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Background. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody re-
sponse that varies by orders of magnitude between individuals and over time.

Methods. We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins 
of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed 
for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody re-
sponses. Antibody response data were used to train algorithms for estimating time since infection.

Results. One year after symptoms, we estimate that 36% (95% range, 11%–94%) of anti-Spike immunoglobulin G (IgG) remains, 
31% (95% range, 9%–89%) anti-RBD IgG remains, and 7% (1%–31%) of anti-nucleocapsid IgG remains. The multiplex assay clas-
sified previous infections into time intervals of 0–3 months, 3–6 months, and 6–12 months. This method was validated using data 
from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using sam-
ples from a single survey.

Conclusions. In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since 
infection, which can be used to reconstruct past epidemics.

Keywords.  antibody kinetics; SARS-SoV-2; seroprevalence; surveillance; time since infection.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), causing coronavirus disease 2019 (COVID-19), has led 
to widespread morbidity and mortality since its emergence. The 
response to the SARS-CoV-2 pandemic is critically dependent 
on surveillance data, most notably numbers of COVID-19–as-
sociated hospital admissions and deaths recorded through 
health systems surveillance, and cases confirmed SARS-CoV-2 
positive by polymerase chain reaction (PCR)–based testing 
[1]. Serology, based on the detection of antibodies induced by 
infection with SARS-CoV-2, represents another category of 
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surveillance information [2, 3]. Appropriately designed sero-
prevalence studies can provide estimates of the previously in-
fected proportion of a population. Although no substitute for 
health system surveillance, seroprevalence studies have the 
advantage of accounting for asymptomatic cases and symp-
tomatic individuals who do not present to health systems. 
Seroprevalence studies also provide information on the status 
of SARS-CoV-2 epidemics in situations where record-keeping 
by health systems is not possible, a common challenge in many 
low- and middle-income countries [4].

Infection with SARS-CoV-2 induces diverse humoral and 
cellular immune responses [5, 6]. Humoral immunity includes 
antibodies of several immunoglobulin isotypes targeting SARS-
CoV-2 proteins, most notably spike (S) and nucleocapsid (N). 
The concentration of antibodies in blood varies substantially 
between individuals and with time since infection [6–11]. 
Studies of the duration of immunity to SARS-CoV-1 demon-
strated that antibodies remain detectable  6  years after infec-
tion [12]. Longitudinal follow-up of individuals infected with 
SARS-CoV-2 indicates a pattern of waning antibody responses 
consistent with other coronaviruses [13, 14]. Within the first 
3 months, antibody levels boost sharply and wane rapidly. Over 
a longer interval of 8 months, antibody levels wane more slowly 
[6]. These observations can be explained by the biphasic nature 
of antibody kinetics [15].

Serological diagnostics typically classify a sample as positive 
if a measured antibody level is greater than a defined cutoff. 
Analysis of quantitative rather than binary antibody levels pro-
vides additional information; for example, antibody levels are 
associated with time since infection, symptom severity, and sex 

[16]. However, large variation in antibody levels between in-
dividuals prevents this from having predictive value: Detected 
antibodies could be from a recent infection, or due to immuno-
logical memory of older infections. This limitation has recently 
been overcome for a range of pathogens through the combi-
nation of multiplex assays and classification algorithms. Using 
machine learning algorithms to analyze quantitative antibody 
responses to multiple antigens, the time since previous infec-
tion can be estimated for Plasmodium falciparum malaria [17, 
18], Plasmodium vivax malaria [19], and cholera [20].

In this study, we use multiplex assays to measure antibodies 
to SARS-CoV-2 in healthcare workers and hospitalized patients 
followed for up to 11 months after infection, and apply mathe-
matical models to characterize antibody kinetics in the first year 
following infection. Classification algorithms were developed 
that minimize the reduction in the sensitivity of serological 
tests over time, in addition to estimating time since previous 
infection from a single blood sample. Finally, we present a 
method for serological reconstruction of past SARS-CoV-2 
transmission and validate its use with samples collected from a 
cross-sectional survey.

MATERIALS AND METHODS

Samples

A panel of 407 negative control serum or plasma samples 
was assembled from prepandemic cohorts (before December 
2019)  with ethical approval for broad antibody testing (Table 
1). A panel of 407 positive control serum samples was assem-
bled from individuals with recent SARS-CoV-2 infection. This 
included 72 samples from Paris hospitals that cared for patients 

Table 1. Panels of Samples

Cohort Status
Participants, 

No.
Samples, 

No.

PCR  
Positive,  
No.

Age, y,  
Median  
(Range)

Sex  
(% Male)

Days Post–
Symptom 
Onset, Median 
(Range)

Établissement Français du Sang 1 Negative panel: prepandemic controls 45 45 … >18 … …

Établissement Français du Sang 2 Negative panel: prepandemic controls 213 213 … 42 (18–81) 40% …

Thai Red Cross Negative panel: prepandemic controls 68 68 … >18 … …

Peruvian donors Negative panel: prepandemic controls 81 81 … >18 … …

Hôpital Bichat  
(Paris, France)

Positive panel: hospitalized patients 2 8 2 31 (30–32) 100% 14 (8–24)

Hôpital Cochin  
(Paris, France)

Positive panel: hospitalized patients 64 64 64 55 (25–79) 76% 17 (10–28)

Strasbourg hospitals 1 Positive panel: infected HCWs 161 161 161 32 (20–62) 31% 24 (13–39)

Crépy-en-Valois, Feb–Mar 2020 Positive panel: infected community 
members (flow cytometry positive)

154 174 0 17 (15–56) 34% …

Dublin hospitals Hospitalized patients 194 213 194 55 (21–92) 47% 13 (1–126)

Strasbourg hospitals 2 Follow-up of infected HCWs 347 724 347 41 (21–74) 23% 132 (11–284)

Institut Mutualiste Montsouris  
(Paris, France)

Seroprevalence survey in HCWs (un-
known status)

769 769 20 41 (18–72) 27% …

Institut Mutualiste Montsouris  
(Paris, France)

Follow-up of seropositive HCWs 29 29 12 37 (24–63) 41% 304 (285–336)

Crépy-en-Valois, Nov–Dec 2020 Seroprevalence survey in community 
members (unknown status)

725 725 NA NA NA NA

Abbreviations: HCW, healthcare worker; NA, not available; PCR, polymerase chain reaction.



Time Since SARS-CoV-2 Infection • jid 2021:224 (1 November) • 1491

with COVID-19 [21, 22]; 161 samples from healthcare workers 
in Strasbourg University Hospital who developed symptomatic 
PCR-confirmed COVID-19 [23]; and 174 samples from com-
munity members of Crépy-en-Valois, France, collected between 
February and March 2020, and confirmed seropositive by flow 
cytometry–based testing [24, 25].

The duration of antibody responses following SARS-CoV-2 
infection was studied in longitudinal cohorts of hospitalized 
patients and healthcare workers. Two hundred thirteen serum 
samples from 194 patients in Dublin hospitals were collected, 
with date post–symptom onset extending up to 4  months. 
Seven hundred twenty-four serum samples from 347 healthcare 
workers in Strasbourg hospitals were collected, with date post–
symptom onset extending up to 9 months [26].

In April 2020, our team implemented a study of the sero-
prevalence of SARS-CoV-2 in healthcare workers from Institut 
Mutualiste Montsouris, a hospital in Paris. Serum samples were 
collected from 769 healthcare workers, and tested with our 
multiplex assay (Supplementary Figure 1). Healthcare workers 
who tested seropositive in April 2020 were invited to present a 
second sample in January 2021. In total we obtained follow-up 
samples from 29 healthcare workers.

To demonstrate the serological reconstruction of past 
COVID-19 epidemics, 725 samples were collected from resi-
dents of the town of Crépy-en-Valois in France from 13 
November to 17 December 2020. Past transmission levels es-
timated from serological data were validated using an inde-
pendent source of data on intensive care unit (ICU) admissions 
for COVID-19 in Oise (the department containing the town 
of Crépy-en-Valois) extracted from the national public data 
on daily hospital admissions related to COVID-19 published 
by Sante Publique France, available on data.gouv.fr (file down-
loaded 18 April 2021 at https://www.data.gouv.fr/fr/datasets/
donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/#). 
Daily records cover the period from 18 March 2020 to 18 April 
2021.

Serological Assays

We established a 9-plex bead-based assay allowing simul-
taneous detection of antibodies to 5 SARS-CoV-2 antigens 
and 4 seasonal coronaviruses (spike proteins of NL63, 229E, 
HKU1, OC43) in 1 µL serum or plasma samples that were heat-
inactivated at 56°C for 30 minutes. SARS-CoV-2 antigens were 
from spike (whole trimeric spike [S], its receptor-binding do-
main [RBD], and spike subunit 2 [S2]), nucleocapsid protein 
(N), and a membrane-envelope fusion protein (ME). ME and S2 
antigens were purchased from Native Antigen (Oxford, United 
Kingdom) and all other antigens were produced as recombinant 
proteins at Institut Pasteur. The mass of proteins coupled on 
beads was optimized to generate a log-linear standard curve with 
a pool of 27 positive sera prepared from patients with reverse-
transcription quantitative PCR–confirmed SARS-CoV-2. We 

measured the levels of immunoglobulin G (IgG), immunoglob-
ulin A  (IgA), and immunoglobulin M (IgM) of each sample 
in 3 separate assays. In brief, serum was diluted 1:200 for IgG 
or 1:400 for IgA and IgM, and incubated with mixed antigen–
coupled beads for 30 minutes. Secondary antibodies conjugated 
to R-phycoerythrin (Jackson Immunoresearch) were used at 
1:120, 1:200, or 1:400 for detection of specific IgG, IgA, and 
IgM, respectively. All dilutions and cycles of washing steps were 
done in phosphate-buffered saline supplemented with 1% bo-
vine serum albumin and 0.05% (v/v) Tween-20. On each assay 
plate, 2 blanks (only beads, no serum) were included to control 
for background signal as well as a standard curve prepared from 
2-fold serial dilutions (1/50 to 1/102 400) of a pool of positive 
controls. Plates were read using a Luminex MAGPIX system 
and the median fluorescence intensity (MFI) was used for anal-
ysis. A 5-parameter logistic curve was used to convert MFI to 
relative antibody units, relative to the standard curve performed 
on the same plate to account for interassay variations. The data 
from our multiplex assay was compared against data from 2 
different neutralization assays with live virus using a subset of 
serum samples [26] (Supplementary Methods).

Statistical Methods

SARS-CoV-2 antibody kinetics are described using a previously 
published mathematical model of the immunological processes 
underlying the generation and waning of antibody responses 
following infection (Supplementary Methods) [27].

For the estimation of time since previous infection, measure-
ments of antibodies of 3 isotypes (IgG, IgM, IgA) to multiple 
SARS-CoV-2 antigens were used to create a training dataset. 
Samples where the time post–symptom onset was ≤14  days 
or unknown were excluded. In total we had 407 samples from 
prepandemic negative controls and 1402 positive samples. 
A  random forests multiway classification algorithm was de-
veloped for categorizing samples into 4 classes: (1) negative; 
(2) infected <3 months ago; (3) infected 3–6 months ago; and 
(4) infected 6–12 months ago. The algorithm was calibrated to 
have 99% specificity for correctly classifying negative samples. 
Positive samples were classified according to the maximum 
number of votes. Uncertainty in classification performance 
was assessed via cross-validation with a training set comprising 
two-thirds of the data and a disjoint testing set comprising a 
third of the data, repeated 1000 times. Classification algorithms 
were implemented in R (version 3.4.3).

Ethical Considerations

Serum samples were biobanked at the Clinical Investigation 
and Access to BioResources platform at Institut Pasteur 
(Paris, France). Samples were obtained from consenting in-
dividuals through the CORSER study (Sero-epidemiological 
Study of the SARS-CoV-2 Virus Responsible for COVID-
19 in France: ClinicalTrials.gov identifier NCT04325646), 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab375#supplementary-data
http://data.gouv.fr
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http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab375#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab375#supplementary-data
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directed by Institut Pasteur and approved by the Comité de 
Protection des Personnes Ile de France III (on 19 February 
2020)  and the French COVID cohort (ClinicalTrials.gov 
identifier NCT04262921), sponsored by Inserm and approved 
by the Comité de Protection des Personnes Ile de France VI. 
Samples from French blood donors were approved for use by 
Etablissement Français du Sang (Lille, France) and approved 
through the CORSER study by the Comité de Protection des 
Personnes Ile de France VI. Sample collection in Hôpital 
Cochin was approved by the Research Ethics Commission of 
Necker-Cochin Hospital. Samples from healthcare workers in 
Strasbourg University Hospitals followed longitudinally were 
collected as part of an ongoing clinical trial (ClinicalTrials.
gov identifier NCT04441684) that received ethical approval 
from the Comité de Protection des Personnes Ile de France 
III. Samples collected from patients in Dublin received eth-
ical approval for study from the Tallaght University Hospital/
St James’s Hospital Joint Research Ethics Committee (refer-
ence REC 2020-03). Use of the Peruvian negative controls 
was approved by the Institutional Ethics Committee from 
the Universidad Peruana Cayetano Heredia (SIDISI 100873). 
The Human Research Ethics Committee at the Walter and 
Eliza Hall Institute of Medical Research and the Ethics 
Committee of the Faculty of Tropical Medicine, Mahidol 
University, Thailand, approved the use of the Thai negative 

control samples. Informed written consent was obtained 
from all participants or their next of kin in accordance with 
the Declaration of Helsinki.

RESULTS

SARS-CoV-2 Antibodies Over Time

Antibodies of 3 isotypes (IgG, IgM, IgA) to 9 coronavirus 
antigens were measured in 407 prepandemic serum sam-
ples, and 1402 serum samples from individuals with previous 
SARS-CoV-2 infection. Nine hundred sixty-one of 1402 of the 
positive samples were from individuals with SARS-CoV-2 in-
fection confirmed by PCR-based testing with available data on 
time post–symptom onset. Figure 1 presents the IgG, IgM, and 
IgA antibody responses to SARS-CoV-2 S, RBD, and N meas-
ured over time. Supplementary Figures 2 and 3 present the 
antibody responses to S2, ME, and the spike proteins of the 4 
human seasonal coronaviruses. Notably, there is substantial 
interindividual variation in antibody responses, with antibody 
levels varying by orders of magnitude between individuals. As a 
measure of functional immunity, we applied live virus neutral-
izing assays to a subset of samples. There was substantial varia-
tion in neutralizing activity between individuals and over time 
(Supplementary Figure 4).
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Figure 1. Antibody kinetics in the first year following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A bead-based multiplex Luminex 
assay was used to measure antibodies of multiple isotypes (immunoglobulins G, M, and A) to multiple antigens in serum samples from individuals with polymerase chain 
reaction–confirmed SARS-CoV-2 infection and prepandemic negative controls. Abbreviations: IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; RAU, 
relative antibody unit; RBD, receptor-binding domain.
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Modeled SARS-CoV-2 Antibody Kinetics

Our data on measured SARS-CoV-2 antibody responses were 
supplemented with data from 6 other longitudinal studies 
of the SARS-CoV-2 antibody response [6–11] and 1 longi-
tudinal study of the SARS-CoV-1 antibody response [12]. 
Supplementary Figure 5 provides a comparison of the meas-
ured antibody responses between the 8 studies. The data 
were rescaled so that the mean antibody response for each 
study equals 1 at day 14 after symptom onset. In addition to 
the large interindividual variation, there is notable variation 
in antibody levels between studies. A mathematical model of 
antibody kinetics was simultaneously fitted to data from all 8 
studies. Supplementary Figure 6 provides an overview of the 
model fit to the data. Figure 2A provides example fits to data 
from 1 representative individual from each of the 8 studies. 
Figure 2B provides model predictions of the percentage an-
tibody level remaining over the first 2  years postinfection, 
where 100% is assumed to be the antibody response at day 14 
following symptom onset. There are considerable differences 

in the pattern of waning between isotypes and between 
antigens. Table 2 summarizes the duration of the antibody re-
sponse. One year following symptom onset, we estimate that 
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Figure 2. Modeled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody kinetics. A mathematical model of SARS-CoV-2 antibody kinetics was simul-
taneously fitted to data from 7 studies of SARS-CoV-2 [6-11] and 1 study of severe acute respiratory syndrome coronavirus (SARS-CoV-1) [12]. A, top row, Examples of the 
model fit to the data for 1 individual from each study. Data are represented as points, posterior median model prediction as lines, and 95% credible intervals as shaded areas. 
B, middle and bottom rows, Model-predicted duration of antibodies within the first 2 years following infection. Antibody levels are shown relative to the expected antibody 
level at day 14 post–symptom onset. Each point represents the prediction from an individual at 6, 12, 18, and 24 months post–symptom onset. The median predictions for 
each of the 8 studies are presented as lines. Abbreviations: IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; RBD, receptor-binding domain; SARS-
CoV-1, severe acute respiratory syndrome coronavirus.

Table 2. Estimated Duration of Antibody Responses Following Severe 
Acute Respiratory Syndrome Coronavirus 2 Infection

Antibody 6 Months 12 Months 24 Months

Spike IgG 55% (16%–100%) 36% (11%–94%) 16% (5%–55%)

RBD IgG 43% (13%–100%) 31% (9%–89%) 16% (5%–48%)

Nucleocapsid IgG 30% (8%–92%) 7% (1%–31%) 0.8% (0%–7%)

Spike IgM 12% (1%–52%) 6% (0%–27%) 2% (0%–9%)

RBD IgM 16% (4%–51%) 9% (2%–32%) 4% (1%–16%)

Nucleocapsid IgM 23% (6%–75%) 15% (4%–50%) 7% (2%–24%)

Spike IgA 21% (4%–82%) 18% (4%–67%) 12% (3%–47%)

RBD IgA 12% (4%–49%) 10% (3%–38%) 6% (2%–24%)

Nucleocapsid IgA 6% (1%–30%) 3% (0%–13%) 0.6% (0%–4%)

The percentage antibody level remaining over time is compared to the measured antibody 
level 14 days after symptom onset. Estimates are presented as the population median, 
with the 95% range due to interindividual variation.

Abbreviations: IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; 
RBD, receptor-binding domain.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab375#supplementary-data
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36% (95% range, 11%–94%) anti-S IgG remains, 31% (9%–
89%) anti-RBD IgG remains, and 7% (1%–31%) anti-N IgG 
remains. The uncertainty represents the considerable degree 
of interindividual variation in the duration of the antibody 
responses. Antibodies of the IgM isotype waned more rap-
idly, with 6% (0%–27%) anti-S IgM remaining after 1  year, 
9% (2%–32%) anti-RBD IgM remaining after 1 year, and 15% 
(4%–50%) anti-N IgM remaining after 1  year. Antibodies 
of the IgA isotype also waned rapidly, with 18% (4%–67%) 
anti-S IgA remaining after 1 year, 10% (3%–38%) anti-RBD 
IgA remaining after 1 year, and 3% (0%–13%) anti-N IgA re-
maining after 1 year.

We also observed comparable reductions in titers for viral 
neutralization over time (Supplementary Figure 4). The small 
number of samples prevented application of the antibody kinetic 
model to viral neutralization data, but measuring the reduction 
in paired samples we estimate a rate of decrease of –0.94 (in-
terquartile range [IQR], –2.41 to 0.26) year-1. Assuming simple 
exponential decay in neutralization activity over time, this cor-
responds to 39.3% (IQR, 8.9%–125.2%) neutralizing activity 

remaining after 1  year, broadly consistent with the long-term 
kinetics of anti-RBD IgG.

Estimating Time Since Previous SARS-CoV-2 Infection

Using a dataset on measured IgG, IgM, and IgA antibody levels 
from prepandemic negative controls and samples from indi-
viduals with SARS-CoV-2 infection confirmed by PCR-based 
testing and followed for up to 11 months after symptom onset, 
random forest binary classification algorithms were trained 
to identify individuals with previous SARS-CoV-2 infection 
(Supplementary Figures 7 and 8). Next, a random forest mul-
tiway classification was trained to simultaneously identify pre-
vious infection and estimate the time since infection (Figure 
3). The diagnostic algorithm identified samples from individ-
uals with previous SARS-CoV-2 infection with 99% specificity 
and 98% (95% confidence interval [CI], 94%–99%) sensitivity 
(Figure 3A). The diagnostic test classified samples from indi-
viduals infected within the previous 3  months (Figure 3B). It 
was easier to distinguish recent infections (<3  months) from 
older infections (6–12  months), compared to infections that 
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occurred 3–6 months ago. There was limited statistical signal 
to distinguish between infections that occurred 3–6  months 
ago and older infections occurring >6 months ago (Figure 3C). 
A breakdown of classification performance by time since infec-
tion is provided in Figure 3D. The diagnostic test had predictive 
power for samples of all categories, with the exception of sam-
ples from individuals infected 3–6 months ago. Many of these 
samples were incorrectly classified in the neighboring infection 
categories of 0–3 months or 6–12 months.

Serological Reconstruction of Past COVID-19 Transmission in Oise 

Department, France

One of the first reported clusters of SARS-CoV-2 transmission 
in France occurred in Crépy-en-Valois in Oise Department 
from late February to early March 2020 [24]. A team of scien-
tists led by Institut Pasteur are conducting repeat cross-sectional 
surveys in this community. Seven hundred twenty-five serum 
samples collected between 13 November and 17 December 
2020 were analyzed with our serological assay. Two hundred 
fifty-one of 725 (34.6%) samples were seropositive, indicating 
previous infection with SARS-CoV-2.

Statistical algorithms for estimation of time since infection 
were applied to data from the 251 seropositive individuals. We 
estimated that 80.2% (95% CI, 47.3%–94.5%) were infected in 
the 6  months from December 2019 to May 2020, 0.0% (95% 
CI, 0.0%–52.1%) were infected in the 3 months from June to 
August, and 12.6% (95% CI, 0.0%–29.2%) were infected in the 
3 months from September to November (Figure 4). The sero-
logical estimates are consistent with a large first wave before 
June 2020, and a smaller second wave (or the beginning of a 
larger one) between September and December 2020. To assess 
the validity of these estimates, we compared with data on re-
ported ICU admissions in Oise Department between 18 March 
2020 and 1 December 2020. Of the ICU admissions, 56.0% were 
reported in the 3  months from March to May, 8.7% were re-
ported in the 3 months from June to August, and 35.3% were 
reported in the 3 months from September to November.

DISCUSSION

Based on data from a range of studies with up to 11  months 
of follow-up after symptom onset, we estimate that 31% 
(95% credible interval [CrI], 9%–89%) of anti-RBD IgG anti-
body levels remain 1 year after infection. Antibodies of other 
isotypes waned more rapidly, with 9% (95% CrI, 2%–32%) of 
anti-RBD IgM antibody levels remaining after 1 year, and 10% 
(95% CrI, 3%–38%) of anti-RBD IgA antibody levels remaining 
after 1 year. There was considerable variation in kinetic profiles 
between different SARS-CoV-2 antigens, with 7% (95% CrI, 
1%–31%) of anti-N IgG antibody levels remaining after 1 year. 
Although the determinants of the duration of antigen-specific 
antibody responses remain poorly understood [16], the diver-
sity in patterns of antibody kinetics can be quantified using 

epidemiological studies, yielding valuable information for se-
rological diagnostics.

The majority of commercially available serological tests clas-
sify individuals as having previous SARS-CoV-2 infection if a 
measured antibody response is greater than a defined cutoff [28, 
29]. Instead of reducing a complex antibody response to a bi-
nary data point, a more detailed serological signature based on 
quantitative measurements of multiple antibody responses pro-
vides 2 notable advantages [5]. First, the reduction in diagnostic 
sensitivity associated with waning antibodies is minimized—no 
reduction in sensitivity over the 11  months of follow-up was 
observed. Second, the time since previous infection can be es-
timated providing additional epidemiological information. For 
the current assay, time since previous infection was categorized 
into intervals of 0–3 months, 3–6 months, and 6–12 months. 
More precise classification is possible in theory, but this must 
be balanced against the statistical signal. For example, there 
was little statistical signal to discriminate between infections 
that occurred 6–9  months ago vs infections that occurred 
9–12 months ago. It is anticipated that further assay improve-
ments such as the incorporation of new antigens, more training 
samples with a range of time since infection, and better algo-
rithms will lead to improvements in accuracy.

Existing seroprevalence studies estimate the proportion of a 
population previously infected with SARS-CoV-2. The addition 
of a diagnostic tool capable of estimating time since infection al-
lows for the serological reconstruction of past incidence trends. 
Thus, using samples from a seroprevalence study collected at 
a single time point, we can discriminate between a scenario 
of constant SARS-CoV-2 transmission and a scenario where 
transmission occurs in distinct epidemic waves. This diagnostic 
technology has a range of possible applications. For countries 
that experienced a double wave of SARS-CoV-2 epidemics, it 
has been challenging to quantify the relative magnitude of these 
waves due to the challenges of implementing PCR-based diag-
nostic testing [30]. Furthermore, there are many epidemiolog-
ical settings where it is unknown if SARS-CoV-2 transmission 
was constant over time, or occurred as distinct epidemic waves 
[4].

Estimates of time since previous SARS-CoV-2 infection in 
individual samples can be combined to provide a serological 
reconstruction of previous SARS-CoV-2 transmission in a 
population. Following validation of our statistical method on 
simulated data, we demonstrated that our test could accurately 
identify the 2 epidemic peaks in the town of Crépy-en-Valois 
using samples collected in a single cross-section. This finding 
was consistent with daily reported ICU admissions data col-
lected continuously over 1 year in the Oise Department. The 
minor differences between the serologically reconstructed ep-
idemic profile and that from public health surveillance data 
may be because the town of Crépy-en-Valois is not necessarily 
representative of the wider Oise Department, as the town was 
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specifically targeted by the study team because of its early levels 
of SARS-CoV-2 transmission. Furthermore, we did not ana-
lyze data on COVID-19–specific ICU admissions before March 
2020, and ICU admissions may not necessarily be representa-
tive of community-level infection events [31].

There are several limitations to this study. Estimates of 
the duration of antibody responses are based on data from 

multiple studies, each using a unique immunoassay [6–12]. 
Every immunoassay may differ in terms of background reac-
tivity, cross-reactivity with other pathogens, protein formu-
lation, dynamic range, and reproducibility. We believe that 
the benefit of drawing on multiple data sources outweighs the 
benefit of having a smaller, more homogeneous database, es-
pecially since the mathematical model of antibody kinetics is 
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sufficiently flexible to incorporate data from multiple assays. 
Our selection of a mechanistic mathematical model of anti-
body kinetics is a potential limitation. The model is based on 
a mechanistic understanding of the immunological processes 
underlying the generation and persistence of antibodies, and 
imposes a flexible functional form on how antibody levels 
change over time. Although this approach has been validated 
in a range of applications [16–19], there will be instances 
where the model fails to capture the true pattern of antibody 
kinetics, for example in immunodeficient individuals. An ad-
vantage of a mechanistic model vs a nonparametric statistical 
model is the ability to make projections forward in time. We 
have provided predictions up to 2 years following infection, 
for example, by estimating that 16% (95% range, 5%–48%) of 
anti-RBD IgG antibodies remain after 2 years. There is a risk 
to providing predictions beyond the timescale of the data, 
but these predictions can be easily refuted via continued lon-
gitudinal studies.

Seroprevalence studies are playing a critical role in moni-
toring the progress of the SARS-CoV-2 pandemic. In the early 
stages of the pandemic, immunoassays had the advantage of 
measuring high antibody levels in the initial months after in-
fection. As the pandemic progresses, seroprevalence will be-
come more challenging to accurately measure due to waning 
antibody responses and increased vaccine-induced immunity. 
Multiplex assays and algorithms accounting for how antibody 
levels change over time may be an important tool for ensuring 
the ongoing utility of serosurveillance.
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Infectious Diseases online. Supplementary materials consist of 
data provided by the author that are published to benefit the 
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