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Simple Summary: For pathologists, how to precisely diagnose cancer from microscopy slides of
tumor tissue samples so that each patient may receive the optimal treatment for his specific type
of disease is a major task. Recent research based on digital pathology image analysis enables new
approaches to assess tumor-host interaction at a microscopic level. The current study applies a novel
spatial analysis method which computes Immunogradient indicators to estimate the migration of
immune cells towards the tumor across the tumor/stroma interface. These indicators, computed for
two types of immune cells (CD8 and CD20), proved to be independent prognostic factors in this study
of 87 patients with colorectal cancer. The indicators were combined with infiltrative tumor growth
pattern, assessed by a pathologist, into a new immuno-interface score which enabled prediction of
the patient survival independent of other clinical, pathology and molecular characteristics of the
tumor. The study demonstrates the value of computational pathology to advance the precision of
clinical decision-making.

Abstract: Tumor-associated immune cells have been shown to predict patient outcome in colorectal
(CRC) and other cancers. Spatial digital image analysis-based cell quantification increases the
informative power delivered by tumor microenvironment features and leads to new prognostic scoring
systems. In this study we evaluated the intratumoral density of immunohistochemically stained CD8,
CD20 and CD68 cells in 87 cases of CRC (48 were microsatellite stable, MSS, and 39 had microsatellite
instability, MSI) in both the intratumoral tumor tissue and within the tumor-stroma interface zone (IZ)
which was extracted by a previously developed unbiased hexagonal grid analytics method. Indicators
of immune-cell gradients across the extracted IZ were computed and explored along with absolute cell
densities, clinicopathological and molecular data, including gene mutation (BRAF, KRAS, PIK3CA)
and MSI status. Multiple regression modeling identified (p < 0.0001) three independent prognostic
factors: CD8+ and CD20+ Immunogradient indicators, that reflect cell migration towards the tumor,
were associated with improved patient survival, while the infiltrative tumor growth pattern was
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linked to worse patient outcome. These features were combined into CD8-CD20 Immunogradient
and immuno-interface scores which outperformed both tumor-node-metastasis (TNM) staging and
molecular characteristics, and importantly, revealed high prognostic value both in MSS and MSI CRCs.

Keywords: tumor infiltrating lymphocytes; tumor microenvironment; Immunogradient; CD8; CD20;
tumor growth pattern; immuno-interface score; colorectal cancer

1. Introduction

Colorectal cancer (CRC) is globally the third most commonly diagnosed and second leading cause
of cancer-related deaths for both sexes [1]. Recent improvements in survival are associated with both
earlier disease detection and the development of personalized tumor biology-based therapies [1,2].
The main factor in cancer management however is still the traditional tumor-node-metastasis (TNM)
staging system. Although this provides very powerful and robust prognostic information, there is
wide variation in the outcome of patients within individual stage categories [3]. The precision in
identifying the patients at high risk of tumor progression and those who may benefit from combined
therapies could be improved by including the information on the molecular profiles of tumors and
“immune” community in the tumor microenvironment (TME) to the TNM system [4–6].

Currently, only a few molecular markers have been implemented for the management of CRC
although these have mainly been for therapy stratification such as testing for activating KRAS,
NRAS and BRAF gene mutations as exclusion criteria for the use of EGFR-targeted therapies in
metastatic CRC (mCRC) [2]. Although RAS and BRAF mutations are considered to be poor prognostic
factors [7], outside of targeted therapies, they are not used for outcome predictions in routine
CRC diagnostics. Recently, tumor microsatellite instability (MSI) traditionally used to identify Lynch
syndrome patients [8], was rediscovered as a biomarker for immunotherapy in CRC [9,10]. Tumors with
MSI are highly immunogenic due to loss of DNA mismatch repair function. This results in an increased
mutation rate with consequent generation of neo-antigens stimulating an anti-tumor immune response
which is considered as the basis of improved patient survival [11,12]. CRC MSI tumors have been
shown to be enriched with checkpoint proteins like PD-1, PD-L1, and CTLA-4 that are targeted clinically
with immune checkpoint inhibitors [13]. Over the last decade, comprehensive research of the TME,
especially the cancer immunome and local cell infiltrates, has led to the recognition of host immunity
as one of the major factors in cancer biology [14,15]. Tumor infiltrating lymphocytes (TIL) can be
viewed as a surrogate marker of the anti-tumor immune response and, histologically, tumors can
be seen to be “immune hot” (containing large numbers of TIL) and “immune cold” (containing few
TIL) [16]. A number of studies, using both visual assessment and digital image analysis (DIA), have
demonstrated that TIL are highly prognostic markers associated with better patient survival in various
malignancies including lung, breast, melanoma, pancreas and CRC [17–21].

Digital immunohistochemistry (IHC) based methods have been demonstrated to increase the
informative power of immune cell quantification in cancers [22,23]. The Immunoscore® method
based on direct quantification of CD3+ and CD8+ cell densities in the core of tumor (CT) and
its invasive margin (IM) first proposed in 2012 [24], was in 2018 shown to be a prognostic score
superior to TNM-staging in CRC [25,26]. Moreover, Immunoscore® and other immune assessment
approaches have shown TIL to be a stronger predictor of tumor recurrence than microsatellite instability
status [27–29]. Furthermore, immune response assessment and Immunoscore®, as a reference method
that has demonstrated the immune component to be of the highest relative contribution to the tumor
recurrence risk compared to all clinical parameters in CRC [6], was proposed to complement the World
Health Organization classification of tumors of digestive system [30].
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DIA-based immune profiling analysis was further advanced by Nearchou et al. by a combined
tumor budding and immune cell quantification and proximity analysis; they proposed a spatial
immuno-oncology index based on spatial relationships between tumor buds, TIL and macrophage
populations within TME which enabled significant prognostic stratification of stage II CRC [31,32].
Recently, Rasmusson et al. proposed a set of Immunogradient indicators which quantifies the immune
cell density gradient across the tumor-stroma interface zone (IZ), sampled by an automated hexagonal
tiling statistical modeling; the Immunogradient indicators for CD8+ cell density provided independent
prognostic value in CRC and hormone receptor positive breast cancer patients [33].

In this study we investigated the prognostic value of immune cell density and Immunogradient
indicators for CD8+, CD20+ and CD68+ in the context of MSI status and a variety of clinicopathological
and molecular features in a selected CRC patient cohort. Based on identified three independent
prognostic indicators (CD8+ and CD20+ Immunogradient indicators and the histological feature
of infiltrative tumor growth pattern), we computed CD8-CD20 Immunogradient score and
immuno-interface score (IIS) for CRC which is a potential MSI status-independent prognostic tool
based exclusively on TME features.

2. Results

2.1. Patient Clinicopathological Characteristics

The study was performed in an 87 CRC patient cohort with formalin-fixed paraffin embedded
(FFPE) surgical resection specimens tested for microsatellite and gene mutation status. A comparison
of the clinicopathological and tumor molecular features showed that patients with MSI tumors were
older, as has been previously observed in sporadic CRC [34,35]; MSI tumors were associated with poor
differentiation by histology, BRAF mutations and right-sided location, whereas MSS tumors displayed
a higher frequency of KRAS mutations; this is in line with observations in other studies [36,37].
There were no associations between MSI status and patient age, sex, the TNM-staging, lymphovascular
invasion, perineural invasion, tumor growth pattern or budding (Table 1).

Table 1. Clinicopathological parameters in patients grouped by tumor microsatellite instability status.

Clinicopathological
Parameters MSS CRC, n (%) MSI CRC, n (%) p-Value *

Total 48 (100) 39 (100) -

OS follow-up, months Median 52 46 -

Range 2–97 1–117

Deceased 5-year follow-up 11 (12.6) 17 (19.5) -

10-year follow-up 11 (12.6) 18 (20.7)

Age groups by median ≤71 years 32 (66.7) 13 (33.3) 0.0026 *

>71 years 16 (33.3) 26 (66.7)

Sex Female 23 (47.9) 26 (66.7) 0.0878

Male 25 (52.1) 13 (33.3)

TNM stage I 0 1 (2.6) 0.9999

II 31 (64.5) 23 (58.9)

III 16 (33.3) 13 (33.3)

IV 1 (2.1) 2 (5.1)

Histological grade (G) G2 44 (91.7) 20 (51.3) <0.0001 *

G3 4 (8.3) 19 (48.72)
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Table 1. Cont.

Clinicopathological
Parameters MSS CRC, n (%) MSI CRC, n (%) p-Value *

Tumor invasion (pT) pT2 1 (2.1) 1 (2.6) 0.8115

pT3 36 (75) 27 (69.2)

pT4 11 (22.9) 11 (28.2)

Lymph node metastasis (pN) pN0 32 (66.7) 25 (64.1) 0.9027

pN1 8 (16.7) 8 (20.5)

pN2 8 (16.7) 6 (15.4)

Distant metastasis (M) M0 47 (97.9) 37 (94.9) 0.5850

M1 1 (2.1) 2 (5.1)

Lymphovascular invasion
(LVI) LVI0 28 (58.3) 24 (61.5) 0.8279

LVI1 20 (41.7) 15 (38.5)

Perineural invasion (Pne) Pne0 42 (87.5) 32 (82.1) 0.5529

Pne1 6 (12.5) 7 (18.9)

Tumor location Left 28 (58.3) 3 (7.7) <0.0001 *

Transverse 0 1 (2.56)

Right 19 (39.6) 33 (84.6)

Multiple sites 1 (2.1) 2 (5.1)

Tumor growth pattern Pushing margin 23 (47.9) 26 (66.7) 0.0878

Infiltrative margin 25 (52.1) 13 (33.3)

Tumor budding Low 33 (68.8) 25 (64.1) 0.6557

High 15 (31.2) 14 (35.9)

Peritumoral lymphocytes Inconspicuous 35 (72.9) 20 (52.6) 0.0707

Conspicuous 13 (27.1) 18 (47.4)

BRAF mutation status Wild-type 44 (91.7) 18 (46.2) <0.0001 *

Mutant 4 (8.3) 21 (53.8)

KRAS mutation status Wild-type 25 (52.1) 32 (82.2) 0.0060 *

Mutant 23 (47.9) 7 (17.9)

PIK3CA mutation status Wild-type 40 (83.3) 31 (79.5) 0.7822

Mutant 8 (16.7) 8 (20.5)

* p-value < 0.05 is considered significant.

2.2. Summary Statistics of Immunogradient and Intratumoral Immune Cell Density Indicators

Cell densities were calculated for all biomarkers in both the intratumoral tissue and inside the IZ,
which consists of three aspects: tumor (T), tumor edge (TE) and stroma (S); mean CD8+, CD20+ and
CD68+ cell densities were calculated within each aspect. The CD8+ and CD68+ cell densities within
the aspects of IZ of width 3 (IZ) and the intratumoral densities were higher in MSI than in MSS tumors,
whereas no differences in IZ and intratumoral CD20+ cell densities were observed comparing MSI and
MSS tumors (Table 2).
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Table 2. Summary statistics of the Immunogradient and intratumoral immune cell density indicators
in patients grouped by tumor microsatellite instability status.

Immunogradient and
Intratumoral Cell Density

(Cells/mm2) Indicators

MSS CRC, n = 48 MSI CRC, n = 39

Mean Median sd Mean Median sd p-Value *

CD8_CM −0.35 −0.35 0.17 −0.20 −0.18 0.21 0.0006 *
CD8_d_S 193.78 147.06 147.73 370.76 294.91 404.69 0.0024 *

CD8_d_TE 141.82 90.03 128.49 339.94 208.15 400.52 0.0004 *
CD8_d_T 76.47 49.24 92.49 262.40 140.22 342.64 0.0001 *
INT_CD8 65.37 37.59 81.99 238.90 133.46 311.26 <0.0001 *
CD20_CM −0.49 −0.54 0.23 −0.59 −0.63 0.14 0.0141 *
CD20_d_S 54.26 32.81 68.44 71.37 36.78 83.35 0.3650

CD20_d_TE 31.61 14.01 59.39 30.56 18.93 33.44 0.7857
CD20_d_T 12.20 4.66 30.68 5.40 3.87 6.12 0.0899
INT_CD20 13.75 4.19 31.21 9.70 5.88 12.90 0.6003
CD68_CM −0.26 −0.28 0.14 −0.11 −0.08 0.14 <0.0001 *
CD68_d_S 173.95 158.15 118.19 182.45 173.88 104.31 0.5616

CD68_d_TE 145.14 120.25 99.73 190.06 175.17 106.06 0.0281 *
CD68_d_T 72.49 55.29 73.41 126.52 100.39 82.40 <0.0001 *
INT_CD68 60.04 48.90 55.89 112.15 95.33 71.48 <0.0001 *

CD8_d, CD20_d and CD68_d indicate mean density for each biomarker, respectively; densities are summarized over
hexagons in the stroma aspect (S), tumor edge (TE) and tumor aspect (T) of the IZ; INT—mean intratumoral density;
CM—Center of Mass implicitly by mean cell density in ranks; sd—standard deviation of indicator. * p-value < 0.05
is considered significant.

The Immunogradient indicator Center of Mass (CM) for CD8+ or CD68+ cell densities revealed
higher cell density gradient towards the T aspect within the IZ of MSI compared to MSS tumors.
In contrast, CM for CD20+ cell density indicated more prominent cell density gradient towards the
T aspect within the IZ of MSS than MSI tumors (Table 2). Overall, IZ and intratumoral CD8+ and
CD68+ cell densities were similar in MSS tumors, whereas a higher CD8+ cell density compared to
CD68+ cell density was seen in the aspects of IZ in MSI tumors; IZ and intratumoral CD20+ cell
densities were lowest both in MSI and MSS tumors (p < 0.05). CD8+ cell density distributions were
similar in the S and TE aspects of IZ, the same was seen for CD68+ cell density distributions, however,
both cell markers were less abundant in the T aspect of IZ in MSI and MSS tumors (p < 0.05). The density
of CD20+ cells were highest in the S, less abundant in TE and lowest in T aspect of IZ in MSI and MSS
tumors. There were no significant differences between cell densities in the T aspect of IZ and the tumor
tissue, both in MSI and MSS tumors.

2.3. Associations of Clinicopathological Parameters, Immunogradient and Intratumoral Immune Cell
Density Indicators

The overall survival (OS) estimates for the clinicopathological parameters and tissue immune
response indicators in this cohort of patients are presented in Table 3. For the CM and the cell
densities in the IZ aspects, cut-off values were obtained by log-rank test (Cutoff Finder [38]) to stratify
the patients into groups with high versus low indicator values. In univariate analysis, statistically
significant patient stratifications were obtained by the CM indicator for both CD8+ and CD20+ cell
densities, for S and T aspects CD20+ cell densities, and for intratumoral CD20+ cell density, whereas
no CD68+ cell density indicators showed any significant associations with the patient outcomes.
The OS for Immunogradient-based patient stratifications are presented in Figure 1A,D. CM for CD8+

cell density stratified patients by their 5-year OS probabilities at 75% and 43%; CM for CD20+ cell
density provided 5-year OS rates at 76% and 56%. Among the clinicopathological parameters only
the tumor growth pattern provided significant prognostic stratification while neither TNM-staging,
nor molecular features were associated with the patient OS. The tumor growth pattern predicted
5-year OS at 73% and 47% rates in pushing and infiltrative categories, respectively (Figure 1G).
The univariate Immunogradient-based OS stratifications were similar in the subgroups of MSS and
MSI tumors (Figure 1 B,C,F), except for CM for CD20+ cell density which did not reach statistical
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significance (Figure 1E). This finding may indicate a different role of CD20+ cells in MSS tumors;
however, additional studies are needed to explore this effect further. The tumor growth pattern
revealed significant stratification in MSS and a similar trend in MSI tumors (Figure 1H,I).

Table 3. Statistics of univariate analyses of clinicopathological parameters, Immunogradient and
intratumoral immune cell density indicators for patient overall survival.

Clinicopathological Parameters, Immunogradient and
Intratumoral Cell Density Indicators

CRC, n = 87

HR 95% CI p-Value *

Age group (>median vs. ≤median) 1.33 0.64–2.77 0.4480

Sex (male vs. female) 0.84 0.40–1.77 0.6481

TNM stage (III-IV vs. I-II) 1.06 0.49–2.30 0.8825

pT status (pT4 vs. pT2-3) 1.05 0.45–2.46 0.9151

pN status (pN1-2 vs. pN0) 0.98 0.45–2.18 0.9683

M status (M1 vs. M0) 3.41 0.80–14.60 0.0978

G stage (G3 vs. G2) 1.60 0.74–3.46 0.2312

LVI status (LVI1 vs. LVI0) 1.77 0.56–2.43 0.6737

Pne status (Pne1 vs. Pne0) 1.67 0.68–4.12 0.2648

Tumor location (right/transverse/multiple vs. left) 2.00 0.85–4.68 0.1128

Tumor growth pattern (infiltrative vs. pushing margin) 2.81 1.32–5.98 0.0075 *

Tumor budding (high vs. low) 2.05 0.98–4.29 0.0556

Peritumoral lymphocytes (inconspicuous vs. conspicuous) 1.28 0.61–2.69 0.5234

MSI status (MSI vs. MSS) 2.07 0.97–4.43 0.0614

BRAF status (mutant vs. wild-type) 0.98 0.44–2.18 0.9501

KRAS status (mutant vs. wild-type) 0.78 0.36–1.72 0.5369

PIK3CA status (mutant vs. wild-type) 0.59 0.21–1.70 0.3264

CD8_CM (high vs. low) 0.31 0.15–0.66 0.0013 *

CD8_d_S (high vs. low) 1.46 0.64–3.31 0.3600

CD8_d_TE (high vs. low) 0.64 0.31–1.35 0.2400

CD8_d_T (high vs. low) 0.53 0.25–1.10 0.0850

INT_CD8 (high vs. low) 2.13 0.93–4.88 0.0670

CD20_CM (high vs. low) 0.39 0.16–0.91 0.0230 *

CD20_d_S (high vs. low) 0.30 0.12–0.75 0.0061 *

CD20_d_TE (high vs. low) 0.33 0.10–1.08 0.0530

CD20_d_T (high vs. low) 0.43 0.20–0.90 0.0210 *

INT_CD20 (high vs. low) 0.41 0.18–0.90 0.0230 *

CD68_CM (high vs. low) 1.77 0.84–3.74 0.1300

CD68_d_S (high vs. low) 0.59 0.28–1.23 0.1500

CD68_d_TE (high vs. low) 0.65 0.30–1.43 0.2800

CD68_d_T (high vs. low) 1.82 0.77–4.26 0.1600

INT_CD68 (high vs. low) 1.73 0.79–3.81 0.1700

HR hazard ratio, CI confidence interval. * p-value < 0.05 is considered significant.



Cancers 2020, 12, 2902 7 of 17

Figure 1. Kaplan-Meier plots representing overall survival probabilities obtained by Immunogradient
and histology indicators in all tumors, MSS tumors, MSI tumors, respectively. (A–C): CM for CD8+ cell
density in the IZ; (D–F): CM for CD20+ cell density in the IZ; (G–I): tumor growth pattern.

The features that revealed significant patient stratification in univariate analyses (p < 0.05, Table 3)
were tested for their independent prognostic value by multiple Cox regression (Table 4). A strong
prognostic model (Model#1, LR: 23.03; p < 0.0001) was obtained with high CM for CD8+ and CD20+ cell
densities predicting longer patient OS, and infiltrative tumor growth pattern independently associated
with worse patient survival; an example of independent indicators’ estimates in an individual CRC
case is presented in Figure 2.
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Table 4. Multiple Cox regression models for patient overall survival.

Clinicopathological and Immunogradient Indicators CRC, n = 87

Model#1, LR: 23.03; p < 0.0001 HR 95% CI p-Value

CD8_CM (high) 0.31 1.42–0.67 0.0029
CD20_CM (high) 0.33 0.14–0.78 0.0113

Tumor growth pattern (infiltrative) 2.90 1.34–6.29 0.0071

Model#2, LR: 15.50; p = 0.0004 HR 95% CI p-Value

CD8_CM (high) 0.30 0.14–0.64 0.0019
CD20_CM (high) 0.37 0.16–0.87 0.0228

HR hazard ratio, CI confidence interval, LR likelihood ratio.

Figure 2. Example of extracted tumor-stroma interface zone, Immunogradient indicator estimates
and tumor growth pattern in an individual colorectal cancer case. (A): CD8+ cell density profile
within the IZ, the box-plot colors correspond to the colors in (E); (B,C): CM for CD8+ and CD20+

cell density values, respectively, represented by a white diamonds within the range of the indicator
values; (D): tumor growth pattern represented by a white diamond within the two-color bar indicating
infiltrative versus pushing margins; (E): shows the interface zone overlaid on the whole slide image (see
Figure S1 for the original image without the overlay): tumor edge (yellow), tumor aspect (red), stroma
aspect (green). Prognostic cut-off values for the CRC patient cohort are represented by the vertical
line within the range of the indicator values; the grey shade of the bar represents better prognosis for
brighter values and worse prognosis for darker values.

2.4. Immuno-Interface Score for Predicting Patient Overall Survival

To integrate the independent informative value of all three indicators, we calculated a combined
immune-interface score (IIS) by summing positive prognostic scores obtained from the patient
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stratifications based on cut-off values for each factor: the CM for both CD8+ and CD20+ cell
densities were assigned a value of 1 (favorable) or 0 (unfavorable) for the high and low indicator
scores, respectively. Similarly, the tumor growth pattern was assigned a value of 1 (favorable) or 0
(unfavorable) for a pushing or infiltrative tumor margin, respectively.

Figure 3A outlines patient stratifications obtained by the combined score of CMs for CD8+ and
CD20+ cell densities (a combined CD8-CD20 Immunogradient score), which provided three prognostic
groups: score 2 with 87%, score 1 with 64%, and score 0 with 33% 5-year OS rates, respectively. Further,
we added the prognostic impact of the tumor growth pattern, to calculate IIS, which stratified the
patients into four prognostic groups (Figure 3D): score 3 with 94%, score 2 with 73%, score 1 with 53%,
score 0 with 19% 5-year OS rates.

Figure 3. Kaplan-Meier plots representing overall survival probabilities obtained by the combinations
of Immunogradient and histology indicators, in all tumors, MSS tumors and MSI tumors, respectively.
(A–C): CD8-CD20 Immunogradient score; (D–F): immuno-interface score.

3. Discussion

This study presents the prognostic value of a novel IIS based on spatial properties of immune
response and the tumor-stroma interface histology pattern. Specifically, the score combines the
independent prognostic impacts of both CD8+ and CD20+ cell density gradients within the IZ and the
tumor growth pattern assessed by pathologist as infiltrative margin. Importantly, the IIS predicted
CRC patient OS independently of other clinicopathological and molecular variables, including the MSI
status, and provided similar prognostic stratifications in both MSI and MSS subgroups. Furthermore,
significant prognostic stratification could be achieved exclusively based on IHC data by computing the
combined CD8-CD20 Immunogradient (Model#2, Table 4).

Our study provides further evidence for the value of the recently proposed Immunogradient
indicators as independent prognostic factors reported in CRC and hormone receptor-positive breast
cancer patients [33]. In particular, the CM for CD8+ cell density within the IZ (CD8+ Immunogradient)
was a strong independent predictor of better OS in CRC patients (HR: 0.39, p = 0.0071) [33], similar to that
in the current analysis of an independent CRC cohort (HR: 0.31, p = 0.0029, Table 4). In contrast to other
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DIA studies, based on enumeration of immune cell densities and their proportions in CT and IM [25]
or distances between the cell populations [31,32] that improved prognostic accuracy, the CM indicator
represents directional change (gradient) of immune cell density within the stroma-to-tumor transition
TME compartment, automatically sampled as IZ. The precision of the sampling and, subsequently,
of the Immunogradient computation is therefore less affected by variable tumor growth patterns.
Remarkably, the Imunogradient indicators outperform absolute or relative immune cell densities in
TME compartments in the multiple prognostic models, both in MSS and MSI tumor subgroups.

In this study, we also tested the prognostic value of CD20+ and CD68+ cell density indicators.
Although several studies have shown the prognostic value of tumor-associated macrophage infiltrates
in CRC [39,40], we were not able to demonstrate an independent prognostic value of TME CD68+

cell densities. Despite CD20+ cells were less abundant than CD68+ cells and CD8+ cells in tumors,
CD20+ cell density features were associated with patient survival. Higher IZ and intratumoral CD20+

cell densities were significantly associated with better patient survival in univariate analyses, except
the MSS tumors (Figure 1E, Table 3). Only CD20+ Immunogradient (by CM) was an independent
predictor of longer patient OS (Table 4). Previous studies have demonstrated beneficial prognostic
impact of B cell infiltrates in TME of various cancers, including primary and metastatic CRCs [41–43].
Of note, the CD20+ Immunogradient indicators provided significant patient stratifications in MSI
tumors (Figure 1F) but did not reach the level of significance in MSS tumors (Figure 1E), suggesting
that highly immunogenic MSI tumors may benefit more than MSS tumors from B cell-mediated antigen
presentation for T-cell activation or antibody-dependent cellular cytotoxicity [44–46].

In the comprehensive analyses of in situ immune infiltrates Galon et al. noted close correlation
between B cells (CD20+) and the T cell subset network within the CT and particularly with memory
T cells at the IM region [47]. Later investigation of CRC intrametastatic immune infiltrates revealed
the Immunoscore® and TB score (Immunoscore®-like score combining CD8+ and CD20+ cells) to
be the only parameters significantly associated with prolonged mCRC patient survival in multiple
analysis [48]. Along with increased cytotoxic T cell and macrophage densities, elevated B cell counts
were encountered in MSI tumors [27]. In addition, patient clusters with both high memory and
cytotoxic T and B cell densities had prolonged disease-specific survival regardless of MSI status [27].
Our study therefore supports the added value of combined T and B cell prognostic power: the CD8+

and CD20+ Immunogradient indicators provided independent prognostic input in the multiple Cox
regression models, importantly, pertinent to both MSS and MSI-CRCs. CD8-CD20 Imunogradient
score provided significant prognostic stratifications both in MSS and MSI tumors (Figure 3B,C).

The infiltrative tumor growth pattern assessed by pathologist served as another independent
feature and increased the prognostic power of the model. In agreement with the previous
observations [49–51], IIS revealed the infiltrative tumor margin to be an adverse prognostic factor; IIS,
score 0 identified the worst survival subgroup both in MSS and MSI tumors (Figure 3E,F). Inverse
correlation between infiltrative tumor growth and the presence of immune response at the advancing
tumor margin has been reported previously [52,53]. Although these associations may be of value
for further TME studies, our data show that the tumor growth pattern maintains an independent
prognostic value and indicates the need for robust assessment of this feature, similar to the efforts to
quantify the tumor budding phenomenon in CRC [31,54]. Of note, tumor budding assessment by
pathologist did not provide a prognostic value in our study.

Zlobec et al. reported a combined assessment of CD8+ cell infiltrates in TMA, tumor margin
configuration data and lymph node spread to predict local recurrence in MSS CRCs; however,
their study did not include MSI tumors that are commonly defined as non-budding tumors [55].
Another study introduced semi-quantitative Bayreuth score, based on tumor gland formation, budding
and TIL analyzed in hematoxylin and eosin-stained whole slide images (WSI) to provide independent
prognostic value along with TNM-staging for low-grade CRC [56]. Nearchou et al. proposed a spatial
immuno-oncology index based on TIL and macrophages proximity analysis to tumor buds to provide
highly significant combinatorial risk model for stage II CRC patient stratification [31,32]. Similarly, our
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study combines the prognostic power of tumor histology features and interacting immune cell subsets,
yet with different spatial analysis methodologies applied. We show independent prognostic value
for CD8+ and CD20+ cell infiltrates, measured by Immunogradient methodology, and the added
prognostic value of the tumor growth pattern as IIS—an integrated prognostic biomarker for MSS and
MSI CRCs.

The findings in the current study were achieved in a relatively small sample size cohort both for MSS
and MSI-CRCs; larger cohort studies are needed to elucidate the role for immune cell populations and
measurement methodologies for robust prognostic modeling. In addition, the prognostic power of the
models achieved in this study remains to be directly compared to the Immunoscore®, immuno-oncology
index and other systems proposed for practical implementation, which is best achieved in appropriately
designed studies. Of note, the study was undertaken in patients who had not received neoadjuvant
therapy. Tumor necrosis induced by neoadjuvant therapy is likely to change the tumor stromal
community and thus the Immunogradient indicators. However, the nature of the change and its
prognostic impact are currently unknown. Finally, tumor growth pattern reveals an independent
prognostic value and therefore indicates the need for further efforts in tumor histology feature extraction
to quantify growth pattern and budding.

4. Materials and Methods

4.1. Patients

A series of 99 cases of CRC which had undergone curative resection was retrieved from the
archives of the Pathology Department at the Nottingham University Hospitals NHS Trusts. The series
was selected to include 50 CRCs with MSI and 49 CRCs which were MSS and had been used to develop
a screening test for Lynch Syndrome [57]. These cases had been tested by IHC for mismatch repair
protein (MMR) for the purpose of either making a decision on adjuvant chemotherapy or for screening
for Lynch Syndrome. Overall survival (OS) was defined as the time interval between first surgery and
death due to any cause. Tumor samples of patients with preoperative treatment (n = 2), un-resected
metastasis (n = 3), cases of mucinous cancer (i.e. >50% of the tumor section showing mucinous
histology, n = 4) since a specific tissue classifier is needed, appendiceal tumor (n = 1), and tumor section
area below <4.5 mm2 (n = 2) were excluded from further analyses. All tumor specimens were tested by
IHC for expression of DNA MMR proteins, i.e., MLH1, PMS2, MSH2, MSH6, and by PCR followed by
high-resolution melting analysis for MSI status and BRAF, KRAS, PIK3CA gene mutations, as described
previously [57,58]. The MLH1 gene promoter methylation analysis revealed MSI tumors to be mainly
sporadic [57].Clinicopathological parameters and follow-up data of the final CRC patient cohort were
obtained from the pathology reports and the clinical records and are summarized in Table 1.

4.2. Ethics Statement

Study approval and access for anonymized use of tumor tissue were granted by Nottingham
Health Sciences Biobank (REC reference: 15/NW/0685).

4.3. Digital Image Acquisition and Analysis

IHC was performed on FFPE as previously described [57]. Four micrometer thick tissue sections
were cut and stained for cytotoxic T cell marker CD8 (clone SP57, Roche Diagnostics, Mannheim,
Germany), B cell marker CD20 (clone L26, Roche Diagnostics) and macrophage marker CD68 (clone KP1,
Dako, Glostrup, Denmark). Slides were scanned at x20 objective magnification (0.5µm resolution) using
an Aperio AT2 Slide Scanner (Leica Microsystems, Wetzlar, Germany). Initial image analysis to segment
tissue compartments was performed on WSIs using HALO™ software (version 2.2.1870; Indica Labs,
Corrales, NM, USA). The tissue classification algorithm utilizes an artificial intelligence-based classifier
trained to segment tissue into tumor, stroma, lymphoid follicles and background (i.e., necrotic areas,
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mucin pools, artifacts, and glass). The HALO Multiplex IHC algorithm (Version 1.2) was used to detect
and extract coordinates of CD8+, CD20+, CD68+ cells.

4.4. Extraction of Interface-Zone and Immunogradient Indicators

The systematic extraction of the Immunogradient indicators was previously described [33].
In brief, the WSI of a tumor is processed by DIA software to identify tissue classes for each pixel
and to extract coordinates and counts of positive cells. The DIA data is then subsampled by a
hexagonal grid, as described in previous studies [59,60] and biomarker densities are calculated in
each hexagon. The tumor edge (TE), which consists of hexagons on the interface between tumor and
stroma, is computed based on changes in tissue class area fractions inside each hexagon; in Figure 2 the
extracted TE are all yellow hexagons. The remaining hexagons are classified as either tumor, stroma or
background, also by area fractions. Subsequently, the distance from each hexagon to the nearest TE is
calculated. Using this distance, hexagons are ranked so that hexagons at the TE have rank 0 (distance
0), tumor-epithelium hexagons are assigned a rank equal to their distance from the nearest TE, while
hexagons on the stromal side of the TE are assigned a rank equal to their negative distance to the nearest
TE. This allows easy extraction of a tumor-stroma interface zone (IZ) of any width, e.g. an interface
zone of width 9 would cover ranks [−4; 4]. For CRC, an IZ of width 3 (ranks [−1; 1]), abbreviated IZ3,
was previously found optimal [33]. The tumor aspect (T) (rank = 1) and stroma aspect (S) (rank = −1)
of IZ3 are highlighted in Figure 2 as the red and green hexagons, respectively. From the extracted IZ,
simple Immunogradient indicators can be calculated, for example, mean CD8+ cell densities in the
tumor aspect and in the stroma aspect. Additionally, the ranking allows plotting biomarkers gradient
profiles across the interface zone (Figure 2A); and computing indicators like the Center of mass (CM)
which estimates which part the cell density gravitates towards:

Center of mass (CM):

CM(q) =

∑
ri

ri q(ri)∑
ri

q(ri)

where ri indexes the IZ3 ranks, ri ∈ [−1;1], and q(ri) denotes the rank statistics, e.g., the mean of CD8+

cell density.
In addition to the Immunogradient indicators, the intratumoral CD8+, CD20+ and CD68+ cell

densities, i.e., densities in all tumor tissue, were extracted.

4.5. Statistic Analyses

Fisher’s exact test was used to examine the associations between clinicopathological parameters
and MSI status. Since immune cell density distributions in the CRC samples showed left asymmetry
(by the Kolmogorov–Smirnov test), cell density indicators were log-transformed for parametric statistics.
The statistical significance of cell density variations in the aspects of IZ3 and tumor compartment
were tested by one-way ANOVA followed by Bonferroni’s post-hoc test for pairwise comparisons and
a two-sided Welch’s t-test for homogeneity of variances. Cutoff Finder [38] was used to obtain an
optimal cut-off value for cell density indicators to test their interrelationships and predictions of OS.
Univariate and multivariate survival analyses were performed using Cox proportional hazards models
obtained by a stepwise likelihood ratio test. A leave-one-out cross-validation was used to analyze the
relevance of the selected indicators, to compare the accuracy of predictive models [61]. All statistical
tests were two-sided and conducted at a nominal significance level of 0.05. Statistical calculations were
performed by SAS software (version 9.4; SAS Institute Inc., Cary, NC, USA); graphs were generated by
R (version 4.0.0; R Foundation for Statistical Computing, Vienna, Austria) and GIMP (version 2.10.14;
The GIMP team, www.gimp.org).

www.gimp.org
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5. Conclusions

In summary, we present a novel combinatorial prognostic model for MSS and MSI CRC patients,
based on 3 independent features: IZ Immunogradient indicators of CD8+ and CD20+ cell densities
and infiltrative tumor growth pattern assessed by pathologist. The immuno-interface score, IIS, was
superior to TNM-staging and molecular features, and displayed as strong predictor of patient outcomes
in both MSS and MSI tumors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2902/s1,
Figure S1: An image of original CD8 IHC tissue section which was used for IZ overlay in Figure 2.
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