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Aims: Inflammation-driven endothelitis seems to be a hallmark of acute heart

failure (AHF) and cardiogenic shock (CS). Endocan, a soluble proteoglycan

secreted by the activated endothelium, contributes to inflammation and

endothelial dysfunction, but has been scarcely explored in human AHF. We

aimed to evaluate serum (S-Endocan) and urinary endocan (U-Endocan)

profiles in AHF and CS patients and to correlate them with biomarkers/

parameters of inflammation, endothelial activation, cardiovascular

dysfunction and prognosis.

Methods: Blood and spot urine were collected from patients with AHF (n = 23)

or CS (n = 25) at days 1–2 (admission), 3-4 and 5-8 and from controls (blood

donors, n= 22) at a single time point. S-Endocan, U-Endocan, serum IL-1β, IL-6,
tumour necrosis factor-α (S-TNF-α), intercellular adhesion molecule-1

(S-ICAM-1), vascular cell adhesion molecule-1 (S-VCAM-1) and E-selectin

were determined by ELISA or multiplex immunoassays. Serum C-reactive

protein (S-CRP), plasma B-type natriuretic peptide (P-BNP) and high-

sensitivity troponin I (P-hs-trop I), lactate, urea, creatinine and urinary

proteins, as well as prognostic scores (APACHE II, SAPS II) and

echocardiographic left ventricular ejection fraction (LVEF) were also evaluated.
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Results: Admission S-Endocan was higher in both patient groups, with CS

presenting greater values than AHF (AHF and CS vs. Controls, p < 0.001; CS vs.

AHF, p < 0.01). Admission U-Endocan was only higher in CS patients (p < 0.01 vs.

Controls). At admission, S-VCAM-1, S-IL-6 and S-TNF-α were also higher in

both patient groups but there were no differences in S-E-selectin and S-IL-1β
among the groups, nor in P-BNP, S-CRP or renal function between AHF and CS.

Neither endocan nor other endothelial and inflammatory markers were

reduced during hospitalization (p > 0.05). S-Endocan positively correlated

with S-VCAM-1, S-IL-6, S-CRP, APACHE II and SAPS II scores and was

positively associated with P-BNP in multivariate analyses. Admission

S-Endocan raised in line with LVEF impairment (p = 0.008 for linear trend).

Conclusion: Admission endocan significantly increases across AHF spectrum.

The lack of reduction in endothelial and inflammatory markers throughout

hospitalization suggests a perpetuation of endothelial dysfunction and

inflammation. S-Endocan appears to be a biomarker of endothelitis and a

putative therapeutic target in AHF and CS, given its association with LVEF

impairment and P-BNP and its positive correlation with prognostic scores.
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Introduction

Acute heart failure (AHF) is broadly defined as a rapid onset

of new or worsening signs and symptoms of heart failure (HF)

(McDonagh et al., 2021). These are due to an increase in left

ventricular (LV) filling pressure with consequent pulmonary

congestion but not necessarily associated with low cardiac

output - both HF with reduced or preserved ejection fraction

seem to have similar hospital admissions and readmissions

(Metra and Teerlink, 2017). In fact, the economic burden of

HF is becoming one of the most problematic public health issues

with increasing prevalence and costs. Due to the ageing of the

population and progressive treatment of HF with significant

reduction of mortality (Benjamin et al., 2019; Groenewegen

et al., 2020), it represents nowadays the most common

diagnosis in patients over 65 years-old with unscheduled

admission to hospital in high-income nations (Braunwald,

2015). It also reflects our poor pathophysiologic knowledge

because no AHF clinical trials have shown to improve in-

hospital symptoms and postdischarge clinical outcomes

compared with placebo (Tomasoni et al., 2019), except maybe

recently for sacubitril/valsartan where early titration before

discharge was demonstrated to be associated with favourable

reduction of natriuretic biomarkers, an accepted surrogate for

prognostication (Velazquez et al., 2019; Wachter et al., 2019).

From what is known so far, pathophysiology in AHF is

presently viewed as consisting theoretically of two phases -

initiation and amplification phase (Sabbah, 2017) - in a spiral

of multiple concurrent mechanisms contributing for worsening

HF and end-organ damage (Harjola et al., 2017). A progressive

chronic energetic exhaustion of the failing myocardium or a

crescendo of vascular stiffness dependent on neurohormonal

activation (Mentz and O’Connor, 2016) with inflammation

(Reina-Couto et al., 2021) and endothelial disruption, fluid

accumulation and cardiac vicious workload (Colombo et al.,

2008) results in the clinical cardinal sign of congestion in

most patients with AHF, but a smaller proportion presents

with peripheral hypoperfusion or cardiogenic shock (CS)

(Chioncel et al., 2017b). This most severe form of AHF

remains with an unchanged mortality as high as 50% and also

with few evidence-based effective therapeutics (Thiele et al.,

2019). Interestingly, we still cannot conclude whether

congestion is cause or consequence of endothelial dysfunction

(Colombo et al., 2014; Colombo et al., 2015) which remains to be

explored in AHF. Nevertheless, even though endothelial

dysfunction prognostic significance is well recognized in

chronic HF (Alem, 2019; Zuchi et al., 2020), the classical

methods for its evaluation are technically challenging and

have limited its clinical implementation (Shantsila et al.,

2012). Also, the assessment of systemic endothelial biomarkers

is not yet consolidated for clinical practice, namely for AHF.

Endocan, previously designated as endothelial cell-specific

molecule-1 (ESM-1), is a soluble dermatan sulfate proteoglycan

synthetized specifically by endothelial cells, probably mirroring

inflammation-driven “endothelitis” (Lassalle et al., 1996). There

has been an increasing interest in exploring endocan’s utility as a

biomarker in a wide spectrum of pathological states, particularly

in sepsis, acute respiratory distress syndrome and several

cardiovascular diseases (De Freitas Caires et al., 2018; Bessa

et al., 2020). Increased values independently related with

prognosis and cardiovascular events have been recently

reported for endocan in coronary and chronic HF patients
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(Kosir et al., 2019; Ziaee et al., 2019) and its therapeutic potential

has just started to be explored for cancer (Zhang et al., 2021). As

it can be easily detected in the human bloodstream and was

proved to be stable, intact and reliable in critical patients (Gaudet

et al., 2017), we aimed to explore serum and urinary endocan

profiles in AHF and CS patients, where endothelial activation and

congestion seem to be plausible and specific hallmarks.

Furthermore, we analysed their correlation with prognostic

parameters as well as with mechanistic biomarkers of

inflammation, endothelial activation or cardiovascular

dysfunction.

Materials and methods

Study design and population

The present study is part of a larger research project (RIFF-

HEART—Resolution of inflammation: a missing key to improve

acute heart failure treatment and prognosis?) involving patients

admitted to the Service of Intensive Care Medicine of a tertiary

hospital (Centro Hospitalar Universitário São João, CHUSJ).

We performed a single-centre cohort study and

consecutively recruited patients with a single diagnosis of

AHF (n = 23) or CS (n = 25) admitted to the Service of

Intensive Care Medicine of CHUSJ, from January 2017 to

December 2019. Controls (n = 22) were recruited among

healthy blood donor volunteers from the Service of

Immunohemotherapy of CHUSJ, from September 2017 to

October 2017. All eligible patients (or their legal

representative) provided written informed consent to

participate in the study. Blood donor volunteers provided

verbal informed consent. The study protocol conforms to the

Guidelines for Good Clinical Practice and the ethical guidelines

of the 1975 Declaration of Helsinki. The study was approved by

the institution’s ethics committee (CES 75-16).

Clinical data and sample collection

Physical examination of the patients was performed during

their Intensive Care Unit (ICU) stay and a record of demographic

and clinical data was completed by the medical team of the

project and anonymously coded to the project database, along

with laboratory data, guaranteeing confidentiality. Illness severity

was assessed by the Acute Physiology and Chronic Health

Evaluation II (APACHE II) and Simplified Acute Physiology

Score II (SAPS II) scoring systems at ICU admission, as well as by

the values of the natriuretic peptide in use in our centre (plasma

B-type natriuretic peptide, P-BNP) and the echocardiographic

LV ejection fraction (LVEF). ICU length of stay, total hospital

length of stay, in-hospital mortality and mortality at 1 year were

also evaluated.

Blood and spot urine samples were collected in patients

(AHF and CS groups) at 3 different time points during ICU

stay, whenever possible: up to 48 h (days 1–2, admission), on

days 3–4 and on days 5–8 after ICU admission. All samples from

CS patients on mechanical circulatory support were obtained at

days 1–2, days 3–4 and days 5–8 after veno-arterial

extracorporeal membrane oxygenation (VA-ECMO) initiation

which coincided with ICU admission. Samples (blood and spot

urine) from controls were collected at a single time point. All

samples were processed within 1–2 h of collection and stored

at −80°C until assayed.

Routine clinical biochemical and cardiac
markers

P-BNP and plasma high-sensitivity troponin I (P-hs-trop I)

were measured by chemiluminescent microparticle

immunoassays using an Abbot® Architect i2000 automated

analyser (Abbott® Diagnostics, Lake Forest, IL, USA). A

Beckman Coulter® AU5400 automated clinical chemistry

analyser (Beckman Coulter®, Portugal) was used for the

quantification of serum C-reactive protein (S-CRP) by an

immunoturbidimetric assay, serum urea (S-Urea)

concentration by a kinetic urease/glutamate dehydrogenase

method, plasma and urine creatinine by the colorimetric Jaffe

method and urinary protein by the pyrogallol red method.

Lactate was evaluated by blood gas analysis.

Quantification of serum and urinary
endocan

Serum and urinary endocan (S-Endocan and U-Endocan,

respectively) were quantified by enzyme-linked immunosorbent

assays (ELISA) using commercial kits (S-Endocan: “Just Do It

ELISA Kit H1”, JDIEK H1, Lunginnov, Lille, France; U-Endocan:

Human ESM1/Endocan ELISA Kit, LS-F24487, LSBio, Inc.,

Seattle, USA). U-Endocan values were corrected for urinary

creatinine concentrations.

Quantification of other biomarkers of
endothelial activation and inflammation

Other serum endothelium activation markers (serum

intercellular adhesion molecule 1, S-ICAM-1; serum vascular

cell adhesion molecule 1, S-VCAM-1; serum E-Selectin,

S-E-Selectin) and proinflammatory cytokines (serum interleukin

6, S-IL-6; serum interleukin one beta, S-IL-1β; serum tumour

necrosis factor alpha, S-TNF-α) were evaluated by multiplex

immunoassays using a Luminex 200™ xMAP™ analyzer

(Luminex Corporation, Austin, TX, USA), according to the
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protocols of Human Premixed Multi-Analyte Magnetic Assay

(R&D Systems, Inc., Minneapolis, USA) and Human High

Sensitivity T Cell Magnetic Bead Panel (Milliplex® Map kit,

Millipore Corporation, Billerica, MA, USA), respectively. Raw

data analysis (mean fluorescence intensity) was performed

using a standard five parameter logistic (5-PL) curve fit created

by the Luminex xPONENT ® Software (version 3.1).

Data and statistical analysis

Results are expressed as mean ± standard error of the mean

(SEM) or as median (25th percentile; 75th percentile) for data with

normal or non-normal distribution, respectively, or as percentage,

and are graphically represented as Box andWhiskers plots (Figures

1–5 and Figure 8) or as scatter plots (Figures 6, 7) or as Kaplan-

Meier plot (survival analysis; Supplementary Figure S1). Estimated

glomerular filtration rate (eGFR) was calculated using the Chronic

Kidney Disease Epidemiology Collaboration (CKD-EPI) equation

(Levey et al., 2009). Statistical analysis was conducted using the

GraphPad Prism 9 software (La Jolla, USA) and the IBM SPSS

Statistics 27 software (IBM Corporation, New York, USA). Results

were analysed by unpaired Student’s t-test or Mann–Whitney

U-test, for comparisons between two groups, or by one-way

ANOVA followed by a Tukey’s multiple comparison test or a

Kruskal–Wallis test followed by a Dunn’s post hoc test, for

comparison between three groups, where appropriate. The value

of p for linear trend was estimated by one-way ANOVA followed by

a post hoc test for trend, after applying a base 10 log transformation

to the variables with non-normal distribution. Categorical variables

were analysed by the Fisher’s exact test or by the Chi-Square test.

Biomarkers evolution throughout the hospitalization was analysed

by Wilcoxon matched pairs signed rank test. Spearman’s

correlation analysis was used to estimate correlations between

sets of nonparametric data in AHF and CS patients at

admission. All p values of <0.050 were considered significant.

Repeated measures multivariate analyses were conducted to

determine the relationship between S-Endocan (as dependent

variable) and endothelial activation markers (S-VCAM-1),

inflammation (S-IL-6), cardiac markers (P-BNP and P-hs-trop

I), systolic and diastolic blood pressure (SBP and DBP,

respectively) and prognostic scores, adjusted for some

confounders, namely age and gender.

The ability of S-Endocan, U-Endocan, S-VCAM-1, P-BNP and

APACHE II and SAPS II scores to discriminate in-hospitalmortality

was evaluated by plotting receiver operating characteristic (ROC)

curves and computing the area under the curve (AUC).

To prevent possible bias in clinical evaluation, all the patients

were examined by the same medical team included in the project.

To assure comparability of biomarkers assessment, samples from

controls, AHF and CS groups were evenly distributed in each assay

plate. There were missing values in some biomarkers due to

insufficient volume to perform sample processing, dilution tests

and assays. In addition, some routine clinical biomarkers could

FIGURE 1
Serum endocan (A,C) and urinary endocan (B) concentrations at admission in controls, CS and AHF patients. Results are presented in Box-and-
Whiskers plot. AHF, acute heart failure; CS, cardiogenic shock; S-Endocan, serum endocan; U-Endocan, urinary endocan.

Frontiers in Physiology frontiersin.org04

Reina-Couto et al. 10.3389/fphys.2022.965611

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965611


only be assessed at a single time point during hospitalization due to

hospital’s internal policies, and we had not permission to measure

routine clinical biomarkers in controls (blood donor volunteers),

except for creatinine, or to have access to their hospital laboratory

reports. The final number per group for the biomarkers/

parameters evaluated at admission was as following: APACHE

II score, n = 23 vs. 23 (AHF vs. CS); P-BNP, n = 20 vs. 17 (AHF vs.

CS); P-hs-trop I, n = 23 vs. 23 (AHF vs. CS); eGFR, n = 22 vs. 23 vs.

23 (Controls vs. AHF vs. CS); SAPS II score, n = 23 vs. 23 (AHF vs.

CS); S-Urea, n = 23 vs. 23 (AHF vs. CS); U-protein/creatinine ratio,

n = 22 vs. 15 (AHF vs. CS); S-ICAM-1, n = 22 vs. 23 vs. 24

(Controls vs. AHF vs. CS); S-VCAM-1, n = 22 vs. 23 vs. 24

(Controls vs. AHF vs. CS); S-E-Selectin, n = 22 vs. 23 vs. 24

(Controls vs. AHF vs. CS); S-TNF-α, n = 22 vs. 23 vs. 24 (Controls

vs. AHF vs. CS); S-IL-1β, n = 22 vs. 23 vs. 24 (Controls vs. AHF vs.

CS); S-IL-6, n = 22 vs. 23 vs. 24 (Controls vs. AHF vs. CS); S-CRP,

n = 23 vs. 23 (AHF vs. CS). To avoid biasing the results, no

imputation for missing values was used.

Preliminary values of S-Endocan (putative marker for

endothelitis) obtained in controls and in patients with AHF or

CS were used to estimate sample size by G Power 3.1 software.

We found that a sample size of 6 participants/patients in each

group would be sufficient to obtain a statistical study power of

80% at a 5% level of significance. The final sample size was

defined according to the RIFF-HEART project’s primary

objectives that consisted in characterizing not only

endothelitis, but also resolution of inflammation markers at

admission and during hospitalization.

Reporting of the study conforms to STROBE statement along

with references to STROBE and the broader EQUATOR

guidelines (Simera et al., 2010).

Results

Population demographic, clinical and
biochemical characterization

General demographic characteristics, clinical and

biochemical parameters are shown in Table 1.

In this study, 22 healthy controls and 48 patients, 23 with

AHF and 25 with CS, were assessed. Male patients were more

FIGURE 2
Serum (A, B) and urinary endocan (C, D) at days 1–2, days 3–4 and 5–8 in patients with AHF or with CS. Results are presented in Box-and-
Whiskers plot. AHF, acute heart failure; CS, cardiogenic shock; S-Endocan, serum endocan; U-Endocan, urinary endocan.
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FIGURE 3
Admission values of biomarkers of endothelial dysfunction and inflammation in controls, AHF and CS: (A) S-ICAM-1; (B) S-VCAM-1); (C)
S-E-Selectin; (D) S-IL-6; (E) S-IL-1β; (F) S-TNF-α; (G) S-CRP. Results are presented in Box-and-Whiskers plot. AHF, acute heart failure; CS,
cardiogenic shock; S-CRP, serum C-reactive protein; S-E-Selectin, serum E-Selectin; S-ICAM-1, serum intercellular adhesion molecule 1; S-IL-1β,
serum interleukin 1β; S-IL-6, serum interleukin 6; S-TNF-α, serum tumour necrosis factor alpha; S-VCAM-1, serum vascular cell adhesion
molecule 1.
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prevalent in the CS group (n = 20), compared to AHF (n = 11)

and controls (n = 13), with this difference among groups being

borderline significant (p = 0.064). Patients in the AHF group

were significantly older than controls and CS patients (Controls:

56 ± 1 year; AHF: 70 ± 3 years; CS: 58 ± 4 years, p < 0.001). As

expected, APACHE II and SAPS II scores were significantly

higher in the CS group, in which 48% of the patients were

supported with VA-ECMO.

Precipitating factors on admission were identical for AHF

and CS groups, with acute coronary syndrome being the

predominant trigger in both groups, followed by acutely

decompensated HF in AHF and infection in CS patients,

respectively. Arterial hypertension, diabetes, dyslipidemia and

anemia were the most prevalent comorbidities in both groups,

but the AHF group presented a significantly higher number of

patients with arterial hypertension and dyslipidemia. The AHF

FIGURE 4
Evolution of biomarkers of endothelial dysfunction in AHF and CS patients during hospitalization: (A,B) S-ICAM-1; (C,D) S-VCAM-1); (E,F)
S-E-Selectin. Results are presented in Box-and-Whiskers plot. AHF, acute heart failure; CS, cardiogenic shock; S-E-Selectin, serum E-Selectin;
S-ICAM-1, serum intercellular adhesion molecule 1; S-VCAM-1, serum vascular cell adhesion molecule 1.
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FIGURE 5
Evolution of biomarkers of inflammation in AHF and CS patients during hospitalization: (A,B) S-IL-6; (C,D) S-IL-1β; (E,F) S-TNF-α; (G,H) S-CRP.
Results are presented in Box-and-Whiskers plot. AHF, acute heart failure; CS, cardiogenic shock; S-CRP, serum C-reactive protein; S-IL-1β, serum
interleukin 1β; S-IL-6, serum interleukin 6; S-TNF-α, serum tumour necrosis factor alpha.
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FIGURE 6
Spearman correlations for serum endocan in all patients at admission: (A) S-Endocan vs. S-VCAM-1; (B) S-Endocan vs. S-IL-6; (C) S-Endocan vs.
S-CRP; (D) S-Endocan vs. S-SBP; (E) S-Endocan vs. DBP; (F) S-Endocan vs. APACHE II; (G) S-Endocan vs. SAPS II. APACHE II, acute physiology and
chronic health evaluation II; DBP, diastolic blood pressure; SAPS II, simplified acute physiology score (SAPS) II; SBP, systolic blood pressure;
S-Endocan, serum endocan; S-CRP, serum C-reactive protein; S-IL-6, serum interleukin 6; S-VCAM-1, serum vascular cell adhesion
molecule 1.
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group also included a significantly higher number of patients that

were being treated with renin-angiotensin-aldosterone system

(RAAS) inhibitors prior to admission when compared to the CS

group. Regarding therapeutics throughout hospitalization, AHF

and CS groups showed no significant differences in the number

of patients on statin, aspirin or P2Y12 receptor antagonist

therapies.

Patients with CS had significantly higher concentration of

P-hs-trop I at admission, but no differences were found in P-BNP

nor in lactate values when compared to AHF patients. We did not

find significant differences in eGFR between all groups or in

serum urea and proteinuria at admission between AHF and CS

groups. CS patients had a longer length of stay in the ICU than

patients with AHF, but there were no differences between these

groups regarding the total length of hospital stay. There was a

high in-hospital mortality and 1-year mortality in both groups

(Table 1). Although no significant differences were observed in

mortality parameters between AHF and CS patients, the CS

group had a tendentially higher 1-year mortality (CS = 64%

vs. AHF = 35%, p = 0.082) (Table 1). A Kaplan-Meier survival

plot is shown in Supplementary Material, Supplementary Figure

S1. The median survival time for the ICU patients evaluated was

13 months.

S-Endocan and U-Endocan at admission
and during hospitalization

At admission, S-Endocan was significantly higher in AHF

(p < 0.001 vs. controls) and even higher in CS (p < 0.001 vs.

controls; p < 0.010 vs. AHF; p < 0.001 for linear trend) (Figures

1A,C), whereas U-Endocan was only significantly higher in CS

patients (Figure 1B). During hospitalization, we found no

significant reduction in S-Endocan (Figures 2A,B) or

U-endocan values (Figures 2C,D) in both patient groups.

CS patients that were on RAAS inhibitors prior to admission

had significantly lower concentrations of S-Endocan [8.1 (5.1;

12.2) vs. 12.4 (8.5; 22.9) ng/ml, p = 0.026, Supplementary Table

S1] at admission, but no changes were detected in other time

points or in U-Endocan or in AHF patients. Treatment with

statin, aspirin or P2Y12 receptor antagonists throughout

hospitalization did not affect S-Endocan or U-Endocan in

AHF or CS patients (Supplementary Table S1).

Other biomarkers of endothelial activation
and inflammation

Concerning other endothelial activation biomarkers, we

found significantly higher admission values of S-ICAM-1 in

CS patients compared to AHF patients and controls (p <
0.050). However, admission S-ICAM-1 concentration in AHF

patients did not differ from control values (p > 0.050)

(Figure 3A). Admission S-VCAM-1 was increased by 2-fold in

AHF and almost by 4-fold in CS patients compared to controls

(p < 0.001 for AHF and CS vs. controls), but no differences were

found in admission S-E-Selectin values among the groups

(Figures 3B,C, respectively). Both S-ICAM-1 and S-VCAM-

1 concentrations linearly increased across the AHF spectrum

(p for linear trend = 0.010 for S-ICAM and p for linear

trend<0.001 for S-VCAM-1).

Patients with AHF or CS exhibited higher admission values

of inflammatory markers such as S-IL-6 (p < 0.001) and S-TNF-α
(overall p value = 0.031) compared to controls (Figures 3D,F).

There were no significant differences in admission values of S-IL-

1β among the groups (Figure 3E) or in admission S-CRP

concentrations between AHF and CS groups (Figure 3G).

During hospitalization, there was no significant reduction in

any of the endothelial and inflammatory markers evaluated

(Figures 4, 5). In fact, at days 3–4, we observed a significant

increase of S-VCAM-1 and S-CRP in AHF patients (Figures 4C,

5G, respectively).

Treatment with RAAS inhibitors prior to admission was

associated with tendentially lower concentrations of S-VCAM-

FIGURE 7
Spearman correlations for urinary endocan in all patients at admission: (A)U-Endocan vs. S-IL-6; (B)U-Endocan vs. S-TNF-α; (C)U-Endocan vs.
U-protein/creatinine. S-IL-6, serum interleukin 6; S-TNF-α, serum tumour necrosis factor alpha; U-Endocan, urinary endocan; U-protein/creatinine,
urinary protein/creatinine.
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TABLE 1 Demographic, clinical and biochemical characteristics at admission and outcomes of study population.

Demographic, clinical and
biochemical parameters

Controls (n = 22) AHF (n = 23) CS (n = 25) p value

Age (Years) 56 ± 1 70 ± 3** 58 ± 4## <0.001

Gender, n (%) — — — 0.064a

Men 13 (59) 11 (48) 20 (80) —

Women 9 (41) 12 (52) 5 (20) —

APACHE II Score n/a 16 (11; 21) 21 (16; 27) 0.010

SAPS II Score n/a 36 (27; 41) 46 (37; 62) 0.004

VA-ECMO, n (%) n/a 0 (0) 12 (48) <0.001b

Lactate (mmol/L) n/a 1.28 (1.05; 1.70) 1.47 (1.17; 2.75) 0.092

Precipitating factors on admission, n (%)

Acute coronary syndrome n/a 9 (39) 10 (40) >0.999b

Arrhythmia n/a 3 (13) 4 (16) >0.999b

ADHF n/a 5 (22) 3 (12) 0.366b

Valvular disease n/a 2 (9) 1 (4) 0.502b

Infection n/a 1 (4) 5 (20) 0.101b

Other n/a 3 (13) 1 (4) 0.257b

Unknown n/a 0 (0) 1 (4) 0.332b

Comorbidities, n (%)

Arterial Hypertension n.d 18 (78) 12 (48) 0.031b

Diabetes n.d 13 (57) 8 (32) 0.087b

Obesity n.d 3 (13) 1 (4) 0.257b

Dyslipidemia n.d 13 (57) 4 (16) 0.005b

Chronic pulmonary disease n.d 3 (13) 2 (8) 0.568b

Chronic kidney disease n.d 4 (17) 1 (4) 0.129b

Cancer n.d 1 (4) 0 (0) 0.292b

Anemia n.d 12 (52) 17 (68) 0.263b

Cardiac biomarkers

P-BNP (pg/ml) n.d 897 (417; 1542) 869 (321; 2691) >0.999
P-hs-trop I (ng/L) n.d 423 (114; 11,586) 9311 (209; 105,413) 0.030

Renal function

eGFR (mL/min per 1.73 m2) 77 ± 4 71 ± 6 70 ± 5 0.566

S-Urea (mg/dl) n.d 54 (37; 77) 66 (44; 73) 0.436

U-protein/creatinine (mg/mg) n.d 0.3 (0.1; 0.7) 0.4 (0.2; 1.1) 0.458

Previous therapeutics, n (%)

RAAS inhibitors (ACE inhibitor and/or ARB) n.d 17 (74) 10 (40) 0.029b

Therapeutics during hospitalization, n (%)

Statins n.d 18 (78) 13 (52) 0.075b

Aspirin n.d 14 (61) 14 (56) 0.777b

P2Y12 receptor antagonists n.d 10 (43) 10 (40) >0.999b

Outcomes

ICU length of stay (days) n/a 4 (3; 7) 10 (5; 21) 0.002

Total hospital length of stay (days) n/a 12 (9; 18) 14 (6; 22) 0.716

In-hospital mortality, n (%) n/a 5 (22) 11 (44) 0.132b

Mortality within 12 months, n (%) n/a 8 (35) 16 (64) 0.082b

ACE, angiotensin converting enzyme; ADHF, acute decompensated heart failure; AHF, acute heart failure; APACHE II, Acute Physiology And Chronic Health Evaluation II; ARB,

angiotensin II, receptor blocker; CS, cardiogenic shock; eGFR, estimated glomerular filtration rate; ICU, intensive care unit; n/a, not applicable; n.d., not determined; P-BNP, plasma B-type

natriuretic peptide; P-hs-trop I, plasma high-sensitivity troponin I; RAAS, renin-angiotensin-aldosterone system; SAPS II, Simplified Acute Physiology Score II; S-urea; serum urea;

U-protein/creatinine, urinary protein/creatinine; VA-ECMO, venoarterial extracorporeal membrane oxygenation. Results are expressed as number (%), mean ± SEM, or as median (25th

percentile; 75th percentile) for data with normal or non-normal distribution, respectively. **p < 0.01 vs. Controls; ##p < 0.01 vs. AHF. All the parameters that have significant p values (p <
0.05) should be written in bold (both the parameter and the respective p value).
aChi-Square test
bFisher’s exact test
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1 [1717 (1108; 2332) vs. 3524 (2141; 5252) ng/ml, p = 0.058,

Supplementary Table S1] in CS patients at admission, but no

significant changes were detected in other time points or in other

endothelial cell adhesion molecules or in AHF patients

(Supplementary Table S1). Statin treatment throughout

hospitalization did not affect endothelial cell adhesion

molecules in CS patients, but in AHF patients was associated

with significantly higher values of E-Selectin at admission and at

days 3–4 (Supplementary Table S1). Regarding antiplatelet

therapy throughout hospitalization, both aspirin and P2Y12

receptor antagonists were associated with opposite effects on

endothelial cell adhesion molecules, being associated with a

significant reduction of S-VCAM-1 at admission in CS

patients and with an increase of S-ICAM-1 at admission and

days 3–4 in AHF patients (Supplementary Table S1).

Comparisons in CS patients with or
without VA-ECMO

At admission, there were no significant differences in

demographic or in routine biochemical parameters between

the VA-ECMO group (n = 12) and the conventional medical

therapy (CMT) group (n = 13), except for the age, the VA-ECMO

patients being younger (48 ± 4 years vs. 68 ± 4 years, p = 0.004,

VA-ECMO vs. CMT). During hospitalization, no significant

differences were observed between CMT and VA-ECMO

groups in S-Endocan, U-Endocan or any of the other

endothelial and inflammatory markers evaluated (data not

shown), although S-CRP was tendentially higher in the VA-

ECMO group at days 5–8 (VA-ECMO: 158.5 (85.6; 223.5 mg/L

vs. CMT: 55.7 (24.3; 148.4) mg/L, p = 0.068).

Correlation analysis

Within all patients at admission, S-Endocan was inversely

correlated with SBP (r = −0.503, p = 0.002) and DBP (r = −0.430,

p = 0.014) (Figures 6D,E, respectively) and positively correlated

with S-VCAM-1 (r = 0.604, p < 0.001), S-IL-6 (r = 0.432, p = 0.002)

and S-CRP (r = 0.324, p = 0.028) (Figures 6A–C respectively), as

well as with usually recognized prognosis surrogates of ICU

patients, such as APACHE II (r = 0.332, p = 0.026) and SAPS

II (r = 0.302, p = 0.044) scores (Figures 6F,G, respectively).

U-Endocan was positively correlated with S-IL-6 (r = 0.398,

p = 0.018), S-TNF-α (r = 0.373, p = 0.027) and U-protein/

creatinine (r = 0.665, p < 0.001) (Figures 7A–C, respectively).

Repeated measures multivariate analyses

The repeated measures multivariate analyses, considering all

values during hospitalization and adjusted for age and gender,

confirmed the positive relationship of S-Endocan with S-VCAM-

1 previously detected in correlation analysis and evidenced a

positive association with P-BNP, with higher values of these

biomarkers being associated with higher S-Endocan values

(Table 2). S-Endocan also had a borderline significant positive

association with APACHE II score (Adjusted β = 0.377; 95% CI:

−0.030–0.784, p = 0.069). The inverse relationships of S-Endocan

with SBP or DBP were also confirmed in these multivariate

analyses, with lower SBP and DBP values being associated with

higher S-Endocan values (Table 2).

S-Endocan stratification by LVEF and
mortality

When patients were stratified according to 2021 guidelines

classification based on echocardiographic LVEF (McDonagh

et al., 2021), admission S-Endocan values significantly

increased in line with the degree of LVEF impairment (p for

linear trend = 0.008) (Figure 8A). This was not observed for

S-VCAM-1 values at admission (p for linear trend = 0.202)

(Figure 8B).

Regarding the stratification of endocan values according to

the mortality within 12 months, although non-survivors

presented higher median values of S-Endocan at admission

TABLE 2 Repeated measures multivariate models for S-Endocan in
AHF and CS patients. (Adjusted β), 95% confidence intervals (95%
CI) and p value estimated by repeated measures multivariate models
with S-Endocan as the dependent variable and adjusted for age and
gender.

S-Endocan (ng/ml) Adjusted β 95% CI p value

Model 1

S-VCAM-1 (ng/ml) 0.001 0.000 to 0.002 0.005

Model 2

S-IL-6 (pg/ml) 0.000 -0.014 to 0.013 0.964

Model 3

P-BNP (pg/ml) 0.002 0.000 to 0.04 0.018

Model 4

P-hs-trop I (ng/L) 0.000 0.000 to 0.000 0.756

Model 5

APACHE II score 0.377 −0.030 to 0.784 0.069

Model 6

SAPS II score 0.133 −0.062 to 0.327 0.181

Model 7

SBP (mmHg) −0.193 −0.167 to - 0.038 0.002

Model 8

DBP (mmHg) −0.144 −0.265 to −0.033 0.011

AHF, acute heart failure; APACHE II, acute physiology and chronic health evaluation;

CS, cardiogenic shock; DBP, diastolic blood pressure; P-BNP, plasma B-type natriuretic

peptide; P-hs-trop I, plasma high-sensitivity troponin I; SAPS II, simplified acute

physiology score; SBP, systolic blood pressure; S-IL-6, serum interleukin 6; S-VCAM-1,

serum vascular adhesion molecule 1. All the parameters that have significant p values

(p < 0.05) should be written in bold (both the parameter and the respective p value).
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when compared to survivors (S-Endocan - Non-survivors: 7.9

(5.2; 13.5) ng/ml vs. Survivors: 6.2 (2.4; 9.8) ng/ml), these

differences did not reach statistical significance (p = 0.158).

Moreover, among CS patients, non-survivors presented higher

median values of U-Endocan compared to survivors

(U-Endocan—CS Non-survivors:10.3 (0.0; 100.2) pg/mg

creatinine vs. CS Survivors: 0.0 (0.0; 25.6) pg/mg creatinine),

although this was not statistically significant (p = 0.497).

Performance of S-Endocan, U-Endocan,
S-VCAM-1, P-BNP and prognostic scores
as predictors of in-hospital mortality

APACHE II and SAPS II had similar and the highest AUC

values for the prediction of in-hospital mortality, both being

significant [AUCAPACHE II: 0.790 (95% CI: 0.643–0.938), p =

0.002; AUCSAPS II: 0.807 (95% CI: 0.664–0.951), p = 0.001)]

(Supplementary Table S2). When comparing confidence

intervals, S-Endocan seemed to perform, at least, as well as

P-BNP and S-VCAM-1 and also did not appear to be

significantly different from APACHE II and SAPS II scores

(Supplementary Table S2).

Discussion

Our study highlights that inflammation-driven endothelitis

might be a major pathophysiological mechanism across AHF

spectrum, as evidenced by elevated concentrations of S-Endocan,

S-VCAM-1, S-IL-6 and S-TNF-α both in AHF and CS group of

patients. Of these parameters, S-Endocan seems the most

promising biomarker since it not only raises with the

hemodynamic severity of clinical presentation at admission

but, most surprisingly, also increases with LVEF dysfunction.

The positive correlation of S-Endocan with routine ICU

prognostic scores and, particularly, its positive association

with P-BNP in multivariate analyses suggest its relevance for

inclusion in larger multimarker panels for AHF prognostication

and eventually for future therapeutic targeting.

After many negative or neutral AHF trials, newer

therapeutic targets are demanded once they are validated in

pilot mechanistic studies where surrogate markers prove a

solid and comprehensive inference for clinical benefit

(Gheorghiade et al., 2005b). Endothelial dysfunction is

prevalent and seems to be a predictor of adverse events in

HF patients, also implicated in HF development and

progression (Alem, 2019; Zuchi et al., 2020). Of note,

therapies that have shown consistently to improve HF

survival (e.g. angiotensin-converting enzyme inhibitors,

spironolactone, beta blockers, etc) were demonstrated to

simultaneously improve endothelial function (Marti et al.,

2012). Therefore, a new interest in endothelial activation is

re-emerging not only for risk stratification but also as a

potential therapeutic target (De Keulenaer et al., 2017;

Premer et al., 2019). The most validated theory considers

that nitric oxide (NO) regulation of vascular tone contributes

to the hemodynamic status in acute HF. Its imbalance with

vasoconstrictors and reactive oxygen species determines

increased vascular stiffness in pulmonary and systemic

circulation and consequently ventricular workload and

neurohormonal activation (Marti et al., 2012). Numerous

clinical trials explored this therapeutically, either directly

through drugs that modulate NO release, such as nebivolol

(SENIORS trial) (Flather et al., 2005), or indirectly through

drugs acting on cGMP-signalling axis, such as sildenafil

FIGURE 8
Serum endocan (A) and VCAM-1 (B) stratified by left ventricular ejection fraction (LVEF). Preserved LVEF: LVEF ≥50%; mildly reduced LVEF: LVEF
41–49%; reduced LVEF: LVEF ≤40%. Results are presented in Box-and-Whiskers plot. S-Endocan, serum endocan; S-VCAM-1, serum vascular cell
adhesion molecule 1.
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(RELAX trial) (Redfield et al., 2013), riociguat (LEPHT study)

(Bonderman et al., 2013) or vericiguat (SOCRATES trial)

(Gheorghiade et al., 2015) and, ultimately, via the

neprilysin inhibitor sacubitril that inhibits natriuretic

peptide degradation causing amplification of the

intracellular level of cGMP via natriuretic peptide receptor-

A (McMurray et al., 2014). However, endothelial dysfunction

extends beyond NO-mediated effects in the endothelium and

its role in HF pathophysiology is more complex than

previously anticipated. Endothelial dysfunction is now

viewed as a common and important feature of all

circulatory beds in HF, regardless of LVEF spectrum

(Triposkiadis et al., 2019).

Although several non-invasive techniques have been

developed for endothelial function testing, including flow-

mediated vasodilation and finger plethysmography, these

techniques are hardly implemented in the clinical daily

practice. Due to these difficulties, some studies have

quantified circulating endothelial biomarkers in HF patients,

and, therefore, the measurement of many circulating

endothelial biomarker candidates is becoming promising

(Walczak et al., 2015). Circulating endothelial cells in the

peripheral blood as well as E-selectin, von Willebrand factor

and soluble thrombomodulin were shown to be significantly

higher in patients with HF although they did not present

significant differences between AHF and chronic HF and did

not correlate with P-BNP (Chong et al., 2006a), ejection

fraction or New York Heart Association (NYHA) class

(Chong et al., 2006b). Also, VCAM-1 and ICAM-1 were

shown to be associated with the development of new post-

acute myocardial infarction HF symptoms (Lino et al., 2019)

and increased subset-specific monocyte expression of their

receptors were observed in AHF patients, with potential

prognostic value of VCAM-1R (Wrigley et al., 2013) and

sVCAM-1 after ST-elevation myocardial infarction (Hayek

et al., 2021). But of all these, serum endocan has been one of

the most qualified for the cardiovascular arena (Bessa et al.,

2020).

In fact, in our work, most endothelial biomarkers, but not

P-BNP, seem to differentiate AHF phenotype of presentation,

since admission concentrations of S-ICAM-1, S-VCAM-

1 and S-Endocan were significantly higher in CS patients.

Among them, S-Endocan and S-VCAM-1 were also

significantly increased in AHF patients, besides being

linearly associated with the hemodynamic presentation of

AHF. However, only S-Endocan increased in line with the

degree of LVEF impairment evaluated by echocardiography.

Thus, it may potentially be the first biomarker correlated with

the severity of presentation of AHF phenotype and LVEF

impairment, ultimately being anticipated as a better surrogate

for prognostication in this entity if we consider

hypoperfusion phenotype as the worst indicator for in-

hospital mortality (Chioncel et al., 2019). This is

corroborated by its positive association with P-BNP in

repeated measures multivariate analysis adjusted for age

and gender, as well as by its positive correlations with

APACHE II and SAPS II. P-BNP (Metra et al., 2007) and

LVEF (Solomon et al., 2007; O’Connor et al., 2008) are well

established surrogates for prognosis in AHF and CS patients,

although with some particularities and limitations (Chioncel

et al., 2017a; Pang et al., 2019; Salah et al., 2019), whereas

APACHE II and SAPS II are mostly validated for ICU

patients in general. Accordingly, in our study, CS patients

have longer ICU length of stay and tended to have a higher 1-

year mortality, but there were no significant differences in in-

hospital mortality between the AHF or CS groups. This might

have resulted from a selection bias of AHF patients, which

were only recruited from ICU, implicating selection of most

severe patients, for example with need of non-invasive

ventilation support. Moreover, the significantly older age

of AHF patients and the higher prevalence of myocarditis

(non-coronary etiologies) in CS group might also have

contributed to these outcomes (Harjola et al., 2015).

Noteworthy, we found that non-survivors had higher

admission values of S-Endocan compared to survivors,

although this did not reach statistical significance probably

due to the aforementioned reasons and also to the exploratory

nature of this small study, not designed to detect differences

between survivors and non-survivors. We further assessed

the performance of S-Endocan, U-Endocan, S-VCAM-1,

P-BNP, APACHE II and SAPS II at admission to

discriminate in-hospital mortality using ROC analysis. As

already established, APACHE II and SAPS II are the best

models for predicting mortality and this was confirmed again

by their higher and significant AUC values. This was expected

since they are a composite of clinical and analytical variables.

However, when comparing confidence intervals, their

performance did not appear to be significantly different

from that of S-Endocan. This biomarker also seemed to

perform, at least, as well as P-BNP and S-VCAM-1 in

relation to in-hospital mortality, with the clinical

advantage of being linearly associated with both

hemodynamic presentation and ventricular dysfunction,

which no analytical parameter demonstrated until now.

These results are in line with previous studies, where for

example, in ventilator-associated pneumonia, higher

endocan concentrations were seen in non-survivors at day

1 and 7 (El Halim and Sayed, 2015) and also in patients with

acute respiratory distress syndrome (ARDS) (Tang et al.,

2014). In severe sepsis, a cut-off point was determined at

days 1, 4, and 7, where higher endocan values were associated

with poor prognosis (Hsiao et al., 2018) and with the need for

mechanical ventilation (Mangat et al., 2017), thus

representing a better biomarker than procalcitonin (Pauly

et al., 2016; Zhao and Dong, 2017). Also remarkably,

U-Endocan was even more evidently higher in CS non-

Frontiers in Physiology frontiersin.org14

Reina-Couto et al. 10.3389/fphys.2022.965611

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965611


survivors but again not statistically significant. Furthermore,

its performance to discriminate in-hospital mortality did not

appear to be significantly different from the other endothelial

biomarkers tested.

Human endocan is synthetized by the vascular

endothelium, namely by the pulmonary and kidney

endothelial cells (Lassalle et al., 1996) but, unlike the other

proteoglycans of the endothelial glycocalyx, it circulates freely

in the bloodstream (Gaudet et al., 2017). The catabolism of

endocan is not well known, resulting probably from

proteolytic degradation and hepatic metabolism (De Freitas

Caires et al., 2013; Nault et al., 2013). Urinary endocan is

probably derived from kidney endothelial cells and in our

work it was markedly higher in CS, suggesting locally

increased renal endothelial dysfunction in these patients.

Although it was positively correlated with proteinuria,

which might indicate a relationship with glomerular lesion,

we did not observe significant differences in renal function

parameters between AHF and CS patients. Interestingly,

urinary endocan was also positively correlated with

inflammatory biomarkers such as IL-6 and TNF-α,
reinforcing endocan association with inflammatory status.

In contrast to our work, in populations with community

acquired pneumonia, circulating endocan did not correlate

with IL-6 or VCAM-1 at admission (Smart et al., 2018). This

probably suggests that, in AHF, endocan is more timely linked

to the inflammatory response and could potentially better

reflect the complex multitude of pathophysiological pathways

of AHF patients or even add incremental value to a multi-

marker multi-point strategy of risk stratification (Lassus et al.,

2013; Demissei et al., 2016).

We did not observe a reduction of endocan values or of

other endothelial and inflammatory biomarkers during the

first week of hospitalization in both patient groups. In other

studies, namely on post-operative cardiac surgery patients,

endocan was shown to peak very quickly at 6 h and slowly

decline but it did not return to baseline at day 5

(Madhivathanan et al., 2016). Furthermore, higher endocan

concentrations were observed in patients with the longest

duration of norepinephrine support (Bougle et al., 2018)

and could predict nosocomial pneumonia earlier and better

than CRP (Perrotti et al., 2018). Endocan was also shown to

increase during sepsis, worsening into multiple organ

dysfunction syndrome (MODS), as well as to decrease

when sepsis improves (Ioakeimidou et al., 2017). Severe

sepsis with endocan concentrations remaining above

6.28 ng/ml at days 1, 4, and 7 was already demonstrated to

be associated with poor prognosis (Hsiao et al., 2018). Of note,

in our study, CS patients showed median S-Endocan values

higher than 8 ng/ml throughout hospitalization. We

hypothesize that in our patient groups, endocan kinetics

could be more delayed than in the cases of sepsis already

described, being specifically related to cardiovascular

pathophysiology as evidenced by its linear association with

ventricular dysfunction, but presenting similar prognostic

implications.

Our results might indicate a perpetuation of endothelial

dysfunction and inflammation in AHF and CS patients

(Reina-Couto et al., 2021), reflecting the “non-resolving”

course typical of this condition with high incidence of re-

hospitalization and worse outcomes of AHF, as verified also

in our population with median survival time of 13 months. This

is in accordance with previous evidence in AHF patients showing

that neurohormones and inflammatory biomarkers remain

elevated 48h to 5 days after the acute event or even for longer

periods (Milo et al., 2003; Gheorghiade et al., 2005a; Cotter et al.,

2008). The persistence of these neurohormonal and

inflammatory responses may be responsible for the high

rehospitalization rates of this syndrome. So far, no therapeutic

drug is well established as securely modifying prognosis in AHF

(McDonagh et al., 2021) but current guidelines recommend

decongestive therapy and eventually vasodilators for AHF

patients who present with pulmonary edema or inotropes/

vasopressors for CS patients (McDonagh et al., 2021). In fact,

AHF or CS pharmacotherapy may be part of the problem. AHF

pharmacological treatment may contribute to heightened

neurohormonal activation (Goldsmith et al., 2018).

Furthermore, the use of catecholamines as inotropes and/or

vasopressors for the management of CS patients may further

worsen cardiac and renal function (Amado et al., 2016;

Tarvasmaki et al., 2016). Sympathetic activation is known to

be associated with both inflammation and endothelial

dysfunction and may underlie the unresolved inflammatory

and endothelial responses in AHF and CS patients (Marvar

and Harrison, 2012; Johansson et al., 2015; Ziegler et al.,

2018). The therapeutic modulation of endocan has been

explored in some studies as recently reviewed by our group

(Bessa et al., 2020). However, as far as we know, no studies

analysed the effects of mainstay pharmacotherapies for AHF

(diuretics, vasodilators) or CS (inotropes, vasopressors)

specifically on endocan. Regarding other drug treatments used

in patients with cardiovascular disease, there is some evidence

that RAAS inhibitors, statins and P2Y12 receptor antagonists can

reduce endocan (Celik et al., 2015; Wei et al., 2017; Gao et al.,

2018; Tuncez et al., 2019). However, in our study, only prior

RAAS inhibitor treatment significantly decreased serum endocan

and this was just observed for CS patients at admission.

Treatment with statins or antiplatelet agents throughout

hospitalization did not seem to affect serum or urinary

endocan values in AHF or CS patients.

Endothelial dysfunction is poorly characterized in humans

on mechanical circulatory support. In our study, we performed

an extensive evaluation of endothelial and inflammatory

biomarkers. Nevertheless, although the time frame selected in

our study seemed adequate based on a previous study (Frerou

et al., 2021), a more prolonged evaluation period might be
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required for VA-ECMO patients, ideally comparing pre- and

post-cannulation. Indeed, during the first week of

hospitalization, we could not observe any differences in the

endothelial or inflammatory biomarkers in VA-ECMO

patients compared to the conventional treatment group, with

the exception of a tendential rise in S-CRP in the VA-ECMO

group at days 5–8. These results are in contrast to a recent study

describing that CS patients on VA-ECMO had higher values of

plasma IL-6 and TNF-α within 24 h of VA-ECMO initiation

compared to CS patients without VA-ECMO. Nevertheless,

similarly, the authors could not find differences in these

parameters between groups on day 4 after VA-ECMO

initiation (Frerou et al., 2021). So far, from the scarce

evidence found, there is still no consensus on the impact of

ECMO on endothelial dysfunction and inflammation.

Persistently high IL-6 concentrations in VA-ECMO patients

were shown to be associated with poor prognosis (Risnes

et al., 2008; Al-Fares et al., 2019), but in studies conducted in

experimental models to investigate endothelial cell dysfunction

associated with prolonged contact of blood components with

synthetic surfaces, plasma from the ECMO experiments did not

induce ICAM-1 expression in human umbilical vein endothelial

cells during the 8 h of exposure (Graulich et al., 2000).

Major strengths of our study include an ICU population

sample in “real-world conditions”, particularly CS and VA-

ECMO patients, which are scarcely studied in the literature, as

well as an extensive panel of endothelial and inflammatory

biomarkers and the most commonly used clinical and

echocardiographic prognostic indicators, including ICU

APACHE II and SAPS II scores. Furthermore, our cohort

appears to be representative of the mortality rate described in

the literature for both AHF and CS (Chioncel et al., 2017b; Thiele

et al., 2021). The small size of sample population and the

unicentric character of this study are important limitations to

point out that might limit the ability to generalize our results in

terms of prognosis. Nevertheless, our results provide important

clues of endocan usefulness as a prognostic marker in AHF and

CS. We believe that endocan relation with mortality deserves to

be explored in larger studies for its potential impact on disease

management and prognosis. A further long-term prospective

study should also be conducted after hospital discharge in

patients presenting to ambulatory HF clinic since the results

obtained throughout 1 week of hospitalization suggest that

endothelitis might be a valuable therapeutic target in these

patients.

In conclusion, admission concentrations of serum and

urinary endocan significantly increase across AHF spectrum,

but there is no reduction in the values of endocan or of other

endothelial and inflammatory markers throughout

hospitalization, suggesting a perpetuation of endothelial

dysfunction and inflammation in these patients that could be

related with the poor prognosis of this condition. Importantly,

serum endocan appears to be a potential new biomarker of

endothelitis and a putative therapeutic target in AHF and CS,

being closely associated with LVEF impairment, BNP and

prognostic scores.
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Glossary

5-PL five parameter logistic

AHF acute heart failure

APACHE IIAcute Physiology And Chronic Health Evaluation II

ARDS acute respiratory distress syndrome

AUC area under curve;

CHUSJ Centro Hospitalar Universitário São João

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration

CMT conventional medical therapy

CS cardiogenic shock

DBP diastolic blood pressure

ECMO extracorporeal membrane oxygenation

eGFR estimated glomerular filtration rate

ELISA enzyme-linked immunosorbent assay

ESM-1 endothelial cell-specific molecule-1

HF heart failure

ICU Intensive Care Unit

LV left ventricular

LVEF left ventricular ejection fraction

NO nitric oxide

P-BNP plasma B-type natriuretic peptide

P-hs-trop I plasma high-sensitivity troponin I

RAAS renin-angiotensin-aldosterone system

ROC receiver operating characteristic

SAPS II Simplified Acute Physiology Score II

SBP systolic blood pressure

S-CRP serum C-reactive protein

SEM standard error of the mean

S-Endocan serum endocan

S-E-Selectin serum E-Selectin

S-ICAM-1 serum intercellular adhesion molecule one

S-IL-1β serum interleukin one beta

S-IL-6 serum interleukin six

S-TNF-α serum tumour necrosis factor alpha

S-Urea serum urea

S-VCAM-1 serum vascular cell adhesion molecule one

sVCAM-1 soluble vascular cell adhesion molecule-1

U-Endocan urinary endocan

VA-ECMO veno-arterial extracorporeal membrane oxygenation

VCAM-1R integrin-receptor to vascular cell adhesionmolecule 1
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