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Abstract: High-energy-density diet could increase body weight at the expense of the intestinal health
of the animals. In order to optimize production without negatively influencing the gut health of
chickens, dietary supplementation with bacitracin methylene disalicylate (BMD) is a common feeding
strategy adopted to enhance production performance and intestinal health. Studies have suggested
that BMD could improve chicken growth performance and gut health through modulation of the gut
microbiota. The current study investigated the effect of BMD supplementation in a normal-energy
(NE) or high-energy (HE) diet on growth performance, organ weights, jejunal morphology, and gut
microbiota of broiler chickens at different growth stages. Birds were allocated to four treatments:
normal-energy basal diet (NE-BAS), normal-energy BMD diet (NE-BMD), high-energy basal diet
(HE-BAS), and high-energy BMD diet (HE-BMD). In the starter phase, body weight and body weight
gain were reduced significantly (p < 0.05) in chickens fed HE diets compared to those fed NE diets.
The FCR was significantly higher (p < 0.05) in birds fed HE-BMD diets in the starter phase but lower
(p < 0.05) during the grower phase when compared to other treatments. Moreover, the relative bursa
weight increased significantly (p = 0.0220) among birds that received HE diets. Birds fed HE-BMD
had greater villus height (p = 0.054) than NE-BMD group. Among the chickens fed the HE diets, those
that received BMD treatment had a significantly increased (p = 0.003) villus width (13.3% increase)
compared to those that received the basal diet. Improved population of Firmicutes was observed in
chickens fed HE-BMD diet when compared to HE-BAS. Our results imply that BMD may be more
effective in improving intestinal health when supplemented in a high-energy diet for broiler chickens.

Keywords: bacitracin methylene disalicylate; energy density; gut microbiota; growth performance;
broiler chickens

1. Introduction

Dietary energy density can be referred to as the amount of available energy per unit
weight [1]. In the poultry industry, dietary energy and nutrient density have been reported
to have a significant impact on gut health and growth performance [2–4]. The impact of
high-energy-density diets in poultry could be beneficial, and at the same time detrimental.
High-energy-density diets have been shown to increase body weight gain [5,6] and improve
feed conversion efficiency [7,8] in poultry. Lamot et al. [9] reported an increase in gain-to-
feed ratio during the first week of life for broiler chickens exposed to higher diet densities.
However, aside from weight gain, the intestinal health of poultry birds is equally important
as this can affect the farmer’s cost of maintaining a healthy flock. Studies have shown that
changes in dietary energy density induce rapid changes in the composition of bacteria
that colonizes the intestinal tract of mammals [10]. Other studies with mice and rats have
shown that high-energy diets can trigger microbiota dysbiosis due to an imbalance between
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energy intake and expenditure [11–13]. A recent study with Pekin ducklings revealed that
dietary energy content altered microbiota composition and diversity in the cecum [14].

In order to optimize production without negatively influencing the gut health of chick-
ens, dietary supplementation with bacitracin methylene disalicylate (BMD) is a common
feeding strategy adopted to enhance production performance and intestinal health. In
Canada, BMD is regarded as an antibiotic of medium importance (that is, it has alternatives
available) [15]. Although there are plans to eliminate the preventive use of BMD because of
the worldwide concern about antibiotic resistance and the quest to preserve the potency of
antibiotics for human and animal health [16], BMD is still currently being used in chicken
production as a preventive measure against diseases [15]. BMD increases body weight
gain and feed efficiency and promotes the cecal microbiota diversity in several poultry
species [17–19]. Broiler chickens fed BMD showed a reduction in the concentrations of
coliforms and Lactobacillus salivarius in the lower part of the intestine, along with significant
growth-promoting effects [20].

It is plausible that bacitracin coupled with a diet of high or low energy density
may elicit beneficial effects on the intestinal health of chickens. While various studies
have focused on the effects of BMD on intestinal microbiota and growth performance of
chickens [20–23], research on the effect of energy density and its interaction with the use
of antibiotics in broiler chickens is limited. Therefore, it is important to give attention to
dietary energy, how it affects gut microbiota in relation to antibiotic usage, and its influence
on the growth performance of chickens. We hypothesized that BMD would complement
the shortcomings resulting from feeding chickens with either low or high energy alone.
In the present study, we determined the effects of BMD, two levels of dietary energy, and
their interactions on the growth performance, organ weights, jejunal morphology, and gut
microbiota of broiler chickens at different growth stages.

2. Materials and Methods
2.1. Management and Housing

Animal care approval for the experimental methods was granted by Dalhousie Uni-
versity Animal Use and Care Committee, and all chickens were handled and cared for
according to the recommendations of the Canadian Council of Animal Care [24]. Broiler
chicks (Ross 308) obtained at 1 day old from a commercial source arrived at the Atlantic
Poultry Research Center, Dalhousie University Faculty of Agriculture, Truro, NS, and
chicks were weighed in groups of 25 birds. Each group was assigned to a floor pen
(0.93 m × 2.14 m), at a stocking density of 0.076 m2/bird. Room temperature was mon-
itored daily and was gradually reduced from 31 to 22.6 ◦C from day 0 to day 42. The
lighting program was set to produce 18 h of light and 6 h of darkness throughout the
experimental period, and illumination was gradually reduced from 20 lx on day 0 to 5 lx.

2.2. Experimental Diets

Chickens received feed and water ad libitum via a phase-feeding program, which
consisted of starter (0–14 days), grower (15–24 days), and finisher (25–42 days). Diets were
fed as crumbled pellets during the starter phase and as pellets during the grower and
finisher phases. Birds were randomly sorted into four dietary treatments, consisting of
eight replicate pens per treatment. The experiment was designed as a 2 × 2 factorial design
consisting of two levels of energy: (1) normal energy (NE) density and (2) high energy (HE)
density and two levels of BMD inclusion: (1) a basal diet containing 0% of BMD (Basal) and
(2) Basal + 0.05% BMD. The HE diets were formulated to contain an additional 100 kcal/kg
ME above the NE diets, similar to the study of Kindlein et al. [25]. The NE and HE diets
were formulated to have a similar ratio of metabolizable energy (ME) to crude protein and
digestible amino acids, as presented in Table 1.
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Table 1. Ingredient, calculated, and analyzed compositions of the basal diets used in the study.

Starter Grower Finisher
Normal Energy High Energy Normal Energy High Energy Normal Energy High Energy

Ingredient composition
Corn 41.33 42.66 44.32 39.68 48.48 44.11

Soybean meal (46.5% CP) 40.17 36.43 36.48 38.70 31.52 33.52
Wheat 10.00 10.00 10.00 10.00 10.00 10.00

Vegetable Oil 3.43 5.87 4.59 7.00 5.67 8.04
Limestone 1.80 1.80 1.65 1.64 1.52 1.51

Dicalcium phosphate 1.23 1.21 1.06 1.05 0.93 0.92
Pellet Binding Agent Y 0.50 0.50 0.50 0.50 0.50 0.50

DL-Methionine Premix X 0.61 0.63 0.53 0.56 0.49 0.52
Vitamin–Mineral Premix W,V 0.50 0.50 0.50 0.50 0.50 0.50

Salt 0.40 0.40 0.37 0.37 0.38 0.38
HCL Lys 0.03 0.00 0.00 0.00 0.01 0.00

Calculated composition
Folic acid (ppm) 2.20 2.20 2.20 2.20 2.20 2.20
Digestible Trp 0.25 0.26 0.23 0.24 0.21 0.22
Digestible Thr 0.87 0.90 0.82 0.84 0.74 0.76

Digestible Met + Cys 0.95 0.98 0.87 0.90 0.80 0.83
Digestible Lys 1.28 1.32 1.16 1.21 1.03 1.07
ME, kcal/kg 3000 3100 3100 3200 3200 3300

Crude protein 23.0 23.8 21.5 22.2 19.5 20.1
Calcium 0.96 0.96 0.87 0.87 0.79 0.79

Available P 0.48 0.48 0.44 0.44 0.40 0.40
Sodium 0.19 0.19 0.18 0.18 0.18 0.18
ME/CP 130 130 144 144 164 164

ME/Digestible Lys 2344 2349 2672 2645 3107 3084
ME/Met + Cys 3158 3163 3563 3556 4000 3976

ME/Digestible Thr 3448 3444 3781 3810 4324 4342
ME/Trp 12,000 11,923 13,478 13,333 15,238 15,000

Analyzed composition (%, except where otherwise stated)
ME, kcal/kg 3022 3145 3109 3203 3220 3317

Crude protein 24.2 25.2 21.7 22.9 20.2 20.3
Crude fat 6.11 8.03 6.41 8.69 7.04 6.70

Dry matter 88.8 89.1 86.2 87.9 87.7 86.7
X Supplied/kg premix: DL-methionine, 0.5 kg; wheat middlings, 0.5 kg. Y Pel-stik: Uniscope, Inc., Johnstown, CO, USA. W Starter
vitamin–mineral premix contained the following per kg of diet: 9750 IU vitamin A, 2000 IU vitamin D3, 25 IU vitamin E, 2.97 mg vitamin
K, 7.6 mg riboflavin, 13.5 mg Dl Ca-pantothenate, 0.012 mg vitamin B12, 29.7 mg niacin, 1.0 mg folic acid, 801 mg choline, 0.3 mg biotin,
4.9 mg pyridoxine, 2.9 mg thiamine, 70.2 mg manganese, 80.0 mg zinc, 25 mg copper, 0.15 mg selenium, 50 mg ethoxyquin, 1543 mg wheat
middlings, and 500 mg ground limestone. V Grower and Finisher vitamin–mineral premix contained the following per kg of diet: 9750 IU
vitamin A, 2000 IU vitamin D3, 25 IU vitamin E, 2.97 mg vitamin K, 7.6 mg riboflavin, 13.5 mg Dl Ca-pantothenate, 0.012 mg vitamin B12,
29.7 mg niacin, 1.0 mg folic acid, 801 mg choline, 0.3 mg biotin, 4.9 mg pyridoxine, 2.9 mg thiamine, 70.2 mg manganese, 80.0 mg zinc,
25 mg copper, 0.15 mg selenium, 50 mg ethoxyquin, 1543 mg wheat middlings, and 500 mg ground limestone.

2.3. Data and Sample Collection

Feed intake (FI), body weight (BW), and mortality were recorded weekly, and body
weight gain (BWG) and feed conversion ratio (FCR) were calculated. On days 21, 36, and
42 of age, one chicken per pen (eight chickens per treatment) was randomly selected and
euthanized by electrical stunning and exsanguination. Birds were bled for 3–5 min after
carotid and jugular veins were cut. After slaughter, digesta from the pair of ceca were
mixed, sampled, and stored in plastic RNAse- and DNAse-free tubes, placed in liquid
nitrogen, and afterward kept at −80 ◦C until ready for DNA extraction and sequencing.
On day 42, visceral organs, including spleen, ceca, liver, bursa of Fabricius, and heart, were
harvested and weighed by trained personnel. Samples from the jejunum (1.5 cm length
midway between the point of entry of the bile ducts and Meckel’s diverticulum) were
collected and fixed in 10% neutral buffered saline for histomorphological processing.

2.4. Analysis of Diets and Histological Samples
2.4.1. Diet Analysis

Nitrogen content in the diets was determined using the combustion method [26],
Method 990.03, with a nitrogen analyzer (Model Leco CN828 Carbon Nitrogen Determi-
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nator, St. Joseph, MO, USA) and CP was calculated as N × 6.25. The ether extract in
samples was determined after hexane extraction [26] using Method 920.39 in an Ankom
XT10 Fat Extractor system (Macedon, NY, USA). The metabolizable energy content of diets
was determined at the Central Testing Laboratory, Winnipeg, MB, using their standard
laboratory procedures.

2.4.2. Histological Measurements

Fixed jejunum samples were processed using the same procedure as Oladokun
et al. [24]. Briefly, villus height (from the base of the intestinal mucosa to the tip of
the villus excluding the intestinal crypt), villus width (halfway between the base and the
tip), and crypt depth (from the base upward to the region of transition between the crypt
and villi) were determined by taking approximately 10 measurements of each component
per slide using an image processing and analysis system (Leica DC480; Leica Microsystems
Imaging Solutions Ltd., Concord, ON, Canada).

2.5. DNA Extraction and 16S rRNA Gene Sequencing

Specimens were placed into a MoBio PowerMag Soil DNA Isolation aBead Plate.
DNA was extracted following MoBio’s instructions on a KingFisher robot. Bacterial 16S
rRNA genes were PCR-amplified with dual-barcoded primers targeting the V4 region (515F
5′-GTGCCAGCMGCCGCGGTAA-3′, and 806R 5′-GGACTACHVGGGTWTCTAAT-3′), as
per the protocol of Kozich et al. [27]. Amplicons were sequenced with an Illumina MiSeq
using the 300-bp paired-end kit (v.3). Sequences were denoised, taxonomically classified
using Silva (v. 138) as the reference database, and clustered into 97%-similarity operational
taxonomic units (OTUs) with the mothur software package (v. 1.44.1) [28], following the
recommended procedure (https://www.mothur.org/wiki/MiSeq_SOP; accessed on 11
October 2020). The potential for contamination was addressed by co-sequencing DNA am-
plified from specimens and from template-free controls (negative control) and processing
the extraction kit reagents the same way as the specimens. A positive control from “S00Z1-”
samples consisting of cloned SUP05 DNA was also included. Operational taxonomic units
were considered putative contaminants (and were removed) if their mean abundance in
controls reached or exceeded 25% of their mean abundance in specimens.

2.6. Bioinformatics and Statistical Analyses

We sequenced 16Sv4 amplicons generated from cecal digesta samples on a MiSeq.
MiSeq-generated Fastq files were quality-filtered and clustered into 97% similarity opera-
tional taxonomic unit (OTUs) using the mothur software package (http://www.mothur.org;
accessed on 11 October 2020). The resulting dataset had 94,509 OTUs (including singletons).
An average of 42,742 quality-filtered reads was generated per sample. Sequencing quality
for R1 and R2 was determined using FastQC 0.11.5 (Supplementary Figures S1 and S2).
The Shannon index was used to estimate alpha diversity [29] on raw OTU abundance
tables after filtering out contaminants. The significance of diversity differences was tested
with ANOVA or linear mixed model depending on the study design. To estimate beta
diversity across samples, we excluded OTUs occurring with a count of less than 3 in at
least 10% of the samples and then computed Bray–Curtis indices. Abundance-weighted
sample pairwise differences were calculated using the Bray–Curtis dissimilarity. Bray–
Curtis dissimilarity is calculated by the ratio of the summed absolute differences in counts
to the sum of abundances in the two samples [30]. Beta diversity was visualized using
principal coordinate analysis (PCoA) ordination, emphasizing differences across samples.
Permutational multivariate analyses of variance (PERMANOVA) was used to assess vari-
ation in community structure, with treatment group as the main fixed factor, and 9999
permutations were used for significance testing [31]. We conducted all analyses in the R
environment. DESeq2 R package was used to identify differentially abundant taxa among
diet variables. The 2-sided Welch’s t-test [32] and Benjamini–Hochberg false discovery
rate correction were adopted for the group analysis. We used STAMP software [33] to

https://www.mothur.org/wiki/MiSeq_SOP
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analyze the significant microbes among the treatments and different age groups. The
principal component analysis (PCA) analysis of the microbial community relationship was
also performed with STAMP software using ANOVA as statistical test (p-value < 0.05)
and Tukey–Kramer as post hoc test. Further statistical analyses were performed using
GraphPad prism Program (version 7.0.1). p-values < 0.05 were regarded as significant
values. Results are presented as means ± standard deviation (SD). LEfSe was performed
(http://huttenhower.sph.harvard.edu/galaxy; accessed on 20 November 2021) by using
the relative abundance of genus to identify different taxa microbes between the time points
and different diet groups. We only showed the differential features using the default
parameters (LDA Score > 2, p < 0.05) [34].

The growth performance, jejunal morphology, and organ weights data were subjected
to analysis of variance using the general linear models (GLM) procedure of SAS with
energy level, BMD, and energy × BMD interaction as factors and the following parameters
as variables: feed intake, body weight, body weight gain, feed conversion ratio, organ
weights, villus heights, villus width, crypt depth, and ratio of villus height to crypt depth.
p-values less than 0.05 were considered significant.

3. Results
3.1. Growth Performance, Organ Weight, and Jejunal Morphology

The effects of BMD and energy level on the growth performance of broiler chickens are
shown in Table 2. There were no significant effects of dietary treatments on overall FI, BW,
BWG, and FCR. However, during the starter phase, chickens fed BMD in the high-energy
group had lower BW and BWG and higher FCR compared to those fed the basal diet in
the normal-energy group, while other treatments were intermediate. During the starter
phase, chickens in the high-energy BMD group had a higher FCR compared to those fed
the basal diet in the normal-energy group. However, this was compensated for by a lower
FCR during the grower phase compared to the other treatments. As illustrated in Table 3,
bursa’s relative weight significantly increased (p = 0.0220) among the birds that received HE
diets compared to those that received NE diets. There were no effects of BMD and energy
level on the relative weights of the remaining organs. As presented in Table 4, birds fed
HE-BMD had greater villus height (p = 0.054) than those provided with NE-BMD. Among
the chicken birds fed the HE diets, those that received BMD treatment had a significantly
increased (p = 0.003) villus width (13.3% increase) compared to those that received the
basal diet. There were no effects of dietary treatment on crypt depth and VH/CD.

Table 2. Effect of dietary energy density and bacitracin withdrawal on growth performance of broiler chickens.

Normal Energy High Energy SEM 1 p-Value
Basal BMD 2 Basal BMD BMD Energy BMD × Energy

Feed intake, g/bird
Days 0–7 164 164 167 171 5.07 0.670 0.363 0.724
Days 8–14 354 362 350 351 9.91 0.636 0.448 0.727

Days 15–24 1129 1068 1288 1059 97.8 0.149 0.447 0.398
Days 25–35 1837 1795 1824 1753 25.4 0.035 0.279 0.574
Days 35–42 1186 1402 1198 1187 83.8 0.232 0.235 0.186
Days 0–42 4670 4791 4826 4520 137 0.507 0.679 0.130

Body weight, g
Day 0 43.6 43.3 43.2 43.2 0.29 0.658 0.390 0.658
Day 7 186 a 177 ab 177 ab 171 b 3.70 0.131 0.010 0.892
Day 14 501 492 502 506 13.5 0.830 0.573 0.611
Day 24 1310 1290 1284 1287 13.6 0.517 0.289 0.404
Day 35 2471 2453 2457 2477 23.0 0.966 0.829 0.433
Day 42 3233 3247 3246 3291 38.2 0.447 0.464 0.681

http://huttenhower.sph.harvard.edu/galaxy
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Table 2. Cont.

Normal Energy High Energy SEM 1 p-Value
Basal BMD 2 Basal BMD BMD Energy BMD × Energy

Body weight gain, g/bird
Days 0–7 142 a 138 ab 134 ab 127 b 3.73 0.151 0.012 0.842
Days 8–14 317 314 326 332 13.2 0.929 0.332 0.733

Days 15–24 807 795 781 785 15.9 0.789 0.276 0.639
Days 25–35 1161 1164 1173 1190 15.9 0.545 0.228 0.675
Days 25–42 762 794 789 814 22.0 0.204 0.297 0.902
Days 0–42 3190 3204 3203 3248 38.2 0.446 0.455 0.687

Feed conversion ratio
Days 0–7 1.15 b 1.19 ab 1.25 ab 1.38 a 0.06 0.194 0.017 0.609
Days 8–14 1.13 1.16 1.09 1.07 0.05 0.871 0.173 0.663

Days 15–24 1.41 1.34 1.67 1.35 0.13 0.135 0.360 0.414
Days 25–35 1.59 a 1.54 a 1.56 a 1.47 b 0.02 0.003 0.009 0.286
Days 25–42 1.55 1.80 1.52 1.46 0.12 0.667 0.117 0.220
Days 0–42 1.47 1.50 1.51 1.39 0.01 0.335 0.378 0.099

In a row, means assigned different lowercase letters are significantly different, p < 0.05 (Tukey’s procedure). 1 Standard error of the mean. 2

Bacitracin methylene disalicylate.

Table 3. Effect of dietary energy density and BMD on organ weights (g/kg body weight).

Parameter
Normal Energy High Energy

SEM 1 p-Value
Basal BMD 2 Basal BMD BMD Energy BMD × Energy

Spleen 0.74 0.86 0.83 0.76 0.07 0.738 0.890 0.148
Ceca 5.70 4.55 4.61 4.60 0.51 0.260 0.314 0.264
Liver 15.8 15.5 15.4 15.0 0.53 0.484 0.417 0.883
Bursa 1.48 1.28 1.65 1.72 0.14 0.608 0.022 0.281
Heart 4.80 5.20 4.80 4.99 0.21 0.175 0.609 0.622

1 Standard error of the mean. 2 Bacitracin methylene disalicylate.

Table 4. Effect of dietary energy level and BMD on jejunal morphology (mm) of broiler chickens.

Parameter
Normal Energy High Energy

SEM 1 p-Value
Basal BMD 2 Basal BMD BMD Energy BMD × Energy

Villus height 1.51 ab 1.33 b 1.51 ab 1.63 a 0.04 0.630 0.019 0.051
Villus width 0.18 a 0.19 a 0.12 b 0.19 a 0.01 0.007 0.519 0.017
Crypt depth 0.17 0.18 0.15 0.17 0.01 0.179 0.552 0.666

VH/CD 3 9.72 7.78 9.63 9.36 0.39 0.121 0.062 0.453

In a row, means assigned different lowercase letters are significantly different, p < 0.05 (Tukey’s procedure). 1 Standard error of the mean;
2 Bacitracin methylene disalicylate. 3 Villus height/crypt depth ratio.

3.2. Composition of Chicken Gut Microbiota of Chickens Fed with or without BMD at Varying
Energy Levels

A total of 94,509 OTUs were obtained from all samples. An average of 42,742 quality-
filtered reads was generated per sample (Figure 1).

In the current study, we examined the effects of BMD on the chicken gut bacterial
community at different energy levels. Alpha diversity analysis using the Shannon index,
which accounts for richness and evenness, showed no differences among the four treat-
ments, indicating that BMD did not influence microbiome evenness at different energy
levels (Figure 2a). The PCA analysis revealed a weak influence of the treatments on gut
microbial composition in the sampled chickens. A high level of similarity was observed
among the treatments (Figure 2b). Additionally, we assessed the relative abundance among
all the treatment groups at different taxonomic levels. The top classes were Clostridia,
Bacteriodia, and Bacilli. Clostridia emerged as the most abundant in chickens fed NE, with
a proportion of 58.9 and 58.0% for basal and BMD diets, respectively. Bacteriodia emerged
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as the most abundant in chickens fed high-energy diets, with a proportion of 34.8 and
32.0% for basal and BMD diets, respectively. Bacilli were most dominant in chickens fed
NE (8.99 and 8.09% for basal and BMD groups, respectively) (Figure 2c). At the phylum
level, the top two phyla among all treatments were Firmicutes and Bacteroidota. Firmi-
cutes were more dominant in chickens fed NE diets, followed by those fed HE diets. The
relative abundance was 69.6, 67.7, 63.3, and 65.2% for NE-BAS, NE-BMD, HE-BAS, and
HE-BMD, respectively. Bacteroidota was seen as the most abundant in chickens fed HE
diets, which include HE-BAS (34.77%) and HE-BMD (32.04%). The lowest proportion of
Bacteroidota (27.95%) was observed among the chickens fed NE-BAS, while 29.72% was
seen in NE-BMD (Figure 2d).
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Firmicutes were more dominant in chickens fed NE diets, followed by those fed HE diets. 
The relative abundance was 69.6, 67.7, 63.3, and 65.2% for NE-BAS, NE-BMD, HE-BAS, 
and HE-BMD, respectively. Bacteroidota was seen as the most abundant in chickens fed 
HE diets, which include HE-BAS (34.77%) and HE-BMD (32.04%). The lowest proportion 
of Bacteroidota (27.95%) was observed among the chickens fed NE-BAS, while 29.72% was 
seen in NE-BMD (Figure 2d). 
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Figure 2. (a) Alpha analysis using the Shannon index showing the diversity of gut microbiota among the treatments
(NE-BAS, NE-BMD, HE-BAS, and HE-BMD); the significance was tested with ANOVA and plot was generated using
GraphPad prism. (b) The principal component analysis (PCA) plot, created using STAMP software, compares genus-level
taxonomic profiles among different diets. NE-BAS = normal-energy basal diet; NE-BMD = normal-energy diet with
bacitracin methylene disalicylate; HE-BAS = high-energy basal diet; HE-BMD = high-energy diet with bacitracin methylene
disalicylate. (c) Relative abundance of top-class in broiler chickens fed different diets. (d) Relative abundance of top phyla
in broiler chickens fed different diets. NE-BAS = normal-energy basal diet; NE-BMD = normal-energy diet containing
bacitracin methylene disalicylate; HE-BAS = high-energy basal diet; HE-BMD = high-energy diet containing bacitracin
methylene disalicylate. (e) Relative abundance of top genera in broiler chickens fed different diets (NE-BAS, NE-BMD,
HE-BAS, and HE-BMD). Different colors represent different genera. (f) Significant differences in genera between the
chickens fed basal (BAS) and bacitracin methylene disalicylate (BMD), assessed using STAMP software package (p < 0.05).
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At the genus level, the dominant genera among the chickens fed with NE-BAS, NE-
BMD, HE-BAS, and HE-BMD were Lachnospiraceae_unclassified, Bacteroides, Faecalibacterium,
Clostridia_unclassified, Alistipes, Clostridia_UCG_014_ge, Lactobacillus, Bacterodales, Peptostrep-
tococcacea_unclassified, and Blautia. The most dominant genus among chickens fed NE-BMD
was Lachnospiraceae_unclassified (24.08%), while Bacteroides was the most abundant among
chickens fed HE-BAS (20.11%). Irrespective of dietary energy density, we observed almost
the same proportion of Faecalibacterium among chickens that received BMD or BAS (17.1
and 17.0%, respectively). Alistipes was most dominant in chickens fed BMD diets, irrespec-
tive of energy density. Chickens fed NE-BAS had the lowest proportion of Alistipes and the
highest proportion of Lactobacillus, while those fed NE-BMD had the lowest abundance of
Lactobacillus (Figure 2e). Two out of 83 genera were significantly different in abundance
between the chickens fed BAS and BMD. Streptococcus was significantly abundant in chick-
ens fed with BAS, while BMD inclusion triggered the drastic reduction of this microbe.
Oscillospirales_ge was found to be differentially abundant in the chickens that received
BMD treatment (Figure 2f). Moreover, we observed a reduction in the relative abundance
of some intestinal bacteria in the BMD treatment group.

We identified 15 OTUs that were differentially abundant amongst treatments (NE-BAS,
NE-BMD, HE-BAS, and HE-BMD) (FDR < 0.05), namely Otu00013, Otu00008, Otu00210,
Otu00016, Otu00081, Otu00004, Otu00309, Otu00004, Otu00309, Otu00209, Otu00001,
Otu00039, Otu00280, Otu00071, Otu00079, Otu00229, and Otu00150, which belong to the
two phyla Firmicutes and Bacteroidota (Table 5).

Table 5. Fifteen OTUs that were differentially abundant amongst treatments (NE-BAS, NE-BMD, HE-BAS, and HE-BMD)
(FDR < 0.05).

log2 Fold Change p-Value Padj Phylum Genus

Otu00013 10.27628 3.77 × 10−104 3.76 × 10−101 Bacteroidota Bacteroidia_unclassified
Otu00008 12.16469 1.10 × 10−52 5.50 × 10−50 Bacteroidota Alistipes
Otu00210 6.015742 2.53 × 10−34 8.40 × 10−32 Bacteroidota Bacteroidia_unclassified
Otu00016 12.06219 1.26 × 10−29 3.15 × 10−27 Firmicutes Peptostreptococcaceae_unclassified
Otu00081 −5.50531 5.47 × 10−23 1.09 × 10−20 Firmicutes Faecalibacterium
Otu00004 12.52144 6.05 × 10−21 1.00 × 10−18 Bacteroidota Bacteroides
Otu00309 6.301178 1.10 × 10−20 1.57 × 10−18 Firmicutes Ruminococcus
Otu00209 5.807156 1.99 × 10−19 2.47 × 10−17 Bacteroidota Alistipes
Otu00001 −3.82554 4.49 × 10−19 4.96 × 10−17 Firmicutes Faecalibacterium
Otu00039 6.494405 2.03 × 10−16 2.02 × 10−14 Bacteroidota Bacteroides
Otu00280 −5.7675 2.99 × 10−16 2.70 × 10−14 Firmicutes Faecalibacterium
Otu00071 10.03166 1.45 × 10−15 1.21 × 10−13 Firmicutes Bacillales_unclassified
Otu00079 8.499449 1.78 × 10−15 1.36 × 10−13 Firmicutes Lachnospiraceae_unclassified
Otu00229 6.941029 1.93 × 10−15 1.37 × 10−13 Firmicutes Firmicutes_unclassified
Otu00150 3.574264 2.30 × 10−15 1.53 × 10−13 Firmicutes Lachnospiraceae_unclassified

Six phyla and 52 genera were observed in the broiler chickens. Further analysis us-
ing t-test was performed to evaluate the significantly abundant genera. Among the NE
group, Clostridia_UCG_014 was significantly different in abundance between chickens fed
with basal and BMD diets. Streptococcus, Oscillospirales, Fusicatenibacter, and Ruminococ-
cacea_unclassified were significantly different in abundance between chickens fed NE-BMD
and HE-BAS. Among chickens fed HE, Streptococcus, Oscillospirales, and Fusicatenibacter
were differential between basal and BMD diets. A higher abundance of Escherichia–Shigella
was found to be significant in chickens fed NE-BMD diet. Bacilli_unclassified was signifi-
cantly enriched (p < 0.05) in chickens fed NE-BAS (Figure 3).
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Figure 3. Significant differences in microbes among different diets using STAMP software package (p-value < 0.05).
(a) Significant differences in microbes between chickens fed NE-BAS and NE-BMD. (b) Significant differences in microbes
between chickens fed NE-BAS and HE-BAS. (c) Significant differences in microbes between chickens fed NE-BAS and
HE-BMD. (d) Significant differences in microbes between chickens fed NE-BMD and HE-BMD. (e) Significant differences
in microbes between chickens fed NE-BMD and HE-BAS. (f) Significant differences in microbes between chickens fed
HE-BAS and HE-BMD. NE-BAS = normal-energy basal diet; NE-BMD = normal-energy diet containing bacitracin methylene
disalicylate; HE-BAS = high-energy basal diet; HE-BMD = high-energy diet containing bacitracin methylene disalicylate.
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3.3. Dynamic Changes in Microbial Taxa across Growth Stages

The principal component analysis (PCA) analysis showed significant differences
across growth stages. We observed a high level of similarities between days 36 and 43
compared to day 21 (Figure 4a). Alpha diversity index using Shannon revealed a significant
difference between days 21 and 43 and between days 36 and 43 (p < 0.05), although the
difference between days 21 and 36 was not significant (Figure 4b). Moreover, the PCoA plot
obtained from beta analysis showed that the interaction between diets and age influenced
the microbial community of the broiler chickens. Greater similarity among diets on days
36 and 43 compared to day 21 was observed. Moreover, samples from different diets on
day 21 clustered closer than those on days 36 and 43 (Figure 4c).
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determine significant differences in beta diversity among sampling factors (Supplemen-
tary Table S1), we observed there were no significant differences in bacteria composition 
along with the treatments. Further post hoc pairwise testing indicated that there was a 
significant difference (p-value < 0.05) in gut microbial flora across the treatments at differ-
ent days (Supplementary Table S2), which can be visualized by the above PCoA plot (Fig-
ure 4c). Pairwise contrasts are presented in Supplementary Table S2, and the FDR method 
was used to correct p-values for multiple comparisons. 

Figure 4. (a) The principal component analysis (PCA) plot, created using STAMP software, compares genus-level taxonomic
profiles across growth stages (day 21 (D21), day 36 (D36), and day 43 (D41)). (b) Alpha analysis using the Shannon index,
showing the diversity of gut microbiota at different growth stages (D21, D36, and D41). (c) Principal coordinate analysis
(PCoA) plot obtained from beta analysis shows differences in bacterial community regardless of time. (d) LEfSe analysis
result revealed the effect size of some significant taxa at different stages of growth. The plot was generated using the
online LEfSe project. Red, green, and blue represent the enriched taxa in chickens on days 21, 36, and 43, respectively.
(e) Significant differences in microbes between days 21 and 36 and between days 36 and 43 (q-value < 0.05), assessed
using STAMP software package. (f) Relative abundance of top phyla during different stages of growth (days). (g) Relative
abundance of genera during different stages of growth (days). Bar plots were generated using GraphPad Prism.

From the permutational analysis of variance (PERMANOVA) that was conducted to
determine significant differences in beta diversity among sampling factors (Supplementary
Table S1), we observed there were no significant differences in bacteria composition along
with the treatments. Further post hoc pairwise testing indicated that there was a significant
difference (p-value < 0.05) in gut microbial flora across the treatments at different days
(Supplementary Table S2), which can be visualized by the above PCoA plot (Figure 4c).
Pairwise contrasts are presented in Supplementary Table S2, and the FDR method was
used to correct p-values for multiple comparisons.
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LEfSe analysis result revealed the effect size of some significant taxa on different
days (Figure 4d). Additionally, Welch’s t-test using Stamp software displayed the relative
abundance of significant microbes among days. Specifically, 17 genera changed significantly
between days 21 and 36, while 3 changed between days 36 and 43 (q-value < 0.05). Some
of the genera that changed significantly were Alistipes, Odoribacter, Bacillales_unclassified,
Hungateiclostridiaceae_unclassified, Corynebacterium, and Parasutterella (Figure 4e).

We further compared the abundance of gut microbiota in the broiler chickens at
different growth stages. The most abundant phyla in all three time points were Firmicutes
and Bacteroidota. On day 21, the proportion of Firmicutes was 86.3%, and the proportion
of this phylum was reduced drastically to 52.8% and then increased to 61.0% on day 43.
The highest proportion of Bacteroidota (44.49%) was seen on day 36, and the proportion of
this phylum was later reduced to 36.6% on day 43. The lowest proportion of Bacteroidota
(11.7%) was observed on day 21 (Figure 4f). A similar occurrence was seen at the genus level.
The most abundant genera were Faecalibacterium, Lachnospiraceae_unclassified, Bacteroides,
Alistipes, and Clostridia_unclassified. On day 21, the proportion of Faecalibacterium was
35.4%, and this genus also emerged as the most abundant. A minimal proportion of
Faecalibacterium was observed on days 36 and 43 (8.45 and 6.75%, respectively). On day
36, Bacteroides emerged as the most abundant with a proportion of 26.6%, followed by
Lachnospiraceae_unclassified (21.8%). On day 43, Lachnospiraceae_unclassified was the most
dominant (26.6%). Notably, the relative abundance of Lachnospiraceae_unclassified increased
with growth in broiler chickens (18.1, 21.8, and 26.5% on days 21, 36, and 46, respectively).
Moreover, the relative abundance of Alistipes increased as broiler chickens increased with
age. A low proportion of Alistipes (1.77%) was seen on day 21, and the proportion of this
genus increased to 8.67% on day 36 and 13.50% on day 43. On the contrary, the relative
abundance of Faecalibacterium decreased with growth changes (Figure 4g).

4. Discussion
4.1. Effect of BMD and Energy Density on Growth Performance, Organ Weight, and
Jejunal Morphology

High-energy diet has been reported to improve BW, BWG [35,36], and FCR [37] of
broiler chickens. In the current study, there was no significant effect of dietary energy
on overall growth performance. There was an increase in FCR among the chickens fed
high-energy diets during the starter phase, but this was later compensated for during the
grower and finisher phases. Our result supports a previous study by Coon et al. [38] who
found that chick weight gain for 0–28 days was not significantly different for chicks fed
high-energy diet. Moreover, FCR of chicks fed high-energy starter diet was superior to
those fed low-energy diet [38]. Wang et al. (2014) [37] noted that high nutrient density
improves FCR during the grower feeding phase. Additional findings in our study showed
that BW and BWG were not significantly influenced by BMD, which is in agreement
with a previous study by Damron et al. [39]. On the contrary, BMD improved the BW
in broilers [40]. In the current study, we found that BMD significantly improved FCR in
chickens on days 25–35. Our result is supported by a previous study that also established
that FCR was significantly improved in birds treated with bacitracin [41]. Sims et al. [17]
affirmed that at week 18, FCR was significantly lower in chickens fed with BMD than in
the control group. Surprisingly, there was no interaction between BMD and energy level
on growth performance parameters in our study.

The relative weight of immune organs is one of the primary determining factors
of poultry birds’ immune status [42]. Our findings indicated no significant differences
among the treatments in the relative weight of organs except for bursa weight, which was
significantly increased (p = 0.0220) among the chicken birds that received high-energy
diets compared to control. The bursa of Fabricius (BF) has been studied and revealed as a
primary lymphoid organ in birds; it plays a vital role in the differentiation of B lymphocytes
for immunoglobulin production during an immune challenge [43] and the development of
the adaptive immune response of birds [44]. Conflicting with our findings, Cho et al. [45]
concluded that emulsifier and multienzyme in low-density diets could increase the relative
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bursa weight. A recent study reported that a low-energy-density diet could increase chicken
bursa weight [46]. High-energy diet could also be associated with the roles of the bursa in
poultry birds. Chickens fed with a high-energy diet with BMD had significantly increased
villus height and width in the current study. This observation indicates that BMD may be
more effective in improving intestinal health when a high-energy diet is fed to chickens
compared to when a normal-energy diet is fed. Adebowale et al. [47] reported that high
dietary energy density induced stress in piglets and reduced villus height/crypt depth
ratio in the ileum and duodenum. This indicates that a high-energy diet could be stressful
to the chickens’ intestinal functionality. In the current study, the negative effect of feeding
high-energy diet on the intestinal structure was ameliorated by the administration of BMD
to the chickens. This agrees with previous studies that reported that low doses of BMD
increased villus height through the small intestine in chickens [48]. The increase in villus
height and surface area indicates an increase in cell proliferation, which may contribute to
intestinal epithelial integrity maintenance [49].

4.2. Effect of BMD and Energy Density on Gut Microbiota Dynamics

Diets and antibiotics have been reported to shape the composition of gut micro-
biota [50]. Antibiotics sometimes have continuing effects on microbial flora in the gut,
leading to a decrease in the abundance of beneficial microbes and promoting harmful
bacteria [51]. Contrarily, a study revealed that the addition of BMD or Bacillus subtilis
significantly reduced the population of harmful bacteria in the intestine [40]. Dietary
components are vital for poultry gut health [52]. We investigated the effects of BMD on
chicken gut microbiota at different dietary energy levels. The most abundant phyla in
broiler chickens were Firmicutes and Bacteroidota, which is consistent with the results
of our previous study [7]. Firmicutes produce molecules directly absorbed by the host
gut wall as an energy source, and their abundance has been linked to weight gain in
chickens [53,54]. It is worth noting that the inclusion of BMD into HE diets improved
the population of Firmicutes slightly, compared to the control (HE-BAS), in this current
study. Additionally, the abundance of Bacteroidota in broiler chickens that we observed
in chickens fed a high-energy diet could result from this microbe’s involvement in the
fermentation of dietary carbohydrates to produce short-chain fatty acids (SCFAs) [55].
SCFAs are the main end products of fermentation of nondigestible carbohydrates that
colonize the human gut; they serve as sources of energy and have lasting impacts on host
physiology [56].

We observed a slight reduction in the relative abundance of intestinal bacteria in the
BMD treatment group, which is consistent with our previous findings [7]. The reduction
in the relative abundance of Bacteroidetes observed among chickens fed with BMD agrees
with a recent study that reported that antibiotic treatment reduced Bacteroidetes diversity
in infants [57]. Bacteroidetes members are essential in developing a stable and healthy gut
microbiota [58]. Moreover, the BMD effect was seen to significantly decrease Streptococcus
abundance in our study. Streptococcus regulates the production of bacteriocin through
quorum sensing [59]. Recently, the leading causative agent of dental caries in humans has
been linked with Streptococcus mutants [60]. Further research is required to establish the
exact role of Streptococcus in chickens.

We detected significant differences in microbial abundance among dietary treatment
groups using STAMP software. Oscillopirales_ge abundance was significantly increased in
chickens fed with high- and normal-energy diets containing BMD compared to those fed
with high-energy basal diet. This suggests that BMD may contribute to indigestion in chick-
ens. A high abundance of Oscillopirales may play an increasing role in constipation [61]. A
significant increase in Streptococcus in chickens fed a normal-energy basal diet inhibited the
growth of Oscillospirales. In contrast, a high-energy diet with BMD drastically reduced the
abundance of Streptococcus. This phenomenon supports a previous study that established
negative correlations between Streptococcus and some bacteria. Streptococcus has been
found to produce metabolites that work against or kill some other bacteria [62,63], such as
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Oscillospirales. Meanwhile, the abundance of some microbes, such as Faecalibacterium, was
not affected by diet but changed dynamically with time.

One of the essential factors that influences gut bacterial composition is the birds’
age [64]. We examined how the gut microbiota changes dynamically with growth stages
and found that Faecalibacterium decreased as chickens’ age increased in our study, which
is inconsistent with the findings of Donaldson et al. [65], which recorded an increase in
the relative abundance of Faecalibacterium with time, though in slow proportion. The
enrichment of Faecalibacterium is associated with a healthy human adult [65] and might
influence chicken immune development [66]. The variation in the two studies might be
due to diet or antibiotic treatment, which has been described to alter gut microbiota’s
composition despite its stability [65]. The proportion of Alistipes increased as broiler
chickens increased with age in the present study. Alistipes are commensal bacteria that
belong to the phylum Bacteroidata and are assumed to benefit the host gut [67]. We further
observed significant microbes at different time points of our study (days 21, 36, and 43).
Ruminococcus was significantly abundant on day 36 of our study. Previous studies have
reported that Ruminococcus might play a role in increasing mucin production by goblet
cells [68] and improving host resistance to harmful bacterial invasion in calves [69]. The
high abundance of Bacteroides and Ruminococcus suggests a healthy gut microbiota [70].
Lactobacillus was significantly abundant on day 43 based on the LEfSe result in our study.
Increased Lactobacillus abundance could help inhibit some pathogens due to the production
of vitamins and organic acids by this beneficial probiotic [71,72]. In the current study, the
decrease in Lactobacillus abundance resulting from BMD inclusion signifies an adverse effect
of antibiotics on beneficial microbes. A decline in Lactobacillus abundance is consistent with
an earlier study that reported that antimicrobial growth promoters were associated with
a reduction in the abundance of Lactobacillus species [73]. An upsurge of lactobacilli may
be related to broiler growth depression in relation to competing for nutrient uptake or fat
absorption in broiler chickens [10].

Our results showed that there were some interactions between diets and age, based
on post hoc pairwise test, that influence the microbial community of the broiler chickens.
This finding is consistent with a previous study that has established that the chicken gut
microbiota is mostly shaped by the age and diet of the birds [64].

5. Conclusions

In conclusion, dietary supplementation of BMD in a high-energy diet improved FCR
during the grow-out phase, increased villus height and width, and increased the relative
abundance of beneficial gut microbiota members such as Firmicutes in broiler chickens.
This study is novel because, to our knowledge, it is the first to present the effects of BMD in
a high-energy-density diet on growth performance, organ weights, jejunal morphology, and
gut microbiota of broiler chickens. Our results imply that BMD may be more effective in
improving intestinal health when supplemented in a high-energy diet for broiler chickens.
It also affirmed that chicken gut microbiota is mostly shaped by age and diet.
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