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Pepper mild mottle virus (PMMoV), one of the most 
prevalent viruses in chili pepper (Capsicum annuum 
L.) is a non-enveloped, rod-shaped, single-stranded 
positive-sense RNA virus classified in the genus To-
bamovirus. The supernatants of five bacterial cultures 
(Pseudomonas putida [PP], Bacillus licheniformis [BLI], 
P. fluorescens [PF], Serratia marcescens [SER], and B. 
amyloliquifaciens [BA]) were analyzed to find novel 
antiviral agents to PMMoV in chili pepper. Foliar 
spraying with supernatants (1:1, v/v) obtained from 
Luria-Bertani broth cultures of PP, BLI, PF, SER, and 
BA inhibited PMMoV infection of chili pepper if ap-
plied before the PMMoV inoculation. Double-antibody 
sandwich enzyme-linked immunosorbent assay showed 
that treatments of five supernatants resulted in 51-66% 
reductions in PMMoV accumulation in the treated chili 
pepper. To identify key compounds in supernatants 
of PP, BLI, PF, SER, and BA, the supernatants were 
subjected to gas chromatography-mass spectrometry. 
The 24 different types of compounds were identified 
from the supernatants of PP, BLI, PF, SER, and BA. 

The compounds vary from supernatants of one bac-
terial culture to another which includes simple com-
pounds—alkanes, ketones, alcohols, and an aromatic 
ring containing compounds. The compounds triggered 
the inhibitory effect on PMMoV propagation in chili 
pepper plants. In conclusion, the cultures could be used 
to further conduct tissue culture and field trial experi-
ments as potential bio-control agents.

Keywords : DAS-ELISA, GC-MS analysis, PMMoV, su-
pernatants of bacterial cultures

The latest projections by the United Nations Develop-
ment Program (UNDP) suggest that the global population 
grows to around 8.5 billion in 2030, 9.7 billion in 2050, 
and 10.4 billion in 2100 (United Nations, 2022). Accord-
ing to the predicted data of the UN Food and Agriculture 
Organization (FAO), farmers will have to generate 70% 
food to meet the oversized population on earth by 2050 
(Searchinger et al., 2019). Plant diseases are one of the ma-
jor obstacles to achieving the goal of food security for the 
growing population throughout the world. A wide range of 
methods, such as crop rotation, selection of resistant plant 
varieties, and so on other methods have been adopted to 
control plant diseases. However, agrochemicals are still a 
warranted approach to the prevalence of many plant patho-
gens. The excessive use of agrochemicals poses a major 
threat to other living organisms and it is environmentally 
hazardous too (Sponsler et al., 2019). Therefore, other al-
ternative eco-friendly agents must be explored to control 
diseases or to enhance crop productivity. Microbes are om-
nipresent in the environment. By their omnipresence, mi-
crobes impact the entire biosphere. Soil microbes produce 
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a broad spectrum of secondary metabolites that enable soil 
microbes to compete with neighboring microorganisms, 
which they have likely evolved to compete for the same 
resources in the soil (Brakhage and Schroeckh, 2011; Gar-
beva and Weisskopf, 2020). Amongst the microbes, there 
are microbial biological control agents that are applied to 
crops for the biological control of plant pathogens (Köhl et 
al., 2019). In some cases, some microbes have been select-
ed which secrete already efficient secondary metabolites 
into the growth media during mass production that are ap-
plied together with or without living cells of antagonists in 
the biological control of crops. Production of secondary an-
timicrobial metabolite with inhibition effects against patho-
gens is a promising mode of action (Raaijmakers and Maz-
zola, 2012). In the last decade have had increased attention 
on the production of microbial secondary metabolites, and 
their mode of action on crops/plants is an alternative way 
to use pesticides and fertilizers in the agriculture sector 
(Thomas et al., 2020). The signals of microbial volatile or-
ganic compounds (mVOC) from some microbes suppress 
neighboring pathogens and also induce plant immunity, 
exploited as substitutes for chemical fertilizers and pesti-
cides. The mVOC signals could provide a more sustainable 
solution, and also negligible or zero hazardous effects on 
animals and the environment (Tilocca et al., 2020).

Pepper mild mottle virus (PMMoV) has been found to 
infects a wide range of pepper varieties (Wetter et al., 1984) 
and is one of the major pathogens in pepper species in the 
world (Jarret et al., 2008; Roberts and Adkins, 2001). Re-
cently PMMoV was found to be the most abundant RNA 
virus in human feces and also a potential viral indicator for 
human fecal pollution in aquatic environments (Ferraro et 
al., 2021). PMMoV is a non-enveloped, rigid, rod-shaped, 
single-stranded positive-sense RNA, which belongs to the 
genus Tobamovirus. On pepper fields, PMMoV also re-
mains viable for long periods in soils after infected crops 
have been removed or harvested. Composting and dry-
ing have been shown to only slightly reduce the PMMoV 
infection, but the impact of the virus infectivity remains 
available (Aguilar et al., 2010; Petrov, 2014). Chili pepper 
infected with PMMoV exhibits symptoms like mottling 
and yellow/green mosaic in leaves, and small malformed, 
mottled fruit, resulting in significant loss of pepper yield 
(Jarret et al., 2008; Kim et al., 2012; Rialch et al., 2015; 
Roberts and Adkins, 2001).

Plant-beneficial bacteria and fungi, living in the soil as 
free organisms or as endophytes, trigger plant growth and 
they also protect plants from phyto-pathogens. The influ-
ence of abiotic factors on crop yield has been reported by 
several researchers (Radhakrishnan et al., 2014; Tonelli et 

al., 2010). The application of plant-beneficial microorgan-
isms is an alternative to chemical fungicides, bactericides, 
and nematicides. The foliar application of microbes/its 
active compound/s is the feasibility of an effective, envi-
ronmentally friendly approach to improving plant growth, 
and controlling many plant diseases (Adam et al., 2014; 
Choudhary and Johri, 2009; Egamberdieva et al., 2014; 
Lee et al., 2020; Radhakrishnan et al., 2013). Among 
several species of plant growth-promoting bacteria/rhizo-
bacteria (PGPB/PGPR), Pseudomonas spp. and Bacillus 
spp. have been identified as the predominant communities 
(Kang et al., 2015), and a few of the PGPB have been com-
mercialized due to their survival within a diverse range of 
biotic and abiotic environments. PGPRs can produce and 
induce a wide diversity of useful bioactive metabolites 
(Beneduzi et al., 2012). Specifically, Pseudomonas spp. 
and Bacillus spp. were important members of the protec-
tive microbiome (Wei et al., 2019). Several research results 
have shown the control of bacterial and fungal pathogens 
in many crops (Castaldi et al., 2022; Kim et al., 2017; Vitti 
et al., 2016), whereas the controlling of plant viruses with 
microbes/microbial secondary metabolites was limited re-
ports (Elsharkawy et al., 2022; Kong et al., 2018; Tan et al., 
2015, 2017). Thus, this study aimed to access supernatants 
of five bacterial cultures on PMMoV in chili pepper and 
identification of its active metabolites in the supernatant. 

Materials and Methods

Virus source. The single isolated PMMoV-P1,2 strain 
used in this study was maintained in Nicotiana tabacum 
cv. Samsun (Choi et al., 2014). PMMoV-infected tobacco 
leaves were collected aseptically and homogenized with 
10 mM phosphate buffer (pH 7.0) using a sterilized plastic 
pouch. The sap is used as the source of inoculum for chili 
pepper infection. The inoculum was confirmed by the im-
munostrip kit specific to PMMoV (Agdia, Elkhart, IN, 
USA).

Bacterial cultures and foliar spray. The five bacterial 
species were obtained from the Korean Agricultural Cul-
ture Collection (KACC), Rural Development Administra-
tion (RDA), South Korea. Pseudomonas putida (KACC 
no. 12538; PP), Bacillus licheniformis (KACC no. 10307; 
BLI), Pseudomonas fluorescens (KACC no. 12553; PF), 
Serratia marcescens (KACC no. 11743; SER), Bacillus 
amyloliquifaciens (KACC no. 10116; BA). The Luria-
Bertani (LB) broth contained (g/l)—Tryptone 10, yeast ex-
tract 5, sodium chloride 5, and pH 7.0. LB broth from BD 
Difco, Thermo Fisher Scientific Inc. (Sparks, MD, USA) 
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was used for the growth of bacteria. 
To grow PP, BLI, PF, SER, and BA cultures, the auto-

claved LB broth was inoculated separately with the indi-
vidual bacterial cultures. The culture flasks were incubated 
in an orbital shaker at 175 rpm at 37°C for 48 h. The 48 h 
grown culture broth was centrifuged at 8,000 ×g, 15 min, 
and 4°C to separate the bacterial culture from the super-
natant. The supernatants of bacterial cultures were diluted 
with distilled water in the ratio of (1:1), and 10 ml for each 
plant (run-off the plant) was foliar sprayed separately in 
chili pepper plants at a 4-leaf stage (cv. Cheongyang) once 
a day for three days at 24 h time intervals (Chung et al., 
2020). Foliar spray with distilled water was carried out as 
the positive control treatment. The whole setup of experi-
mental chili pepper plants was lightly dusted with carbo-
rundum and then rubbed with PMMoV inoculum from the 
leaf base to the tip with a gloved finger. After washing, the 
plants were placed in controlled conditions maintained in a 
greenhouse chamber for the development of the symptoms.

Double-antibody sandwich enzyme-linked immuno-
sorbent assay. Double-antibody sandwich enzyme-linked 
immunosorbent assay (DAS-ELISA) was subjected to 
measure the quantity of the virus in samples according to 
the manufacturer's protocol (Agdia). This method is a bit 
different from the detection of the PMMoV virus by rapid 
antigen test as mentioned in the section on virus source. 
The experimental setup of chili pepper seedling’s upper 
leaf sample was collected at 2 week-post-inoculation (wpi) 
along with control samples and extracts the PMMoV an-
tigen by using a general extraction buffer. The extracted 
samples of one hundred microliters were placed in the 
capture-antibody coated enzyme-linked immunosorbent as-
say (ELISA) plate and incubate at room temperature for 4 
h. The ELISA plate-coated wells were washed eight times 
with phosphate buffered saline (pH 7.5 containing 0.05% 
Tween-20). DAS-ELISA for PMMoV quantification was 
carried out as described previously (Yoon et al., 2021). 
DAS-ELISA data were analyzed with analysis of variance. 
Differences among the mean values of supernatants of five 
bacterial cultures were determined with Duncan’s multiple 
range test with significance set at P < 0.05.

Gas chromatography-mass spectrometry analysis of 
supernatants of bacterial cultures by solid-phase mi-
croextraction method. To identify the active components 
present in supernatants of bacterial cultures, a 48 h grown 
five bacterial cultures—PP, BLI, PF, SER, and BA in LB 
broth were centrifuged separately, then the supernatant was 
collected. Then the supernatants of bacterial cultures (10 

ml) were transferred to a 20 ml capacity headspace vial 
containing 10 µl of acetonitrile and 0.3 g of NaCl. Acetoni-
trile was used as an internal standard to quantify secondary 
metabolites. The sample vial was incubated at 70°C with 
constant stirring for 1 h. Solid-phase microextraction meth-
od (SPME) fiber (50/30 µm DVB/CAR/PDMS; Supelco, 
Bellefonte, PA, USA) was introduced into the headspace 
for 20 min to adsorb secondary metabolites in the superna-
tants. There was a similar approach was also carried out to 
detect active compounds present in the supernatants of bac-
terial cultures by gas chromatography-mass spectrometry 
(GC-MS)-SPME (Chen et al., 2020; Syed-Ab-Rahman et 
al., 2019). The obtained chromatogram data were analyzed, 
and peak-to-peak curing was performed using the NIST 
v.11 (National Institute of Standards and Technology) 
Mass Spectrum Library. Statistical analysis was performed 
using the MetaboAnalyst 5.0 online tool in the auto-scaling 
process. Dendrograms (hierarchical clustering) heatmaps 
and Pearson’s correlation coefficient were performed visu-
ally to compare metabolites. 

Results

DAS-ELISA. Chili pepper plants treated with supernatants 
of five bacterial cultures—PP, BLI, PF, SER, and BA by 
foliar spray showed lesser symptoms of PMMoV in chili 
pepper compared to the non-treated plants (control) after 
2 weeks of inoculation (data not shown). Moreover, the 
reduction in the severity of PMMoV in chili plants by fo-
liar spray treatment was higher than that of control-treated 
samples, DAS-ELISA test confirmed that PMMoV titer 
as an indicator for PMMoV accumulation was markedly 
reduced by 51-66% in chili pepper plants with superna-
tants of five bacterial cultures in comparison to non-treated 
plants (control) after 2 weeks of virus inoculation (Fig. 1). 
PMMoV accumulation was much lower in chili pepper 
plants treated with foliar spraying of supernatants of five 
bacterial cultures relative to control plants. 

GC-MS analysis. The active components present in the 
supernatants of PP, BLI, PF, SER, and BA culture were 
done by GC-MS analysis. The GC-MS chromatograms of 
supernatants of bacterial cultures—PP, BLI, PF, SER, and 
BA were carefully observed in the NIST library and identi-
fied 24- different types of compounds. Of the compounds, 
acetone, 2-heptanone, benzene, and phenyl ethyl alcohol 
compounds were commonly identified in supernatants of 
five bacterial cultures. 2-Butanone is identified in all, four 
cultures except in BA. Methyl isobutyl ketone is not identi-
fied in the PF culture filtrate. Nonanone is found in super-
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natants of all four bacterial cultures except in BLI. Benzyl 
alcohol is found in the supernatants of bacterial cultures—
BLI, PF, SER, and BA and except in PP2. The compounds/
metabolites identified in the supernatants of five bacterial 
cultures were presented in Table 1. These compound’s 
Kovats retention index values were calculated with the Ko-
vats formula based on their retention time, and the values 
were validated with the standard polar values of the com-
pounds in PubChem and presented in Table 1. The Kovats 
retention index values proved the confirmation of the me-
tabolites in the supernatants of five bacterial cultures. The 
identified compounds in the supernatants of five bacterial 
cultures were analyzed with the help of MetaboAnalyst 

5.0 and the heat map visualization, and the clustering of all 
identified compounds was expressed to the control and rep-
resented (Fig. 2). The compounds in the heat map are from 
simple aliphatic compounds to aromatic compounds. The 
correlation coefficient of all the metabolites of supernatants 
of five bacterial cultures was expressed (Fig. 3). The posi-
tive correlation coefficient was observed for the identified 
compounds in all supernatants of five bacterial cultures. 
These compounds are involved in the inhibitory effect on 
PMMoV titer in chili pepper. Recent reports evidenced 
that, a few of the compounds from different microbial 
cultures are involved in the controlling of various diseases 
caused by pathogenic microbes in the agriculture sector 
(Naamala and Smith, 2021). 

Discussion

Microbes in general, and bacteria in particular, are well 
known for their biochemical versatility; using a wide ar-
ray of inorganic and organic compounds to fuel their 
metabolism, they are also prolific producers of secondary 
metabolites of diverse biological activities. Many of these 
metabolites have antimicrobial properties and are used 
as antibiotic and antifungal drugs (Ait Barka et al., 2016; 
Brader et al., 2014; Caulier et al., 2019). Traditionally, the 
study of microbial metabolism and the search for bioactive 
molecules has focused on soluble compounds. However, 
mounting evidence suggests that microbes, and especially 
bacteria, emit diverse volatile compounds with significant 
biological activities on a wide range of target organisms, 
including plants and their pathogens (Groenhagen et al., 
2013; Piechulla et al., 2017). When facing biotic stresses 
such as pest or pathogen attacks, plants defend themselves 
via two main resistance pathways, the salicylic acid (SA)-
mediated systemic acquired resistance (SAR), and the jas-
monic acid/ ethylene-mediated induced systemic resistance 
(ISR) (Pieterse et al., 2011; Tsuda and Somssich, 2015). 
Whereas SAR is mainly induced by pathogenic microbes, 
plants have been shown to express ISR when their roots 
are colonized by beneficial Pseudomonas secreting specific 
metabolites (e.g., siderophores) or harboring molecular 
determinants such as flagellin or the O antigen of the outer 
membrane lipopolysaccharides (Meziane et al., 2005).

Some studies observed the effects of small organic com-
pounds emitted by bacteria in modulating plant growth, 
development, defense, and inter-and intraspecific commu-
nication (Kanchiswamy et al., 2015; Schreiter et al., 2014; 
Wenke et al., 2018). For instance, B. amyloliquefaciens 
(UQ154), B. velezensis (UQ156), and Acinetobacter sp. 
(UQ202) cultures released isoamyl alcohol and act against 

Fig. 1. Comparison of pepper mild mottle virus (PMMoV) ac-
cumulation in chili pepper plants foliar sprayed with the superna-
tants of five bacterial cultures. PMMoV detection was performed 
with double-antibody sandwich enzyme-linked immunosorbent 
assay (DAS-ELISA) kits (Agdia, Elkhart, IN, USA) according to 
the manufacturer’s protocol. A sample was considered positive 
if the optical density exceeded 3 times the mean of the negative 
controls. DAS-ELISA data were analyzed with analysis of vari-
ance and differences among the mean values were determined 
with Duncan’s multiple range test with significance set at P < 
0.05. PP, Pseudomonas putida (KACC no. 12538); BLI, Bacil-
lus licheniformis (KACC no. 10307); PF, Pseudomonas fluore-
scens (KACC no. 12553); SER, Serratia marcescens (KACC 
no. 11743); BA, Bacillus amyloliquifaciens (KACC no. 10116). 
Luria-Bertani (LB) broth was the control for foliar spraying. PM-
MoV-infected chili pepper and healthy pepper leaf were used as 
the positive control (PC) and negative control (NC), respectively. 
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P. capsici and inhibition of 41.1 and 66.9% at 5 and 10 μg/
ml in I-plate in vitro assay compared with the control. In 
this study, supernatants of five bacterial cultures produced 
different types of compounds, those from simple alkanes, 
ketones, alcohols, and aromatic ring compounds. The com-
pound 3-methyl butanol (isoamyl alcohol) was found in the 
supernatants of PP and BA. Moreover, phenyl ethyl alcohol 
and benzyl alcohol are aromatic compounds produced by 
B. velezensis (UQ156), and Acinetobacter sp. (UQ202) and 
inhibit the Phytophthora capsici infection in chili pepper 
plants (Syed-Ab-Rahman et al., 2019). The compound – 
phenyl ethyl alcohol was also one of the non-polar antifun-
gal components released by Trichoderma virens 7b, which 
exhibited antifungal activity against Ganoderma boninense 
(Angel et al., 2016). Benzyl alcohol has also been shown to 
inhibit Colletorichum camelliae Massea, the causal agent of 
anthracnose in tea (Camellia sinensis) plants (Zhang et al., 
2006). In agreement with this result, supernatants of BLI, 

PF, SER, and BA bacterial cultures also produced phenyl 
ethyl alcohol and benzyl alcohol. The aromatic compound 
2-phenyl-ethanol emitted by two bacteria Serratia and Ste-
notrophomonoas, acts as a signal molecule, and negatively 
impacts wild A. thaliana and prominent player in the rear-
rangement of plants physiology, copes with the stress in 
the mutants of A. thaliana insertion of WRKY18 T-DNA 
(Wenke et al., 2018). In addition, 2-phenyl ethanol was 
isolated from Kloeckera apiculata and inhibited posthar-
vest phytopathogenic fungi Liu et al. (2014). Furthermore, 
nonan-2-one, nonan-2-ol, and decanal were produced by B. 
amyloliquefaciens (UQ154) and B. velezensis (UQ156). All 
these compounds have been documented to antagonize fun-
gi (Bruce et al., 2003; Kai et al., 2009; Liu et al., 2008). For 
example, nonan-2-one was associated with the inhibition of 
fungal growth by Serratia strains (Bruce et al., 2003). Sim-
ilarly, nonan-2-ol which was produced by B. subtilis G8 
also suppressed phytopathogenic fungi (Liu et al., 2008). 

Table 1. List of metabolites identified in the supernatants of 48-h grown bacterial cultures: PP, BLI, PF, SER, BA, and control by GC-
MS-SPME method

No. Compound/Metabolite KI LB broth PP BLI PF SER BA
  1 Acetone 811 - + + + + +
  2 Butanone 901 - + + + + -
  3 Benzene 935 - + + + + +
  4 Trichloro methane 1,019 - + - + - -
  5 2-Hexanone 1,074 - - + + + -
  6 p-xylene 1,124 - - - + - +
  7 2-Heptanone 1,176 - + + + + +
  8 Thiocyanic acid methyl ester 1,266 - - - + + -
  9 2-Nonanone 1,381 - + - + + +
10 1-Phenyl ethanol 1,803 - - - + - -
11 Phenol-2-methoxy 1,846 - - - + - -
12 Benzyl alcohol 1,863 - - + + + +
13 Phenyl ethyl alcohol 1,893 - + + + + +
14 Methane thiol 702 - - - - + -
15 Methyl isobutyl ketone   1,004 - + + - + +
16 Benzyl nitrile 1,901 - - + - + -
17 Acetic acid ethenyl ester 1,105 - + - - - +
18 1-Propanol-2-methyl 1,094 - + - - - +
19 Isoamyl alcohol 1,211 - + - - - +
20 Acetamide 1,762 - - - - - +
21 2-Propanol-2-methyl 888 - + - - - -
22 Pyridine 2,4,6-trimethyl 1,352 - + - - - -
23 Benzo nitrile 1,584 - + - - - -
24 Aceto phenone 1,630 - + - - - -

‘+’ indicated the presence of metabolite; ‘-’ indicated the absence of metabolite.
PP, Pseudomonas putida; BLI, Bacillus licheniformis; PF, Pseudomonas fluorescens; SER, Serratia marcescens; BA, Bacillus amyloliquifa-
ciens; GC-MS, gas chromatography-mass spectrometry; SPME, solid-phase microextraction method; LB, Luria-Bertani; KI, Kovats retention 
index value.
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In a similar fashion supernatants of PP, PF, SER, and BA 
bacterial cultures also produced a 2-nonanone compound. 
The volatile organic compound (VOC) 3-methyl butanal 
was emitted by the bacterium Staphylococcus pasteuri in 
the presence of the fungus Tuber borchii, whose mycelium 
was notably inhibited by VOCs (Barbieri et al., 2005). An-
other study that used GC-MS analysis to characterize the 
VOCs of Trichoderma viride revealed that 3-methyl bu-
tanal was one of the most abundant VOCs and showed that 
VOCs emitted by T. viride have growth-promoting effects 
on A. thaliana in the absence of direct physical contact 
(Hung et al., 2013), which supports the results observed in 
this study. Furthermore, 3-methylbutanal was reported to 

be antagonistic to Colletotrichum gloeosporioides, a fruit 
fungal pathogen (Gao et al., 2018). To parallel to this Aci-
netobacter sp. (UQ202) produced 3-methylbutanal, inhibits 
Phytophthora capsici in chili pepper, and promotes plant 
growth (Syed-Ab-Rahman et al., 2019).

The drench application of 1 mM 3-pentanol and 0.1 μM 
2-butanone on cucumber seedlings consistently triggered 
plant systemic defense responses against Pseudomonas 
syringae pv. lachrymans. Drench application of 3-pentanol 
and 2-butanone resulted in a reduction in disease sever-
ity in cucumber in the open field at 28 days post-seeding 
(dps), i.e., 7 days after spray-challenge of P. syringae pv. 
lachrymans. The treatment of cucumber plants with 1 mM 

Fig. 2. Heat map visualization and clustering of identified 24 compounds in the supernatants of five bacterial cultures—PP, BLI, PF, 
SER, BA, and control. The data obtained in the GC-MS runs were analyzed manually, and peak-to-peak curing was performed using the 
NIST v.11 Mass Spectrum Library. Statistical analysis was performed using the MetaboAnalyst 5.0 in the auto-scaling process. In the 
heat map, all the treatments were mentioned in three biological replicates including the control. BA, Bacillus amyloliquifaciens; BLI, Ba-
cillus licheniformis; PF, Pseudomonas fluorescens; PP, Pseudomonas putida; SER, Serratia marcescens; GC-MS, gas chromatography-
mass spectrometry.
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3-pentanol, 0.1 μM 2-butanone, or 10 nM 2-butanone 
caused 24%, 26%, or 17% less symptom severity, respec-
tively, than the water control. The disease severity of plants 
treated with 10 μM 3-pentanol was not statistically differ-
ent from that of the control (P = 0.05). Plants treated with 
BTH, which was employed as a positive control, showed 
similar levels of disease severity to plants treated with 
0.1 μM 2-butanone (Song and Ryu, 2013). For instance, 
2-phenyl ethanol emitted from T. asperellum T76-14 was 

reported to control the postharvest fruit rot of muskmelon 
(Intana et al., 2021). Therefore, the VOCs of T. koningi-
opsis PSU3-2 containing azetidine, 2-phenyl ethanol, and 
ethyl hexadecanoate may be associated with the suppres-
sion of the mycelial growth of the C. gloeosporioides, sug-
gesting the antibiosis mechanism of T. koningiopsis PSU3-
2 (Ruangwong et al., 2021). In the plants, the protection 
was due to induced defenses, not to pathogen inhibition 
(Sharifi and Ryu, 2016). This relative importance of plant 

Fig. 3. The Pearson’s correlation coefficient patterns of metabolites identified in the supernatants of five bacterial cultures—PP, BLI, PF, 
SER, and BA. Correlation coefficient were performed visually to compare metabolites (mean ± SE). Pearson’s correlation coefficient 
(r) measures a linear dependence between two variables (x and y). Positive correlations are indicated in red and negative correlations are 
in blue. PP, Pseudomonas putida; BLI, Bacillus licheniformis; PF, Pseudomonas fluorescens; SER, Serratia marcescens; BA, Bacillus 
amyloliquifaciens; SE, standard error.
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resistance induction vs direct pathogen inhibition is likely 
to be strain and compound dependent, although some vola-
tile compounds were shown to display both types of effect: 
reduction of pathogen virulence and up-regulation of plant 
genes involved in the SA-mediated defense pathway (Tahir 
et al., 2017). NPR1 is one of three currently known SA re-
ceptors activating SA-mediated defenses via a function in 
the nucleus (Ding et al., 2018; Fu et al., 2012).

Based on the experimental results, our efforts will further 
continue on exposure of these bacterial cultures/compounds 
on Petri dishes (I shaped/separated), one side of the Petri 
dish containing nutrient medium/LB for growth of bacteria, 
another side of the Petri dish with Murashige & Skoog (MS) 
medium for the growth of chili seedlings/PMMoV-infected 
seedlings. We need to accentuate the virus titer/pathoge-
nicity, plant defense mechanism pathways, and also field 
experiments. 
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