced (ΔTXmirr, c, d) change in average daily
maximum temperature during the hottest month of the year for global land (a, c) and South Asia (b, d) between 1901 and 1930 and 1981 and 2010. Results
were binned by the change in grid cell fraction equipped for irrigation (hereafter referred to as irrigated fraction f irr) between both periods. Cell counts per
bin for ΔTXmirr are indicated in e, f. Blue bars represent results from the CRU observational data, orange bars show results from the CESM global climate
simulations. Boxplots indicate the spatial distribution (centre line: median; box limits: upper and lower quartiles; whiskers and outliers: not shown) and are
only plotted for bins containing �5 pixels. Note that most grid cells with f irr>0:5 for the global land are situated in South Asia.
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temperatures indeed confirms that CESM appears to under-
estimate irrigation effects on present-day land surface tempera-
tures across South Asia (see Supplementary Note 2).
Implementing paddy irrigation in CESM would thus be beneficial,
especially since observational studies39–41 demonstrate that
paddy field expansion in China may locally lead to land surface
temperature reductions on the order of 1–2 K on average during
the growing season.

In summary, we showed that irrigation expansion has
regionally masked the historical warming of hot extremes from
anthropogenic greenhouse gas emissions and other climate for-
cings. Using global gridded temperature observations and dedi-
cated climate model experiments, we found that observed
temperature changes as well as the probability of extreme high
temperatures over intensely irrigated regions, and South Asia in
particular, were reduced by a similar magnitude as the global
warming signal, leading to little or no overall observed response

(Fig. 3). The consistent signal in both observations and simula-
tions (Fig. 1) thereby increases the confidence in our results.

This study highlights the unintended beneficial impact of his-
torical increases in irrigation on human exposure to hot extremes
in several parts of the world. While the irrigation-induced cooling
is mostly limited to irrigation hotspots, these are often located in
densely populated areas (Supplementary Fig. 1). Thanks to the
effective dampening of trends in hot extremes over irrigation
hotspots, we estimate that between 0.79 and 1.29 billion people
were less exposed to extreme temperatures around the year 2000
(see ‘Methods’). Likewise, irrigated crops, which account for more
than 40% of global yields42, also benefited from capped tem-
perature extremes. Yet these favourable influences only occurred
because the irrigation extent more than quadrupled during the
20th century17. It is unsure whether this evolution will continue
in the next decades: besides a possible stagnation2,17 or even
decrease28 in the global area being irrigated, agricultural water use
may potentially also become more efficient to meet sustainable
development goals related to water resources availability, food
security and biodiversity33,43. Even though changes in future
irrigation extent and amounts may have important implications
in densely populated irrigation hotspots, current-generation
Earth system models generally ignore irrigation in climate
projections13,14,44. These uncertainties underline the need for
including transient irrigation in historical and future climate
simulations, and for testing the climate response to various sce-
narios of future irrigation extent and irrigation efficiency.

Methods
Temperature and irrigation data. We analyse temperature data from CRU TS
v4.02 (hereafter referred to as CRU), which provides monthly averages of mean
temperature, diurnal temperature range, daily maximum temperature and daily
minimum temperature at a spatial resolution of 0:5� ´ 0:5� between 1900 and 2017.
The former two variables are gridded from station observations, while minimum
and maximum temperatures are computed assuming a symmetric temperature
distribution centred around the mean. We consider the average maximum tem-
perature during the hottest month of the year (TXm), and average this metric for
two 30-year periods representing the present-day (1981–2010) and the early 20th
century (1901–1930). Note that the long time span of the analysis period impedes
the use of satellite-based surface or air temperature datasets45,46, which have
recently been shown to be powerful tools for assessing the local biophysical effects
of land cover changes4,47. We therefore use satellite data only for assessing present-
day effects of irrigation (see Supplementary Note 2).

Irrigated area data are derived from the Historical Irrigation Dataset (HID)17,
which compiles area equipped for irrigation data based on national and sub-
national statistics at a spatial resolution of 50 ´ 50 and a temporal resolution of 10
years, increasing to 5 years after 1980. We converted area equipped for irrigation to
the irrigated cell fraction and subsequently remapped the HID to the CESM grid
using second-order conservative remapping48.

Climate simulations. We simulate the influence of irrigation on temperature
extremes using version 1.2 of the CESM, a fully coupled, state-of-the-art Earth
system model. The land surface in CESM is represented by version 4.0 of the
Community Land Model (CLM)49, whose interactive irrigation module computes
irrigation demand based on vegetation state and soil moisture content in a separate
soil column for irrigated crops. Whenever soil moisture is limiting photosynthesis
during the growing season, irrigation is activated, and the deficit between the actual
and a target soil moisture content applied to the ground surface in a way that
mimicks extraction from nearby rivers. Although confined to the crop growing
season, timing and quantities of irrigation are not prescribed, but internally
computed by the irrigation paramaterisation in CLM10,49. In terms of irrigation
seasonality, this results in most irrigation hotspots receiving maximum irrigation
amounts during boreal summer months, whereas South and Southeast Asia regions
receive most irrigation during boreal spring.

We use CESM to generate four climate ensembles with five members each. A
first control ensemble (CTL) for the period 1976–2010 (35 years including 5 years
spin-up) contains all relevant climate forcings except irrigation. The second
ensemble (IRR) is identical to the control experiment, except that the irrigation
module is switched on. Ensembles three and four repeat this set-up, but for the
period 1896–1930 (CTL_20C and IRR_20C, respectively). An extensive
evaluation10,50 of the CTL and IRR ensembles revealed that accounting for realistic
irrigation in CESM leads to a small yet robust increase in model skill.

All simulations are conducted at a horizontal resolution of 0.90� ´ 1:25� , with
prescribed transient greenhouse gas concentrations, sea surface temperatures and

All forcings except irrigationa

b

c

Irrigation expansion

All forcings

1/8 1/6 1/4 1/2 1

PR
Hot extremes less likely Hot extremes more likely

2 4 6 8

Fig. 2 Change in probability of hot extremes from expanding irrigation
and other forcings. Ensemble-mean likelihood of exceeding 99th percentile
of daytime temperature (TX) as simulated by CESM, considering all
forcings except irrigation (a), irrigation expansion only (b), and all forcings
including irrigation expansion (c). Probability ratios (PRs) are shown for the
present-day (1981–2010) relative to the early 20th century reference period
(1901–1930), except for b where the reference is a counter-factual present-
day world without irrigation.
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sea ice fractions, as well as with satellite-derived vegetation phenology imposed in
CLM4.0. The phenology prescription uses leaf area index, stem area index and
vegetation height values derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) for the period 2001–2003 and averaged to monthly
climatologies at 0.05° spatial resolution49,51,52. By using land cover maps including
irrigation extent in 1915 and 2000, respectively, our simulations capture the
recorded17 massive increase in irrigation area from 0.80 to 2.66 ´ 106 km2 during
this period. While the prescribed irrigation area represents area equipped for
irrigation17,53, CESM in practice applies actual irrigation in those areas. We note
however that this does not induce a bias in irrigation quantities10 and that this
approach is common in climate model experiments including irrigation7–9,11,12.
Moreover, climate change and irrigation expansion did not induce a notable
change in the hottest month of the year (Supplementary Fig. 13). We prescribe land
cover fractions other than irrigated croplands using a map for the year 2000,
implying that we ignore biogeophysical effects of land cover and land management
changes besides irrigation50, but account for their biogeochemical effects through
the time-varying greenhouse gas concentrations. On the first simulation day, we
enforce small random perturbations on the order of 10–14 K to the initial
temperature field to obtain five realisations unique in terms of natural variability
but identical in terms of underlying physical processes10.

Window searching algorithm. We apply a spatial window searching algorithm20

to CRU global gridded temperature data and CESM output to reconstruct the local
influence of irrigation on historical changes in monthly TXm and to assess the
suitability of the model for determining irrigation effects on daily temperature
extremes. The approach is designed to disentangle homogeneous climate forcings
such as enhanced greenhouse gas concentrations from heterogeneously distributed
local climate drivers including irrigation. The latest versions20,47 of the method
thereby overcome the dependence of an earlier version19 on the binary categor-
isation of ‘irrigated’ and ‘non-irrigated’ grid cells, by fitting multiple linear
regressions between observed temperature changes and changes in irrigation
fraction within spatially moving windows.

In practical terms, the approach consists of three steps. In the first step, all
eligible pixels are selected. Pixels containing a non-zero present-day irrigation
fraction are selected for analysis if a window of 11 ´ 11 grid cells centred around the
pixel of interest has a data coverage of at least 60%, and if at least 8% of the pixels
include some irrigation. The selection criteria match those from earlier studies20,
except for the number of pixels in the search window which is larger in the present
study to compensate for the higher resolution of the underlying datasets. In
particular, we apply a window size of 11 ´ 11 grid cells to CESM native resolution
(0.90� ´ 1:25�) and to the CRU output which we first regridded to the CESM grid
using second-order conservative remapping48. As such we employ a similar
window area as a previous study applying a 5 ´ 5 window to output from the
Coupled Model intercomparison Project Phase 5 (CMIP5)20. While a larger search
window enables to better capture the temperature contrast between irrigated cells
and their surroundings, it also enhances auto-correlation47 and spatially smooths
local variations of the signal (Supplementary Note 1). Yet overall the results shown
in Fig. 1 demonstrate limited sensitivity to the size of the search window compared
with the change in irrigated fraction (Supplementary Fig. 14), suggesting that auto-
correlation has only limited influence on our results.

The second step involves the application of the multiple linear regression
technique. For each selected pixel i the analysis extracts an irrigation-induced
temperature signal by performing a multiple linear regression on all pixels in the
search window centred on i. The regressors predicting the total temperature change
ΔTXm are the change in irrigated fraction (Δf irr) and three spatial predictors which
may confound the irrigation-derived signal: latitude (lat), longitude (lon) and

elevation (elev), such that:

ΔTXm ¼ β1 ´Δf irr þ β2 ´ lat:þ β3 ´ lon:þ β4 ´ elev:; ð1Þ
with βi the regression coefficients for each of the four spatial predictors, and Δf irr,
lat, lon and elev vectors containing up to 121 values representing the conditions
within the search window. The selection of the three spatial predictors next to
irrigation expansion was informed by earlier tests20 showing that inclusion of these
factors succeeds in filtering out the most important natural climate gradients
within the search window.

In the third step, the irrigation impact is reconstructed. The irrigation-induced
temperature change in the centre pixel of the moving window ΔTXmirrðiÞ is then
obtained by multiplying the regression coefficient for irrigation β1 from Eq. 1 by
the recorded, 20th century change in irrigated fraction in that pixel:

ΔTXmirrðiÞ ¼ β1 ´Δf irrðiÞ: ð2Þ
The algorithm is designed to capture the local cooling effect of irrigation due to

the enhanced surface evaporative fraction. As secondary climatic effects of
irrigation such as enhanced atmospheric moisture content and cloud cover have
non-local consequences (for example by modifying precipitation patterns9–12 or
altering monsoon circulation7,8,10,11), these are not expected to be accounted for by
the algorithm. We however note that the direct effect of irrigation on latent and
sensible heat flux is generally recognised as the dominant pathway through which
irrigation affects near-surface climate7–10,54–56, despite one study that attributes the
irrigation effects on temperature mostly to indirect effects including changes in
cloud cover and associated surface net radiation57. Moreover, a recent study58

investigating direct and indirect biogeophysical effects of deforestation shows that
the window searching method succeeds at reproducing factorial deforestation
experiments over most deforested regions, which again suggests that ignoring
indirect effects in the window searching algorithm does not strongly deteriorate the
results over irrigation hotspots. In addition, this method does not correct for
possible dependency between spatial predictors. For instance, irrigation is more
likely to occur in lower-lying areas in the landscape due to the proximity of surface
waters. Such a spatial dependence between f irr and elev could reduce the regression
coefficient for Δf irr and thus ΔTXmirr, which is one of the reasons why this method
is considered to be rather conservative20. On the other hand, it limits the false
attribution of variations in temperature caused by strong natural climatic gradients
within a search window (e.g. due to orography) to changes in irrigation extent.
Overall, when applied to studying the historical effect of deforestation on local
temperature this method was shown to give similar results than the comparison of
factorial experiments20.

Finally, we also applied our analysis to an earlier version of the temperature
dataset (CRU TS v3.22). The main difference between both versions is a new
interpolation algorithm, not an increase in the number of stations included in the
data product. The results based on the earlier CRU version show a substantially
stronger irrigation-induced cooling signal, highlighting that, next to the model
simulations, also the observation-based estimates are characterised by uncertainty
and thus need to be treated with care.

PR computation. To further analyse the climate simulations we use the PR21

metric, which is defined as

PR ¼ Pnew

Pref
; ð3Þ

where Pref is the probability of exceeding a certain quantile in the reference
ensemble—that is, 0.01 for the 99th percentile—and Pnew the probability of
exceeding that quantile in the new ensemble. For instance, a PR of 2 and Pref of
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Fig. 3 Regional masking of trends in hot extremes due to irrigation. Median probability ratio (PR) for individual daytime temperature (TX) percentiles
considering all forcings except irrigation (red), irrigation only (dark blue), and all forcings including irrigation (light blue) for all land (a), all irrigated land
(b), and South Asia (c). Irrigated land is defined here as all pixels with >10% irrigated crop fraction, and corresponds to �5% of all land area. South Asia is
defined as Pakistan, India, Nepal and Bangladesh, and represents �3% of all land. Note that the bars are non-additive because of differences in the
reference ensemble.
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0.01 implies that days with a maximum temperature above the 99th percentile are
twice as likely in the new period (i.e. a 1-in-50 days event) compared with the
reference period (i.e. a 1-in-100 days event). The effect of current irrigation on the
likelihood of occurrence of extreme temperatures under present-day climate is
obtained by taking CTL as the reference ensemble and IRR as the new ensemble.
The effects of ‘all forcings’ and ‘all forcings except irrigation’ are computed with the
IRR_20C as reference ensemble and IRR and CTL as the new ensemble, respec-
tively (note that PRs are, consequently, non-additive). The PR metric has been
referred to as risk ratio or PR in previous studies21,22, but here PR is just a ratio of
frequencies of occurrence without any reference to damage, vulnerability or
exposure, which are commonly part of comprehensive risk definitions22. All PRs
values were calculated from daily maximum temperature percentiles of the pooled
ensemble members, which accounts for the possibility that extremes are more
prevalent in particular years or ensemble members. We compute PR values for land
pixels and irrigated land pixels, which are identified as land pixels with an irrigated
fraction exceeding 10% of the total grid cell area.

Human exposure calculation. We compute the number of people that are less
exposed to hot extremes using rural and total population density data and simu-
lated PR. We define reduced exposure as those pixels with irrigation-induced
PR < 0:5 for the 99th percentile TX, that is, all regions for which daytime tem-
peratures that would occur 3–4 times a year without irrigation, now instead occur
only once or twice a year (Fig. 2b). For rural and total population density we use
version 3.2 of the History Database of the Global Environment (HYDE) and
version 4 of the Gridded Population of the World (GPW) dataset, respectively, with
values in the latter product adjusted to match United Nations country totals. Data
for the year 2000 (i.e. corresponding more or less to the middle of the CTL and IRR
simulation period) available at 5′ (HYDE) and 2.5′ (GPW) resolution were
remapped to the CESM grid using second-order conservative remapping. We then
convert population density to number of people per grid cell using CESM pixel area
and land fraction values, and subsequently apply the exposure mask to compute the
total number of people less exposed to hot extremes. While our upper estimate
assumes that all people living within a 0.90° × 1.25° grid cell are equally exposed to
the grid cell mean PR, our lower bounds neglects that the rural irrigation signature
will much stronger and thus widespread10.

Data availability
All materials that have contributed to the reported results are available upon request,
including the raw CESM model output (20 TBytes). Correspondence and requests for
materials should be addressed to W.T. (wim.thiery@env.ethz.ch). The postprocessed
CESM output (1.52 GBytes) is publicly available in the Figshare repository at https://doi.
org/10.6084/m9.figshare.8041265. The CRU data are available at https://crudata.uea.ac.
uk/cru/data/hrg/cru_ts_4.02/, the HID data at https://doi.org/10.13019/M20599, the
HYDE data at http://themasites.pbl.nl/tridion/en/themasites/hyde/download/index-2.
html, the GPW data at https://doi.org/10.7927/H49884ZR, and the MODIS data at
https://lpdaac.usgs.gov/products/myd11c3v006/. Together with the code (see Code
availability) these data sources enable reproduction of the figures presented in this study.

Code availability
All codes used to generate the climate simulations and subsequent analyses are available
through the github repository of the Department of Hydrology and Hydraulic
Engineering at VUB (https://github.com/VUB-HYDR/2020_Thiery_etal_NatComm).
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