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ABSTRACT

RNA–RNA inter- and intramolecular interactions are
fundamental for numerous biological processes.
While there are reasonable approaches to map RNA
secondary structures genome-wide, understanding
how different RNAs interact to carry out their reg-
ulatory functions requires mapping of intermolecu-
lar base pairs. Recently, different strategies to de-
tect RNA–RNA duplexes in living cells, so called di-
rect duplex detection (DDD) methods, have been de-
veloped. Common to all is the Psoralen-mediated
in vivo RNA crosslinking followed by RNA Proxim-
ity Ligation to join the two interacting RNA strands.
Sequencing of the RNA via classical RNA-seq and
subsequent specialised bioinformatic analyses the
result in the prediction of inter- and intramolecular
RNA–RNA interactions. Existing approaches adapt
standard RNA-seq analysis pipelines, but often ne-
glect inherent features of RNA–RNA interactions that
are useful for filtering and statistical assessment.
Here we present RNANUE, a general pipeline for the
inference of RNA–RNA interactions from DDD exper-
iments that takes into account hybridisation poten-
tial and statistical significance to improve prediction
accuracy. We applied RNANUE to data from different
DDD studies and compared our results to those of the
original methods. This showed that RNANUE performs
better in terms of quantity and quality of predictions.

INTRODUCTION

The ability of RNA to base-pair with itself and other RNAs
is crucial for its function in vivo. For example, many non-
coding RNAs (ncRNAs) are post-transcriptional regula-
tors of gene expression that act through base-pairing with
their target mRNA (1). Others are involved in central cellu-
lar processes such as splicing, RNA editing and others. Of-
ten, ncRNAs confer their function with the help of proteins
or as parts of large ribonucleoprotein complexes. These

RNA-protein interactions can be studied with methods tar-
geting the protein part. For example, CLIP (crosslinking
immunoprecipitation) is based on UV-Crosslinking of pro-
teins to fixate RNA-protein complexes in vivo that are then
immunoprecipitated. The RNA part of the latter is finally
analysed to identify the binding partners of the respective
proteins. In combination with high-throughput sequenc-
ing, HITS-CLIP or CLIP-Seq is able to detect genome-
wide RNA-protein interaction maps. RNA-binding pro-
teins can have several domains that bind single-stranded
RNA (ssRNA) and double-stranded RNA (dsRNA), al-
lowing to capture tripartite protein-RNA–RNA complexes.
Therefore, profiling of protein-RNA interactions can also
detect the corresponding RNA–RNA interaction (2). For
this, CLASH has been proposed as a method for the
transcriptome-wide profiling of RNA–RNA interactions
(3–5). It’s experimental steps are similar to HITS-CLIP but
optimized for the recovery of RNA–RNA duplexes. Several
studies, e.g. using the RNA chaperone Hfq (RIL-Seq; (6,7)),
RNase E (RNase E-CLASH; (8)) or ProQ (RIL-Seq; (9))
where performed in Escherichia coli. However, in a typical
CLASH experiment only ∼ 1% of the sequencing reads pro-
vide information about RNA–RNA interactions (8).

A more holistic approach was proposed with the con-
cept of RNA Proximity Ligation (RPL) (10). In order to
capture in vivo RNA–RNA interactions the biochemical re-
actions are carried out in the crude cell extract. First, ss-
RNAs are depleted by Nuclease digestion, RNA duplexes
ligated, the so called Proximity Ligation step, and subse-
quently sequenced. Chimeric reads, which contain the inter-
and intramolecular interaction partners, are detected bioin-
formatically to decipher the RNA–RNA interactome. Re-
cently, the RPL approach has been extended by Psoralen-
mediated crosslinking and adapted independently to hu-
man, mouse and yeast in different studies, termed Direct
Duplex Detection (DDD) methods (11): LIGR-Seq (12),
SPLASH (13) and PARIS (14). Additionally, a DDD ex-
periment in E.coli (15) will be referred to as mCLASH in
the following.

The methods differ in the experimental protocols (re-
viewed in (16)) and also in their bioinformatics analyses,
although the input data is basically the same, namely se-
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quencing reads with a fraction of chimeras. According to
(16) the latter is in the range of ∼0.5–3.9%. In the following
we will show that this is partly the result of inadequate algo-
rithms for primary data analysis, e.g. read mapping and that
the quality of the predictions in general can be enhanced by
apropriate filtering, statistical assessment and annotation-
independent clustering. We compiled all this into our tool
RNANUE, compared it to the existing pipelines and can
show that it is superior in terms of quality and competitive
in terms of speed. Although RNANUE has been primarily
designed for the analysis of DDD data, it can also be used
on CLASH, HITS-CLIP or CRAC data, which also consist
of chimeric reads.

MATERIALS AND METHODS

Preprocessing

RNANUE utilizes the Boyer-Moore string-search algorithm
(17) to remove adapter contamination from the sequence
reads. The algorithm is based on the idea that by match-
ing the pattern from the right rather than from the left, re-
gions containing no matches can be quickly identified and
skipped, which results in a significant speed-up. However,
this turns out to be less efficient on small alphabets (e.g.
DNA), because substrings re-occur frequently. As a result
skips get shorter. (18) introduced a variant of the algorithm
that also works efficiently on small alphabets by memo-
rizing the last two matched blocks and, thus, facilitating
longer shifts. 5′, as well as 3′ adapters, can be trimmed, and
also partial adapter sequences are removed. Additionally, 3′
adapter sequences that occur within a read are recognized,
and the corresponding reads trimmed at the first position
of the adapter. The algorithm is implemented as a finite au-
tomaton using a smart transition table that takes over the
bookkeeping of the pattern. We further modified the algo-
rithm to allow mismatches in the search pattern (option –
mmrate). Finally, reads with an average Phred score quality
below a user-defined cutoff (option –avgqual) or below a
minimum length (option –minlen) are dropped. In the case
of paired-end reads, RNANUE determines the longest com-
mon substring using a generalized suffix array to merge the
read pairs into a single longer read.

Split read mapping

We use SEGEMEHL (19) to align reads to the reference
genome, because it supports (multiple) split read alignment.
A read that can not be aligned due to insufficient accuracy
(option –accuracy) will be subjected to the split read align-
ment. As a consequence, the higher the accuracy parameter
is set, the more reads will be probed for split read alignment.
In order to be reported as a split match, each fragment
needs to have a minimum score (option –minfragsco) and
a minimum length (option –minfraglen). Furthermore, the
fragments need to cover a user defined fraction of the orig-
inal read (option –minsplicecov). For eukaryotic and ar-
chaeal data sets RNANUE needs to take into account splic-
ing (option –splicing).
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Figure 1. Clustering of the split reads according to the start position of
both segments. Black arcs connect the start positions of the segments
within a split read. Overlaps between the segments of individual split reads
determine the affiliation to a cluster. Colored bands indicate the clusters,
that span from the start to the end of each segment. Clusters (A), (B) and
(B), (C) differ in the second and first segment, respectively. (D) consists of
a single split read (singleton) and (E) occurs isolated from other split reads.

Clustering & annotation

We expect to find several split reads for an individual in-
teraction, and we call a group of such split reads an inter-
action. Such an interaction is described by a pair of non-
overlapping genomic segments. To derive interactions we
cluster detected split reads, if both their pairs of locations
on the genome overlap. One or both segments of the inter-
actions may overlap with annotated genomic features, e.g.
exons and ncRNAs. In this case, we further group interac-
tions into so called transcript interactions. In more detail, we
cluster the split reads into interactions as follows: Let split
reads and clusters be given by pairs of mapping coordinates
(a, b): (c, d). Two split reads, a split read and a cluster, or
two clusters (a1, b1): (c1, d1) and (a2, b2): (c2, d2) are merged
if, both, dab = max (a1 − b2, a2 − b1) and dcd = max (c1
− d2, c2 − d1) do not exceed a threshold �, i.e. max (dab,
dcd) ≤ �. By default � equals 0, such that a minimum over-
lap of 1 nt in both segments is required for merging. The
resulting cluster is assigned the coordinates (min (a1, a2),
max (b1, b2)): (min (c1, c2), max (d1, d2)). The procedure is
shown schematically in Figure 1. Setting � to values greater
than 0, which can be done via the --clustdist param-
eter of RNANUE, merges also clusters/split reads in close
proximity (≤�). The resulting interactions are compared
with the existing genome annotation based on the loca-
tions of their segments. If an interaction segment overlaps
with an annotated feature, it is assigned to the respective
feature. An interaction segment that does not overlap with
any annotated feature is treated as a putative new feature
and assigned a unique ID. As a result, transcript interac-
tions may consist of two annotated transcripts, one anno-
tated and one new transcript, or two new transcripts. Ef-
ficient matching to the annotation is done with the help
of a modified interval B+ tree that is pre-filled with all
annotations.

Statistical analysis

In order to assess the significance of detected interaction
features RNANUE adopts the strategy of (12) to estimate
the likelihood of ligation by chance. We use the multinomial
distribution (k = 2) to model the discrete probability distri-
bution for the ligation by chance of an transcript interaction
between two transcripts tx and ty. The probability for suc-
cess (ligation by chance) is proportional to the relative abun-
dances of each of the transcripts. We define the joint proba-
bility density function for a random ligation event between
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the transcripts tx and ty with rx and ry reads, respectively, as

P(tx:ty) =
⎧⎨
⎩

2P(tx)P(ty), if tx:ty is observed and tx �= ty

P(tx)P(ty), if tx:ty is observed and tx = ty

0, otherwise
(1)

where

P(tx) = rx∑
∀ti ri

(2)

For pairs tx: ty that have not been observed we explicitly set
the probability to zero, because we cannot faithfully decide
if they are missing because they are impossible or have sim-
ply not been observed, e.g., due to insufficient sequencing
depth. As a result, we have to re-normalize the P(tx:ty) to
sum up to 1. The number of split reads X for an interaction
tx:ty is modeled as

X ∼ B(n, p = P(tx:ty)). (3)

For each interaction, we apply a binomial test to generate a
p-value and apply the Benjamini-Hochberg adjustment to
correct for multiple testing and apply a standard � value of
0.1.

Complementarity

The complementarity of two putative interaction sites is
computed as the fraction of matches in a modified local
alignment procedure, where A aligns with U and G aligns
with C and U. Matches are scored with 1, mismatches with
–1 and gap open and extension with –3 and –2, respec-
tively. This scoring scheme is inspired by (20), where these
scores proved to be optimal for sequences with 75% se-
quence conservation, which is in the range that we expect for
the complementarity of interactions. Furthermore, this fa-
vors contiguous over fragmented alignments, a typical fea-
ture of the seed region of interactions (21,22). In princi-
ple, we use the Waterman-Eggert algorithm to compute the
alignments between the segments of all k split reads, while
considering the opposing segment in reverse order. As this
reports also suboptimal alignment, we select the one with
the highest ratio between the number of matches and the
length of the alignment, that satisfies the alignment to read
length ratio. Assuming that the alignment of all k split reads
results in j optimal/suboptimal alignments, then the sets
Mi = {mi1, ..., mi j } and Li = {li1, ..., li j } for split read i cor-
respond to the number of matches in the respective align-
ment and the alignment length, respectively. We define the
complementarity ci for split read i as follows:

ci = max
1≤p≤ j

mi p

li p
, with

li p

2 · ri
≥ θ (4)

ri corresponds to the length of read i. � is a user-defined
cutoff (parameter --sitelenratio) for the aligned por-
tion of a read. On the level of transcript interactions we
have to summarize the complementarity information of sev-
eral split reads and for this we introduce the global com-
plementarity score gcs. Let T be a transcript interaction
that contains k split reads withcomplementarity scores C =
{c1, ..., ck}, we define the gcs as follows:

gcs(T ) = C̃ · max(C) (5)

where C̃ denotes the median of C. In addition to the gcs we
report the fraction of reads that pass � and the ratio of un-
aligned to total read length cutoffs.

Hybridisation energy and probability

The interaction of two RNAs is driven by the thermody-
namics of the hybridisation reaction, resulting in the loss
of free energy. We use RNAlib v2.4.14 (23) to estimate the
minimum free energy hybrid structure and its probability in
the ensemble of all possible interactions. To be precise we
compute ��G = �Gp + �Gu, where �Gp is the free en-
ergy loss of the hybridisation and �Gu the free energy gain
needed to unpair the interacting sites. Similar to the com-
plementarity, we also provide a summarised score for tran-
script interactions that we termed global hybridisation score

ghs(T ) =
√
G̃ · max(G), where G = ��G0, . . . , ��Gk and

k is the number of split reads that support the interaction.
It is noted that ��Gi ≤ 0, ∀Gi ∈ G, otherwise RNANUE
discards the split read. Similarly, the probability of the hy-
bridisation is computed as the product of the probabilities
of the two interactions to be unpaired times the probabil-
ity of the hybridisation. Accordingly, for probabilities P =
{c1, ..., ck}, we define the global probability score gps(T ) =
P̃ · max(P). In addition the fraction of discarded reads is
reported.

Data

We obtained the following method specific data sets:
LIGR-SEQ (GEO: GSE80167), SPLASH (SRA: PR-
JNA318958), PARIS (GEO: GSE74353) and MCLASH
(SRA: SRP103891). These include experiments in hu-
man embryonic kidney (HEK) 293T cells (LIGR-SEQ,
PARIS), HeLa cells (PARIS), Lymphoblastoid cells and
human embryonic stem (hES) cells as well as retinoic
acid (RA) differentiated ES cells (SPLASH). Please note
that the SPLASH datasets are already pre-processed
with SeqPrep (https://github.com/jstjohn/SeqPrep) using
undisclosed parameter settings. Nevertheless, the intrin-
sic pre-processing of RNANUE was also used for these.
Furthermore, we analyzed data from wild-type and a
Prp43 helicase mutant of S. cerevisiae (SPLASH) and
mouse embryonic stem (mES) cells (PARIS). The follow-
ing reference genome sequences from NCBI RefSeq (24)
where used: human genome release GRCh38.p13 (Ref-
Seq assembly: GCF 000001405.39), mouse genome re-
lease GRCm38.p6 (RefSeq assembly: GCF 000001635.26)
and genome release S. cerevisiae S288C (RefSeq as-
sembly: GCF 000146045.2). The respective genome an-
notations were further complemented with information
from LNCipedia 5 (25), snoDB (26) and miRTarBase
7.0 (27).

Implementation

RNANUE complies to the C++17 standard. SEGEMEHL
v0.3.4 is used for split read mapping. Furthermore, it relies
on BOOST C++ libary v1.72.0, SEQAN v3.0.1 and RNALIB
v2.4.14. RNANUE can be configured, both, with a configu-

https://github.com/jstjohn/SeqPrep


5496 Nucleic Acids Research, 2021, Vol. 49, No. 10

intermolecular

intramolecular

raw reads

adapter G ATAAATCTCC T TC TAT TTCC

library preparation

sequencingpreprocessed reads

split read detection

reference

complementarityhybridization energy

clustering transcript interactions

genome annotation

overlap novel

statistical assessment

global 
hybridization

score

global 
complementarity

score

transcript interaction table

105 15 20 25 30 350

# split reads

P[
X=

k]

more likely

unlikely

Figure 2. Schematic overview of RNANUE. Sequence reads are either preprocessed (clipped, trimmed and merged) or directly subjected to split read
detection. This includes mapping, calculation of filter scores (e.g. complementarity, hybridization energy) and is followed by the clustering of the identified
split reads. Clusters are merged with overlapping annotated genome features to so called transcript interactions. These are evaluated statistically and the
p-value together with the global filtering scores is reported in the transcript interaction table.

Table 1. Overview of computational methods for DDD data analysis

Method Preprocessing Mapping Aggregation by Statistical assessment Filtering

ALIGATER - BOWTIE2 Annotation Binomial test None
MCLASH scripts FLEXBAR BLAST Annotation Fisher’s exact test None
PARIS scripts TRIMMOMATIC STAR Annotation None Coverage
RNANUE 2BLOCK-based SEGEMEHL Clustering & annotation Binomial test Complementarity &

hybridization energy
SPLASH scripts SEQPREP BWA-MEM, STAR Annotation None None
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Figure 3. Detected interactions of the corresponding datasets in human
samples using RNANUE in comparison to the original analysis. Numbers
in brackets indicate interactions without annotated features.

ration file or through the command line, where the latter has
precedence. As it provides the complete workflow starting
from raw sequencing reads, they have to be arranged into a
predefined folder structure. The main output of RNANUE
consists of the split read alignments together with the scores
for complementarity and hybridisation. These are reported
in SAM format with custom tags for complementarity (XC)
and hybridization (XE) scores. The results of the cluster-
ing, their overlap with existing annotations and the inter-
actions are then reported in a comprehensive tab-delimited
interaction file and individual read lists for each interac-
tion. Furthermore, RNANUE can produce additional out-
put formats for further downstream analyses. In particular,
count tables (–outcnt) for differential expression analyses
and JSON graph format files (http://jsongraphformat.info/)
for visualization (–outjgf). For that, we recently introduced
VISUALGRAPHX (28) that allows interactive visualization
of large-scale graphs. RNANUE can be installed using plat-
form specific installer or build using CMAKE starting with
v3.4 (29). Additionally, we provide a DOCKER container of
RNANUE with all its dependencies at DOCKERHUB (https:
//hub.docker.com/r/cobirna/rnanue).

Benchmarking procedures

We benchmarked RNANUE and the original data analy-
sis pipeline based on experimentally validated targets from
miRTarBase 7.0 (27) and snoDB 1.2.1 (26). For that, we
extracted all intermolecular interactions that involve mi-
croRNAs and snoRNAs and compared them to miRTar-
Base 7.0 and snoDB 1.2.1, respectively. Based on this we
compute the positive predictive values (PPV) as the ratio
of the number of detected interactions that match the re-
spective database (true positives) to all detected interactions
involving microRNAs and snoRNAs, respectively. Mayer
et al. (30) argue that ∼18 nt are required for an unambi-
gious alignment against the human reference genome. As

a consequence, RNANUE was configured to select all reads
that pass a minimum length of 36 nt and an average Phred
score of 20. In the alignment procedure, reads were identi-
fied as split reads whose fragment length is at least 18 nt
with the whole split read being covered by at least 50%.
The considered transcript interactions surpass a gcs of 0.75
with the complementarity covering at least 50% of the split
read. Analyses were carried out on a system with 2x In-
tel Xeon CPU E5-2697 v2 @ 2.70 and 378 GB DDR3
SDRAM. We used GNU Time to measure the runtime
(user + sys) and space requirements of the respective meth-
ods. The runtime was normalized by the read count and
scaled to minutes per million reads. In additon, the align-
ment tools were assessed using chimeric and regular RNA-
seq datasets. Artifical chimeric reads were created using a
regular RNA-seq dataset (31) by concatenating individual
reads.

RESULTS AND DISCUSSION

We developed RNANUE, a comprehensive software pack-
age that performs the full analysis of DDD data from
quality and adapter trimming, over read mapping to in-
teraction prediction including statistical assessment. An
overview of the RNANUE workflow is shown in Figure 2
and details about the individual steps can be found in the
Materials and Methods section. The most important steps
in this workflow with respect to the special nature of the
data are to our opinion the read mapping, clustering &
annotation and evaluation. Almost every study based on
DDD experiments used its own combination of algorithms
for these steps, especially none of them use the same pre-
processing or mapping tools. Furthermore, study-specific
adaptations hamper their application in a general sense.
Table 1 lists these computational methods and gives an
overview of their differences compared to RNANUE. We in-
vestigated each of the steps and strived to find an optimal
solution, which we describe in the following. Please note
that we will not consider the data and scripts of MCLASH
in the following, because the amount of data is very small.
Even more important is that it was performed for the
prokaryote E. coli, while all other methods were applied to
eukaryotes.

Pre-processing and mapping of chimeric reads

The first step in any sequencing data analysis is a proper
quality control. This comprises quality trimming and
adapter clipping, and in the case of paired reads may include
the merging of read pairs. Although many tools for this pre-
processing are available we decided to implement a custom
workflow, because the existing ones did not seamlessly inte-
grate into our pipeline. The pre-processing step of RNANUE
performs quality trimming, adapter clipping and read merg-
ing for paired reads (see section Preprocessing for details).
In the respective DDD studies, the transcripts have been
sequenced as single-end (LIGR-SEQ, PARIS) and paired-
end reads (SPLASH, MCLASH) with some of them already
being pre-processed (LIGR-SEQ, SPLASH). Nevertheless,
we applied the pre-processing procedure of RNANUE to
all datasets to ensure identical cutoffs (e.g., minimum read

http://jsongraphformat.info/
https://hub.docker.com/r/cobirna/rnanue
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Figure 4. Performance of RNANUE in comparison to the original analyses. The positive predictive value (PPV) corresponds to the fraction of detected
interactions involving microRNAs, that are listed in miRTarBase 7.0 and snoRNA-rRNA interactions listed in snoDB 1.2.1. Numbers within bars represent
total number of true positives.

length, average quality score). This results in 83.1% (LIGR-
SEQ), 96.7% (SPLASH) and 94.3% (PARIS) of the original
reads in the human datasets (see Supplementary Tables S3–
S5 for details).

In DDD experiments, the interesting fraction of reads
are those that contain parts from two interacting RNA
strands, so called chimeric reads. Popular read mappers
like BOWTIE2 (32) are not capable of assigning a read to
several locations on the reference sequence and, thus, sub-
optimal mappings have to be inspected to find a compat-
ible pair that represents the individual mappings of the
parts. This is computationally very expensive. The prob-
lem of chimeric read mapping is similar to the problem
of mapping RNA-seq reads that cross exon-exon bound-
aries. For this purpose, several mapping tools have been
developed, e.g., TOPHAT2 (33), HISAT2 (34) and BBMAP
(https://github.com/BioInfoTools/BBMap) but they rely on
splicing-specific features, such as donor- and acceptor-sites,
which renders them unsuited for general purpose chimeric
read mapping. BWA-MEM2 (35), STAR and SEGEMEHL of-
fer direct chimeric read mapping. Based on the performance
of the aligners in the detection of split reads (see Supple-
mentary Results S2.1, Supplementary Figure S1 and Tables
S1 and S2) we selected SEGMEHL for the integration into
RNANUE. We applied RNANUE to the human data sets
from the studies listed in table 1. RNANUE settings were
adapted as far as possible to the settings used in the origi-
nal analysis pipelines, e.g. length cut-offs for read mapping
and others. Comparing the alignment results, RNANUE re-
trieves as many or more aligned reads than the respective
native methods. Solely in the case of SPLASH there are
slightly less aligned reads. Anyway, the number of split map-
pings is more important and here RNANUE identifies sub-
stantially (1.5–5 times) more than any other tool (see Sup-

plementary Figure S2, Tables S6– S8), which can mainly
be attributed to the superior split mapping performance of
SEGEMEHL.

Filtering

One of the hallmarks of RNA–RNA interactions that all
DDD approaches rely on is the formation of base pairs. As
a result, the interacting parts represented by the chimeric
reads should show a reasonable degree of complementar-
ity. Furthermore, we expect that interactions are thermo-
dynamically favourable, e.g. associated with a loss of free
energy (�G). For these reasons, RNANUE includes filtering
steps for complementarity and hybridisation energy. These
filters can be configured or totally switched off by the user
in order to adapt the analysis to special properties of the
data to analyse.

Clustering

In order to assess abundances we have to cluster interactions
that originate from the same transcripts. This can be done
based on gene annotation or in a location based fashion. In
RNANUE we use both, because the latter is more reliable,
especially for non-model organisms whose genome annota-
tion is often patchy, and the first provides more information.
The clustering procedure we implemented is based on the
mapping positions of both parts of the chimeric reads and
requires overlaps in both for merging. The resulting clus-
ters represent interactions, which can be further merged to
transcript interactions based on the annotation (see Section
Clustering for details). The final outcome of the clustering
can hold split reads (singletons), interactions (clusters not
overlapping any annotated feature) and transcript interac-
tions.

https://github.com/BioInfoTools/BBMap
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Figure 5. Comparison of the runtime of RNANUE and the original methods for the different analysis steps. The upper graph shows the CPU time needed
for building the genome index (GRCh38) of the respective method. It is to be noted that the individual steps correspond to the workflow in the original
analyses. Therefore, not all analyses include the same steps (e.g. clustering)

Statistical assessment

The mapped chimeric reads ideally represent the interact-
ing strands of one (structure) ore two (interaction) RNA
molecules. But due to the complex experimental procedures,
we have to account for artifacts. The major source of arti-
facts is the Proximity Ligation step, where the two paired
strands are ligated. The used ligases usually catalyze the lig-
ation of two single-stranded RNAs. For this reason we ex-
pect that in this step non-interacting RNAs are ligated by
chance and that the likelihood of such events depends on
the abundance of the RNAs in the ligation reaction. For
statistical assessment, we argue that for two non-interacting
RNAs the interaction count only depends on the individual
abundances of these two. We get these abundances from the
total number of mapped reads and use them to parameter-
ize a binomial test to assess the significance of the transcript
interaction.

Detected interactions

On the level of predicted interactions the comparison of
RNANUE to the original analysis pipelines on the respec-
tive data sets is summarized in Figure 3. Except for PARIS,

RNANUE recalls 88–97% of the originally predicted inter-
actions. PARIS is special, because the analysis pipeline does
neither perform a statistical assessment nor a rigid filtering.
An interaction has to be supported by two or more chimeric
reads, only. Figure 3 also shows that RNANUE captures
novel interactions (LIGR-SEQ: ∼29%, SPLASH: ∼43%,
PARIS: ∼12%). Among these, 2.5–7.6% involve transcripts
that do not overlap any annotation (numbers in brackets)
and could therefore only be detected due to RNANUE an-
notation independent clustering procedure. Other reasons
for the increased number of predictions by RNANUE are the
generally higher number of mapped chimeras (see Supple-
mentary Figure S2) and a more flexible filtering, especially
in the case of PARIS.

Benchmarks

We benchmarked RNANUE in comparison to the original
data analysis pipelines based on experimentally validated
targets from miRTarBase 7.0 and snoDB 1.2.1. MiRTar-
Base classifies interactions into strong or weak, depending
on their experimental support. To identify potential differ-
ences based on this classification, we carried out bench-
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marks for both classes and the results are shown in Figure
4. Interestingly, for the class with weak support RNANUE
achieves a lower PPV compared to the original analysis
pipeline of LIGR-seq, but higher values for the other two.
For those with strong support, RNANUE outperforms the
other methods. It does not only achieve higher PPVs, but
also larger absolute numbers of true positives. Taken both
classes together, RNANUE achieves a PPV of 0.74, com-
pared to 0.70, 0.44 and 0.67 for LIGR-SEQ, PARIS and
SPLASH, respectively. For snoRNA-rRNA interactions,
RNANUE always achieves higher PPVs (between 0.55 and
0.72) than the original tools, up to twice as high as the
competitors. Except for the SPLASH data, it also per-
forms better in terms of total number of true positives. The
very low numbers of snoRNA-rRNA interactions within
the LIGR-seq data are mainly the result of the riboso-
mal RNA depletion that is part of the library preparation
protocol.

In order to compare runtime and memory consumption
of RNANUE to its competitors, we analyzed the human
datasets (HEK293T, Lymphoblast) with the original anal-
ysis pipelines and RNANUE. Figure 5 shows the runtime
of the individual phases (e.g. preprocessing, alignment, de-
tection). RNANUE is faster than Aligater but slower than
the pipelines from SPLASH and PARIS. Here, the align-
ment step is one of the main causes in all cases. The exten-
sive filtering, statisticel assessment and the additional clus-
tering step additionally increase the computation time of
RNAnue. Nevertheless, it is only 2.4 times slower in the
worst case. The upper chart in Figure 5 displays the time
needed to build the genome indexes for the respective map-
ping tools. Although these are one-time costs and heavily
depend on the size of the genome to be indexed, they may
significantly impact the total time of analysis. The maxi-
mum resident set size (max. RSS) was 183GB, compared to
3.9GB (aligater), 4.7GB (SPLASH) and 11.3GB (PARIS).
In all cases the alignment tools, due to the in-memory in-
dices, are responsible for the peak memory consumption.
In the case of segemehl, and likely also the other tools, the
peak is reached during index building. This step needs to be
done only once per genome and can also be carried out inde-
pendently on a large memory server. Without index building
the maximum memory consumption of segemehl drops to
60GB. Due to the fact, that modern HPC servers commonly
carry ≥128GB RAM, we do not think that the extensive
memory requirements of segemehl, and thus of RNAnue,
are a major problem. Furthermore, the numbers above are
for the human genome. Smaller genomes have a smaller
memory footprint.

CONCLUSION

We present a general bioinformatics pipeline to infer RNA–
RNA interactions from raw DDD data. Compared to ex-
isting tools we could improve the efficiency in terms of de-
tected chimeras, and the specificity due to complementar-
ity and thermodynamic filtering as well as a thorough sta-
tistical assessment. Finally, our method includes the detec-
tion if interactions of so far un-annotated transcripts, which
is especially important for studies of non-model organisms
whose genome annotation is often sparse. In summary, we

a think that RNANUE is currently the most comprehensive
method for the analysis of DDD data.

In addition, RNAnue can also process data from other
methods, such as CLASH, RIL-seq or CRAC. For these
kind of data, the statistical filtering should not be used, be-
cause the protein based enrichment used in these methods
introduces a protein-specific bias, for which a universal sta-
tistical model is not appropriate. Nevertheless, filtering by
complementarity and hybridisation energy are still valid,
such that we expect reasonable performance also on these
kind of data.

The results of an RNAnue analysis are, among others,
interaction counts, which are similar to read counts used
in differential gene expression (DGE) analysis. However,
whether statistical methods used for DGE prediction are
applicable to analyse differential interaction needs to be
thoroughly investigated.
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