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1 Foshan Fetal Medicine Research Institute, Foshan Women and Children Hospital Affiliated to Southern Medical University,
Foshan, China, 2 Department of Obstetrics, Foshan Women and Children Hospital Affiliated to Southern Medical University,
Foshan, China

Objective: Previously, we found that the presence of maternal serum metals before the
24th week of gestation prospectively increased fasting plasma glucose (FPG) at 24–28
weeks. We further explored the prospective association between levels of metals and
neonatal outcomes and assessed the mediating effects of FPG on these relationships.

Methods: A total of 7,644 pregnant women were included in a retrospective cohort
study, and the relationships between metals [manganese (Mn), copper (Cu), lead (Pb),
zinc (Zn), and magnesium (Mg)] and birth outcomes were explored. Quantile and
linear regressions were performed to detect the shifts and associations between
metals and neonatal size distribution focused on the 10th, 50th, and 90th percentiles.
Mediation analysis was performed to assess the mediating effect of FPG on metals and
birth outcomes.

Results: After adjustment, a 50% increase in Mn and Zn levels was related to a 0.136-cm
(95% CI: 0.067–0.205) and 0.120-cm (95% CI: 0.046–0.193) increase in head
circumference, respectively. Based on head circumference distribution, the magnitude
of the association with Mn was smaller at the upper tail, while the magnitude of correlation
with Zn was greater at the upper tail. A 50% increase in Mn and Zn levels was related to a
0.135-cm (95% CI: 0.058–0.212) and 0.095-cm (95% CI: 0.013–0.178) increase in chest
circumference, respectively. The magnitude of the association with Mn increased with
increasing chest circumference, while the magnitude of correlation with Zn decreased with
increasing chest circumference. FPG explained 10.00% and 17.65% of the associations
of Mn with head and chest circumference. A positive indirect effect of Zn associated with
head circumference (0.004, 95% CI: 0.002–0.006) and chest circumference (0.005, 95%
CI: 0.003–0.008) through FPG was also observed, and the estimated proportion of the
mediating effect was 13.79% and 26.32%, respectively.
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Conclusion: Maternal serum Mn and Zn levels before the 24th week of gestation may
prospectively increase the circumference of the neonatal head and chest. FPG at 24–28
weeks had positive mediating effects on these relationships. Further research is needed to
identify a balance between maternal blood glucose and birth size.
Keywords: metal, fasting plasma glucose, birth outcome, mediating effect, cohort study
INTRODUCTION

Environmental exposure including metals in pregnant women
has been associated with health effects in both the mother and
her offspring (1, 2). Such metals can enter the maternal body
through air, water, food, and other forms of exposure and, thus,
have an impact on health (3). Moreover, the metals can have
greater health implications on the offspring through the mother
as fetal organs and systems are in a critical period of plasticity
and sensitivity to the environment (4). Metal exposure has been
related to fetal growth in the short term, and it could also result
in various health problems in the long term, such as
neurodevelopment and cardiovascular disease (5, 6).

Pregnant women are in a critically important state for
susceptibility to metal effects because of hemodynamics,
hormone changes, and immature immune systems (7), and
metals could further affect fetal growth after passing through
the placental barrier (8). Studies have found that prenatal
exposure to certain ranges of manganese (Mn) (9), copper
(Cu) (10), lead (Pb) (11), zinc (Zn) (12), and magnesium (Mg)
(13) is linked to adverse birth outcomes, including small-for-
gestational-age (SGA) births, low birth weight, and preterm
delivery. Similarly, low-level prenatal Pb exposure, as well as
elevated Mn and Zn levels, might increase the risk of preterm
birth and SGA (14). Moreover, increasing concentrations of Mn
have been linked to decreasing birth weight (15). However, the
associations between these metals and birth outcomes have been
inconsistent. Increasing placental Mn could slightly increase
neonatal head circumference in females (16). Pb has been
shown to elevate the risk of SGA in infants (11) and was
inversely associated with birth weight, birth length, and head
circumference in observational studies (17). Furthermore, Mg
supplementation during pregnancy might increase birth weight
(13). Moreover, prenatal exposure to Pb and Mn has been
assessed as showing no relation to birth weight and length (8).
Additionally, there seems to be an optimal range of exposure to
some metals; for instance, both low and high levels of Mn are
associated with lower birth weight and smaller head
circumference (18). Meanwhile, an optimum level of Zn and
Cu in pregnant women could reduce the risk of low birth
weight (19).

Fasting plasma glucose (FPG) is predominantly produced
following the decomposition of liver glycogen, while basal insulin
secretion can inhibit the output of liver glycogen and prevent
higher FPG. Therefore, the level of fasting blood glucose can
objectively reflect the secretion level of basal insulin in patients.
Elevated metal levels can accumulate in pancreatic tissue where
they may contribute to insulin resistance or damage islet b cells
n.org 2
and impair insulin secretion (20). Mn has been shown to inhibit
glucose-stimulated insulin secretion in b cells (21), while higher
urinary Zn or Pb could increase FPG of Chinese adults (22). In
addition, serum Mg levels have been negatively associated with
fasting insulin, and higher copper concentrations could increase
the risk of glucose dysregulation during pregnancy (23, 24). Our
previous study (25) also found that metals including Mn, Cu, Pb,
Zn, and Mg in early pregnancy were prospectively related to later
FPG in pregnant women. Moreover, high FPG levels have been
linked to macrosomia and large-for-gestational-age infants (26).
It has also been revealed that correlations between postprandial
blood glucose and primary outcomes are weaker than for FPG
(27). Nevertheless, we found no relevant studies that clarify the
relationship among metals, FPG, and birth outcomes, especially
in a longitudinal direction of complete pregnancy.

Therefore, after combining our previous study with those of
others, we hypothesized that earlier metal exposure in pregnant
women was prospectively associated with final birth outcome,
and later FPG mediated their relationship. Here, we tested this
hypothesis in a retrospective and longitudinal population-based
cohort study to explore i) whether maternal early metal exposure
including Mn, Cu, Pb, Zn, and Mg before 24 weeks was related to
birth outcomes and ii) whether a maternal FPG of 75 g oral
glucose tolerance test (OGTT) at 24–28 weeks mediated the
relationship between metal exposure and birth outcomes.
METHODS

Study Population
The retrospective cohort study was conducted between January
2017 and December 2018 in Foshan, China. Pregnant women
were recruited at the first obstetric clinic visit in the Southern
Medical University Affiliated Foshan Women and Children
Hospital. The study was approved by the Human Subjects
Committee of our hospital. The inclusion criteria were as
follows: 1) singleton pregnancy, 2) no diabetes prior to
pregnancy, and 3) gestational age in the first trimester (<14
weeks). The exclusion criteria were as follows: 1) no available
data on metal detection before 24 weeks of pregnancy (<24
weeks), 2) missing data of OGTT at 24–28 weeks of gestation,
and 3) stillbirth or without delivery data in our hospital. Of
11,845 women who initially met the above inclusion criteria,
7,646 were ultimately included for the study (Figure S1).

Data Collection and Definition of Variables
Medical data were collected from hospital computerized
databases or clinical charts. The information of maternal
November 2021 | Volume 12 | Article 763693
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demographic characteristics included maternal age, employment
status, maternity insurance, family history of diabetes, family
history of hypertension, smoking habit, and drinking habit. The
clinical history information included parity, and prenatal visit
records consisted of gestational age and BMI at the first prenatal
examination in the first trimester; gestational age for metal
detection; serum levels of the metals Mn, Cu, Pb, Zn, and Mg;
OGTT results at 24–28 weeks; diagnosis of gestational diabetes
mellitus (GDM) and hypertensive disorders of pregnancy
(HDP); and weight gain during the whole pregnancy. The
delivery records (e.g., gestational age at delivery, neonatal sex,
birth weight, birth length, head and chest circumference) were
retrieved. All identifying patient information was anonymized to
protect patient identity.

The diagnostic criteria for GDM referred to the criteria of
the International Association for Diabetes in Pregnancy Study
Group (IADPSG): pregnant women were given OGTT at 24–
28 weeks. The results were classified based on one of the following
cutoff points: fasting plasma glucose (FPG, OGTT0) ≥5.1 mmol/L
or 1-h PG (1-h postprandial plasma glucose, OGTT1) ≥10.0
mmol/L or 2-h PG (2-h postprandial plasma glucose,
OGTT2) ≥8.5 mmol/L (28). First-trimester BMI (kg/m2) was
divided into categories according to Chinese BMI criteria for
general adults: BMI < 18.5 kg/m2, 18.5 kg/m2 ≤ BMI < 24 kg/m2,
24 kg/m2 ≤ BMI < 28 kg/m2, and BMI ≥ 28 kg/m2

(29). Hypertensive disorders of pregnancy (HDP) included
gestational hypertension, preeclampsia, eclampsia, superimposed
preeclampsia on chronic hypertension, and chronic hypertension
in pregnancy (30).

Measurement of Serum
Metal Concentration
Metal detection was performed according to the methods
described in our previous article (25). Maternal serum metal
concentration was assessed only once before 24 weeks of
pregnancy in our hospital. Peripheral venous blood samples
(2 ml) were drawn in the obstetric clinic and then transported
to the Department of Laboratory Medicine of the hospital within
1 h for serum metal detection, using the polarography method
(AS-9000 C, AWSA, Wuhan, China). The detection limit of the
polarographic channel was ≤1 × 10−8 mol/L. All of the metal
measurements were above the limit. The coefficient of variation
(CV) of detection was ≤1%, and the relative error (B) of detection
was ≤1%.

Statistical Analysis
Baseline characteristics were described as mean ± SD or number
(%). In the analysis of birth outcomes, maternal serum metal
levels were categorized into three parts according to tertiles.
Comparisons for birth outcomes among three groups of metals
used ANOVA, and the pairwise comparisons were conducted
using Dunnett with a control category of the 1st tertile. The
analyses were conducted using SPSS 24.0 software.

Quantile regression was performed to detect the distribution
shifts of neonatal size (e.g., head circumference) and to explore
the associations with metal levels primarily occurring at the tails
Frontiers in Endocrinology | www.frontiersin.org 3
of neonatal size. In particular, the 10th, 50th, and 90th
percentiles of neonatal size were focused on. The metal linear
regression was established for each percentile and the mean of
neonatal size. Metal level was log-transformed based on a 1.5
logarithm function, assuring that 1-unit change on the
transformed scale was close to or within the IQR. One-unit
difference on the natural log-transformed scale corresponded to
a much wider range than the IQR on the original range (24). The
models were adjusted for the following factors: maternal age,
employment status, parity, maternity insurance, family history of
diabetes, family history of hypertension, HDP, GDM, BMI,
gestational age for metal detection, weight gain during
pregnancy, infant sex, and gestational age at delivery. These
analyses were performed in R 3.5.2, using the packages quantreg
and forestplot in quantile regression.

In our previous study (25), we found significant associations
between Mn, Cu, Pb, Zn, and Mg and OGTT0. Thus, we aimed
to further explore the mediating effect of OGTT0 on metals and
birth outcomes. Mediation analysis, one model of the structural
equation modeling, was performed using the robust maximum-
likelihood estimation. Standardized coefficients of direct,
indirect, and total effects were estimated, and the 95% CI was
measured using the bootstrap method with 2,000 resamplings.
The model was adjusted for the following factors: maternal age,
employment status, parity, maternity insurance, family history
of diabetes, family history of hypertension, HDP, BMI,
gestational age for metal detection, weight gain during
pregnancy, infant sex, and gestational age at delivery. The
mediation proportion of indirect effect was calculated as
follows: Estimated mediated = Indirect effect/Total effect ×
100%. Total effect = Direct effect + Indirect effect. The data were
analyzed using Mplus 7.4 (Muthén and Muthén). A two-sided P-
value <0.05 was considered to indicate statistical significance.
RESULTS

Baseline Characteristics
Tables 1 and S1 show the characteristics of our study population.
The mean maternal age was 30.13 years. Of the pregnant
participants, 55.45% were employed and 67.51% of those had
maternity insurance. None of the participants had smoking or
drinking habits. Only 0.47% of women had a family history of
diabetes. However, the incidence of GDM was 15.93%. The mean
BMI in the first trimester was 21.38 kg/m2, and the mean weight
gain during the whole of pregnancy was 12.70 kg. The mean
gestational age at delivery was 38.47 weeks. The mean birth weight,
birth length, head circumference, and chest circumference
of the newborns were 3,155.13 g, 49.12 cm, 32.89 cm, and
32.70 cm, respectively.

Distribution of Metals and the Association
With Birth Outcomes
The mean gestational age of metal detection was 16.56 weeks
(Table 1). Table S2 shows the geometric mean and percentiles of
November 2021 | Volume 12 | Article 763693
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the levels of five metals. Results from metals classified into
tertiles indicated that head circumference in the second and
third tertiles of Mn or Zn was significantly larger than that in the
first tertile (P < 0.05) (Table 2). Chest circumference in the
second and third tertiles of Mn was also significantly larger than
that in the first tertile (P < 0.05). No significant difference of
gestational age, birth weight, or birth length was observed among
the three tertiles of all five metals.

In the further analysis, we explored the associations between
metals and the distribution shifts of head and chest
circumference. As shown in Figure 1, a 50% increase in Mn
and Zn levels was related to a 0.136-cm (95% CI: 0.067–0.205)
and 0.120-cm (95% CI: 0.046–0.193) increase in mean head
circumference after adjustment, respectively. Based on the 10th,
50th, and 90th percentiles of head circumference distribution,
the magnitude of the association with Mn was smaller at the
upper tail, while the magnitude of correlation with Zn was
greater at the upper tail. However, no significant association
Frontiers in Endocrinology | www.frontiersin.org 4
was found between Pb, Cu, and Mg levels and head
circumference distribution.

The correlations of metals with chest circumference were
similar to those of head circumference (Figure 2). After
adjustment, a 50% increase in Mn and Zn levels was related to
a 0.135-cm (95% CI: 0.058–0.212) and 0.095-cm (95% CI: 0.013–
0.178) increase in mean chest circumference, respectively. The
magnitude of the association with Mn was increased with the
increase of the 10th, 50th, and 90th percentiles of chest
circumference distribution, while the magnitude of correlation
with Zn was decreased with the increase of the distribution shifts.
There was also no relationship between Pb, Cu, and Mg
concentrations and chest circumference distribution.

Mediating Effects of OGTT0 on Metals and
Head and Chest Circumference
Because of the significant correlations of Mn/Zn and head/chest
circumference, mediation analysis was performed to explore the
TABLE 1 | The baseline characteristics of the study population in the cohort study.

Characteristics Total (n = 7,646)

Maternal characteristics
Maternal age (mean ± SD, years) 30.13 ± 4.70
Age < 30 (n, %) 3,749 (49.03)
30 ≤ age < 35 (n, %) 2,556 (33.43)
Age ≥ 35 (n, %) 1,341 (17.54)

Employment status (n, %)
Unemployed 3,406 (44.55)
Employed 4,240 (55.45)

Parity (n, %)
0 3,685 (48.20)
1 3,726 (48.73)
≥2 235 (3.07)

Maternity insurance (n, %) 5,162 (67.51)
Family history of diabetes (n, %) 36 (0.47)
Family history of hypertension (n, %) 31 (0.41)
Smoking habit (n, %) 0
Drinking habit (n, %) 0
GDM (n, %) 1,218 (15.93)
HDP (n, %) 130 (1.70)

First prenatal examination in the first trimester
Gestational age (mean ± SD, weeks) 11.13 ± 1.55
BMI (mean ± SD, kg/m2) 21.38 ± 3.09
BMI < 18.5 (n, %) 1,212 (15.85)
18.5 ≤ BMI < 24 (n, %) 5,107 (66.79)
24 ≤ BMI < 28 (n, %) 1,067 (13.96)
BMI ≥ 28 (n, %) 260 (3.40)

Gestational age for metal detection (mean ± SD, weeks) 16.56 ± 2.94
OGTT (mean ± SD, mmol/L)
OGTT0 4.27 ± 0.38
OGTT1 7.82 ± 1.65
OGTT2 6.80 ± 1.40

Weight gain during pregnancy (kg) 12.70 ± 4.02
Birth characteristics
Female (n, %) 3,595 (47.02)
Gestational age at delivery (mean ± SD, weeks) 38.47 ± 1.45
Birth weight (mean ± SD, g) 3,155.13 ± 436.44
Birth length (mean ± SD, cm) 49.12 ± 2.03
Head circumference (mean ± SD, cm) 32.89 ± 1.50
Chest circumference (mean ± SD, cm) 32.70 ± 1.81
November 2021 | Volume 1
HDP, hypertensive disorders of pregnancy; GDM, gestational diabetes mellitus; SD, standard deviation; BMI, body mass index; OGTT, oral glucose tolerance test; OGTT0, fasting plasma
glucose; OGTT1, 1-h postprandial plasma glucose; OGTT2, 2-h postprandial plasma glucose.
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mediating effects of OGTT0 (Figure 3). After controlling for the
influence of covariates, the results showed that OGTT0 level
explained 10.00% (indirect effect: 0.004, 95% CI: 0.003–0.007, P <
0.001) and 17.65% (indirect effect: 0.006, 95% CI: 0.004–0.009,
P < 0.001) for the associations of serum Mn concentration with
head and chest circumference. A positive indirect effect of Zn
association with head circumference (0.004, 95% CI: 0.002–
Frontiers in Endocrinology | www.frontiersin.org 5
0.006, P < 0.001) and chest circumference (0.005, 95% CI:
0.003–0.008, P < 0.001) through OGTT0 level was also
observed, and the estimated proportions of the mediating effect
were 13.79% and 26.32%, respectively. In conclusion, there were
positive correlations between maternal serum Mn and Zn levels
and neonatal head and chest circumference, and these positive
correlations were mediated by OGTT0 glucose level.
FIGURE 1 | Distribution changes in head circumference as a function of 50% increase in metals. The models were adjusted for maternal age, employment status,
parity, maternity insurance, family history of diabetes, family history of hypertension, HDP, GDM, BMI, gestational age for metal detection, weight gain during
pregnancy, infant sex, and gestational age at delivery. Mn, manganese; Cu, copper; Pb, lead; Zn, zinc; Mg, magnesium; HC, head circumference.
TABLE 2 | Association between metal concentrations and birth outcomes based on three different metal levels.

Metals GA (weeks) P-valuea BW (g) P-valuea BL (cm) P-valuea HC (cm) P-valuea CC (cm) P-valuea

Mn (mmol/L) 0.977 0.801 0.504 <0.001** 0.014*
1st tertile (≤0.78) 38.56 ± 1.41 Ref 3,150.07 ± 432.22 Ref 49.08 ± 1.97 Ref 32.79 ± 1.45 Ref 32.62 ± 1.75 Ref
2nd tertile (0.79–0.86) 38.57 ± 1.50 0.996 3,158.07 ± 440.76 0.762 49.13 ± 2.09 0.574 32.94 ± 1.52 0.001* 32.73 ± 1.84 0.052
3rd tertile (≥0.87) 38.57 ± 1.44 0.968 3,155.89 ± 436.44 0.823 49.14 ± 2.03 0.440 32.93 ± 1.52 0.002* 32.76 ± 1.894 0.011*
Cu (mmol/L) 0.081 0.564 0.383 0.665 0.105
1st tertile (≤18.00) 38.62 ± 1.39 Ref 3,158.68 ± 435.14 Ref 49.16 ± 1.98 Ref 32.90 ± 1.48 Ref 32.75 ± 1.79 Ref
2nd tertile (18.01–23.70) 38.55 ± 1.51 0.170 3,147.66 ± 438.10 0.511 49.10 ± 2.08 0.409 32.90 ± 1.50 0.998 32.70 ± 1.83 0.522
3rd tertile (≥23.71) 38.53 ± 1.44 0.062 3,158.06 ± 436.16 0.987 49.09 ± 2.04 0.357 32.86 ± 1.52 0.632 32.64 ± 1.81 0.063
Pb (mg/L) 0.953 0.481 0.421 0.572 0.381
1st tertile (≤19.60) 38.57 ± 1.44 Ref 3,151.82 ± 432.40 Ref 49.14 ± 2.00 Ref 32.91 ± 1.50 Ref 32.74 ± 1.80 Ref
2nd tertile (19.61–34.00) 38.56 ± 1.46 0.939 3,149.96 ± 434.40 0.983 49.14 ± 2.01 1.000 32.89 ± 1.49 0.919 32.68 ± 1.81 0.410
3rd tertile (≥34.01) 38.57 ± 1.45 0.997 3,163.60 ± 442.05 0.526 49.07 ± 2.09 0.421 32.89 ± 1.51 0.478 32.68 ± 1.82 0.350
Zn (mmol/L) 0.923 0.990 0.874 0.006* 0.117
1st tertile (≤107.80) 38.56 ± 1.41 Ref 3,152.55 ± 430.64 Ref 49.10 ± 1.97 Ref 32.81 ± 1.44 Ref 32.64 ± 1.75 Ref
2nd tertile (107.81–120.00) 38.58 ± 1.49 0.891 3,154.71 ± 437.72 1.000 49.13 ± 2.03 0.838 32.93 ± 1.51 0.007* 32.72 ± 1.83 0.177
3rd tertile (≥120.01) 38.57 ± 1.45 0.973 3,256.12 ± 441.13 0.988 49.12 ± 2.03 0.900 32.92 ± 1.54 0.016* 32.70 ± 1.81 0.101
Mg (mmol/L) 0.809 0.976 0.304 0.045* 0.026*
1st tertile (≤1.31) 38.56 ± 1.41 Ref 3,154.41 ± 425.44 Ref 49.11 ± 1.98 Ref 32.90 ± 1.47 Ref 32.72 ± 1.77 Ref
2nd tertile (1.32–1.50) 38.58 ± 1.44 0.860 3,154.32 ± 443.57 1.000 49.17 ± 2.00 0.455 32.93 ± 1.48 0.694 32.75 ± 1.80 0.762
3rd tertile (≥1.51) 38.56 ± 1.49 0.977 3,156.71 ± 440.54 0.974 49.08 ± 2.11 0.873 32.83 ± 1.55 0.150 32.62 ± 1.87 0.086
Novemb
er 2021 | V
olume 12 | Artic
GA, gestational age; BW, birth weight; BL, birth length; HC, head circumference; CC, chest circumference; Mn, manganese; Cu, copper; Pb, lead; Zn, zinc; Mg, magnesium.
*P < 0.05, **P < 0.001. Ref, reference; Bold value, P < 0.05.
aOne-way ANOVA and pairwise comparisons using Dunnett with a control category of the 1st tertile.
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DISCUSSION

The current study showed that maternal serumMn and Zn levels
before 24 weeks of gestation could prospectively increase
neonatal head and chest circumference. For the head
circumference, the magnitude of the association with Mn was
smaller at the upper tail, while the magnitude of correlation with
Zn was greater at the upper tail. For the chest circumference, the
Frontiers in Endocrinology | www.frontiersin.org 6
magnitude of the association with Mn was greater at the upper
tail, while the magnitude of correlation with Zn was smaller at
the upper tail. In addition, FPG at 24–28 weeks mediated the
positive effect of Mn or Zn exposure on head or chest
circumference. No relationships between Mn and Zn and other
birth outcomes including gestational age, birth weight, and birth
length were found. No correlation between Pb, Cu, and Mg and
birth outcomes was observed.
A B

DC

FIGURE 3 | Mediation analysis with standardized coefficients of metals, OGTT0, and birth outcomes. (A) Analysis of serum Mn level, OGTT0 level, and head
circumference. (B) Analysis of serum Zn level, OGTT0 level, and head circumference. (C) Analysis of serum Mn level, OGTT0 level, and chest circumference.
(D) Analysis of serum Zn level, OGTT0 level, and chest circumference. The model was adjusted for maternal age, employment status, parity, maternity insurance,
family history of diabetes, family history of hypertension, HDP, BMI, gestational age for metal detection, weight gain during pregnancy, infant sex, and gestational age
at delivery. All models were found to be statistically significant (P < 0.001).
FIGURE 2 | Distribution changes in chest circumference as a function of 50% increase in metals. The models were adjusted for maternal age, employment status,
parity, maternity insurance, family history of diabetes, family history of hypertension, HDP, GDM, BMI, gestational age for metal detection, weight gain during
pregnancy, infant sex, and gestational age at delivery. Mn, manganese; Cu, copper; Pb, lead; Zn, zinc; Mg, magnesium; CC, chest circumference.
November 2021 | Volume 12 | Article 763693
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To date, several studies have explored the association between
Mn exposure and birth outcome. However, only a few articles
report a prospective and positive relationship between early
maternal Mn level and neonatal birth size and the mediating
effect of FPG on them. Maternal blood Mn has previously been
shown to be positively related to neonatal head circumference,
but not to birth weight and birth length (31), which is consistent
with our findings. However, our present results were contrary to
some other published studies, as follows: maternal Mn level in
erythrocytes in the second trimester has been demonstrated to be
negatively linked to birth weight and head and chest
circumferences (32). This might have contributed to a slightly
higher exposure to environmental Mn among pregnant women
living in this region (geometric mean Mn in our study: 0.81
mmol/L vs. 0.72 mmol/L in theirs). Furthermore, elevated
umbilical cord blood Mn may decrease birth weight, but was
not related to head circumference and birth length (15).
Moreover, maternal serum Mn level was not associated with
birth weight, but was negatively linked to head circumference
(33). Although some studies have also found a positive
correlation between metals and birth size, the results were
different from ours. A previous report described that maternal
Mn was related to higher birth length (34). Also, maternal hair
but not blood Mn concentrations showed a positive linear
association with infant chest circumference (35). This may be
because the amount of Mn might vary in different parts of the
body, leading to different correlations between Mn and birth
outcomes. In addition, considering that the rapid increase in fetal
body weight during late pregnancy is associated with an
accelerated growth of fetal peripheral muscle and fat
deposition, neonatal birth weight might be more affected by
the intrauterine environment, including nutritional
supplementation from the mother during pregnancy, than
neonatal head and chest circumference (36). Neonatal head
and chest growth might be more susceptible to metal exposure
in early pregnancy than birth weight and length; however, birth
weight and length might be more susceptible to the combined
effects of maternal nutrition and maternal and paternal height
and genes in late pregnancy. We cautiously assumed that
the combined effects in late pregnancy might be stronger
than the effect of Mn in early pregnancy and, thus, masked
the effect of metals. In future studies, it will be important to
further explore the relationship between neonatal birth size
and metals by integrating nutrition, genes, and other factors
during pregnancy.

The results of the current study further showed that maternal
Mn might affect the birth outcome by influencing FPG during
pregnancy. Mn, both an essential element and a potential
toxicant, is a component of several enzymes and an activator
for enzymes. Deficiency of Mn might affect growth and
development of the body and glucose metabolism, and
excessive intake of Mn could cause poisoning (37). Mn is
suggested to inhibit glucose-stimulated insulin secretion in b
cells by impairing mitochondrial function (21). One population-
based study has shown a positive relationship of urinary Mn with
hyperglycemia risk in Chinese coke oven workers (38).
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Meanwhile, our previous study found that early maternal
serum Mn could increase FPG at 24–28 weeks (25).

Larger offspring size has been attributed mainly to higher
pregnancy glucose levels. We made a cautious hypothesis that
the long-term effects of fetal glucose exposure could affect fetal b-
cell capacity, especially exposure to higher FPG, and thus, higher
maternal FPG might indirectly affect neonatal birth outcomes.
Therefore, FPG might mediate the effect of Mn level on birth
outcome. However, there are currently no metal requirement
guidelines for pregnant women. The Mn level of our study
population was slightly higher than that found in other
populations, and serum Mn levels in most pregnant women in
our study were below the lower limit of the reference range
(0.15–0.22 mmol/L) for healthy adults (39). Mn requirements for
pregnant women greatly increase as the fetus grows (40);
however, this high demand might impair the function of the
islets and cause elevated blood glucose. Further research is
needed to investigate the balance between maternal blood
glucose and neonatal size.

Zn is a component of zinc-containing metalloenzymes
involved in the activity of more than 80 enzymes. Zn is also an
important immunomodulator and growth cofactor and plays an
important role in anti-oxidation, anti-apoptosis, and anti-
inflammation. About 90% of Zn in the body is distributed in
muscles and bone (19). Blood Zn concentration is about 0.1~0.15
mmol/L in the general population (41), and our study population
showed similar levels. Previous studies have reported that higher
Zn levels in early pregnancy could increase head circumference
(34), and prenatal Zn has been associated with greater chest
circumference (42), which are consistent with our findings. Zn
supplementation is also beneficial to head growth rate in infants
(43). However, one report also states that maternal Zn level was
inversely related to birth weight (12). It could be argued that the
discordant results are owing to the different levels of original Zn
exposure and different study populations with different
underlying diseases affecting fetal growth. Head circumference
in early life is an important indicator of brain development.
Furthermore, it could affect neuronal growth and brain function
(19). Brain development is incredibly complex and takes place in
two major stages: the first 20 weeks involve fetal organogenesis
and neurogenesis, and during weeks 20–40, there is continued
neuronal growth, neural migration, and maturation. Brain
development is very rapid, from 32 to 39 weeks when the
brain can come to weigh 30% as much as an adult (44). In our
study, metal exposure before 24 weeks of gestation had
significant implications for the two stages of fetal brain
development. Rapid brain growth increases vulnerability to
unfavorable environmental conditions. In our study, although
the head circumference increased slightly with the increase of Zn
concentration, it also had some clinical significance. Large
population studies are needed to explore the relationship
between small differences in neonatal head circumference
and brain function. In addition, Zn and Mn were related to
birth head and chest circumference but had no relationship
with birth weight and length. This might be associated with
neonatal birth size as Zn has the same effect as described for
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Mn above. Zn is also an essential trace element for insulin
synthesis, storage, and release (45). However, excess levels of
Zn during embryogenesis could disturb biochemical processes
and could be teratogenic or ultimately fatal (19). We found that
Zn prospectively increased late second-trimester FPG in our
previous study (25) and Zn could further increase the head and
chest circumference through higher levels of FPG. The
relationship of Zn among the three (Zn, FPG, and birth
outcome) might be similar to that of Mn. These findings
require further epidemiological and molecular studies in both
the fetal stage and the childhood stage.

Our current study found no association between Pb and birth
outcomes, which is consistent with a previous study (15).
However, Pb has been reported to decrease birth weight and
head circumference following fetal lead exposure during
pregnancy and lactation (46, 47). The normal range of Pb in
the general population is <50 mg/L (48), and the Pb levels of our
participants were within the normal range. Therefore, Pb level in
the normal range might not be associated with birth outcomes,
but higher levels above the normal range might have toxic effects
on neonatal birth size.

Excess Cu is harmful to human health, but it is rarely excessive
in the general population (49), and the demand for Cu is
significantly increased in pregnant women (19). Cu deficiency
during pregnancy might result in oxidative stress that can reduce
fetal growth (19). Serum Cu <350 mg/L (5.51 mmol/L) is linked to
conditions of Cu deficiency (50). The minimum concentration in
our study population was 7.60 mmol/L. Therefore, we speculated
with caution that a significant association between maternal Cu
exposure and adverse birth outcomes might not be observed at
normal concentrations. The underlying mechanisms need
further exploration.

The reference range for serum Mg in adults is 0.75 mmol/L
(5% CI: 0.45, 1.05) (51); our study population had a slightly
higher level. There is an increasing need for Mg throughout
pregnancy, and Mg supplementation might have neuroprotective
effects on preterm infants (52). However, limited studies have
reported the association between Mg and birth size. Most
prenatal Mg supplementation is given in the third trimester, in
order to protect neurologic function in preterm infants.
Although we found that Mg in early pregnancy was not
associated with birth outcome, an appropriate Mg range
should be established for pregnant women. Further studies are
needed to determine whether Mg in early pregnancy is
prospectively related to neurodevelopment of newborns in the
long term.

The current study was the first study to show that metal
exposure in early pregnancy could affect FPG in the late second
trimester and, thus, affect neonatal head and chest
circumference. This information may promote new regimens
for the personalized control and management of birth size during
pregnancy. The study sample size was also relatively large, which
increased the accuracy of the findings and made them more
applicable to other populations. However, some limitations in
the study should be noted. First, despite the large sample size,
none of the pregnant women in our study had a smoking or
drinking habit. This limits the value of the study. Smoking and
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drinking habits were investigated in each pregnant woman
during prenatal visits as they are risk factors for adverse
pregnancy and birth outcomes, not just for the birth size of the
newborn. This could be a good habit of women in southern
China, although it is impossible to rule out a few cases of
concealment. Second, our research was a single-center study;
multicenter studies are needed in the future to make the results
more precise and reliable. Third, data related to trace element
supplementation during pregnancy in this study were not
available, which might be a confounding factor affecting the
results. We are currently conducting a prospective birth cohort
study, aiming to collect more detailed and accurate data. Fourth,
the study only examined maternal metal exposure in early
pregnancy before 24 weeks, not in the third trimester, placenta,
or umbilical cord blood. Metal requirements for pregnant
women might vary in different trimesters, and the placental
barrier might support different metal effects between mother and
offspring. Further epidemiological and molecular studies should
be conducted.

In conclusion, our study suggests that maternal serum Mn
and Zn levels in early pregnancy may prospectively increase
neonatal head and chest circumference. FPG in the late second
trimester could positively mediate the association of Mn and Zn
exposure with head or chest circumference. However, maternal
Mn and Zn levels in early pregnancy were not associated with
birth weight and birth length. Further studies should explore the
relationship between neonatal birth size and metals by
integrating maternal nutrition, living habits, the genes of both
parents, and other factors throughout pregnancy. In addition,
further research is needed to find a balance between maternal
blood glucose and neonatal birth size; the corresponding
epidemiological and molecular studies need to explore and
reveal the molecular mechanisms.
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