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Whereas mortality rates improved for breast and prostate cancer as a result of suc-
cessful tumour biology-based therapies and biomarkers, mortality rates for pancreatic
cancer patients remained stable [1,2]. Incidence is growing, and 5-year survival rates are
approximately 10% [1,3]. As such, pancreatic cancer is set to surpass breast and colorectal
cancer to become the second leading cause of cancer-related death by 2030 [1,2]. Its aggres-
sive nature and highly complex tumour microenvironment (TME) form major obstacles in
current diagnostic and therapeutic strategies. This Special Issue of Cancers discusses novel,
promising approaches in the fields of diagnosis, overcoming resistance to chemotherapy
and new therapeutic targets.

One of the major issues for patients with pancreatic ductal adenocarcinoma (PDAC)
is the lack of early and accurate diagnosis. Patients with PDAC in the pancreatic head
may only present with complaints of jaundice at advanced tumour stages. Furthermore,
as described by Boyd et al., current diagnostic strategies seem to be unable to accurately
differentiate PDAC from distal cholangiocarcinoma and malignant from benign disease
in the pancreatic head [4]. The only validated biomarker that is currently used in the
clinic is carbohydrate antigen 19-9 (CA19-9). CA19-9 levels are typically elevated under
circumstances of hyperbilirubinemia, which can also develop due to benign biliary tree ob-
structions. Boyd et al. assessed and optimized the clinical potential of CA19-9 by studying
CA19-9, bilirubin and their ratio CA19-9/(bilirubin−1) in 232 patients with hepatobiliary
disease [4]. Interestingly, their ‘Model Ratio’ showed superior accuracy when detecting
PDAC. Similarly, Mantini et al. stress that for a specific diagnosis of PDAC, especially when
using machine learning, it is of great importance to use an integrative approach [5]. By
using gene-ontology mining of -omics data, they demonstrated that biological mechanisms
in circulating platelets, such as active RNA processing and differential regulation of SPARC,
are essential for biomarker discovery.

Another emerging strategy is diagnosis through tumour-specific radiolabelled tracers.
18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) is an imaging
modality that relies on the metabolism of radiolabelled glucose by cells. Cancer cells
often metabolize more glucose and, hence, show higher tracer uptake. The deployment of
18F-FDG PET, however, is limited for patients with PDAC because typically 90% of PDAC
tumour volume consists of dense stromal reaction and only a small percentage of tumour
cells [6]. Moreover, higher glucose uptake can also be present in inflammatory diseases,
including pancreatitis. In their review, Poels et al. suggest that Fibroblast Activation Protein
Inhibitor (FAPI) and Prostate-Specific Membrane Antigen (PSMA) are highly promising
novel tracer targets [7]. PSMA is a transmembrane protein that not only seems to be present
in prostate cancer cells but also in tumour-associated neovasculature [7]. When comparing
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PDAC with pancreatitis or healthy tissue using immunohistochemistry, the expression
of PSMA was high and low (H-score 0), respectively [8]. Hopefully, PSMA expression
can distinguish PDAC from pancreatitis when using the PSMA PET/CT. The latter is
currently used globally for staging prostate cancer and the detection of recurrence [9].
Therefore, when proven effective for PDAC, this tracer can be readily available for clinical
implementation.

Of note, not only are these tumour-targeted imaging tracers important for diagnostic
purposes, they can also prove pivotal as radiopharmaceutical carriers for targeted ther-
apy [7,10]. In a phase III trial, 177Lu-PSMA-617 treatment was compared to standard care in
831 patients with highly lethal castration-resistant prostate cancer [11]. Compared to stan-
dard care, it showed better progression free (8.3 versus 3.4 months, respectively; p < 0.001)
and overall survival (15.3 versus 11.3 months, respectively; p < 0.001), as well as favourable
secondary outcomes [11]. In March 2022, 177Lu-PSMA-617 treatments were approved by
the FDA for this indication [12]. Radiolabelled tracers have already been shown to be
effective and safe in patients with prostate cancer. Even though research studies on its
applications in pancreatic cancer are still in their infancy, radiolabelled tracers could prove
useful in diagnosing PDAC and carrying medicine or sensitizers to the tumour.

Finding strategies to predict treatment responses and improve therapeutic effects is
essential for PDAC. Tumour heterogeneity is very high among patients [6]. Therefore, per-
sonalised treatment based on tumour genotype and phenotype could revolutionize clinical
care. As described by Robatel et al. in their review, stratifying patients based on RNA
transcriptional analyses has led to two suggested subtypes: basal-like and classical PDAC.
Patients with the classical subtype showed improved responses to FOLFIRINOX [6,13].
Moreover, patient-derived organoid cultures could form another strategy for patient strat-
ification. They reflect histopathologic tumour features and contain patient-specific pro-
tein markers. Response to FOLFIRINOX or gemcitabine can be predicted using in vitro
organoids in xenografts [6]. Robatel et al. also discusses that a single therapy, such as
FOLFIRINOX, only shows limited effects due to tumour heterogeneity and resistance to
chemotherapy [6]. A combination therapy would be more likely to elicit clinical benefits.

One of the major drivers in chemoresistance is Epithelial to Mesenchymal Transi-
tion (EMT) [14]. This is the process of transdifferentiation from the epithelial to a more
mesenchymal-like types of cells. As Palamaris et al. describe, such mesenchymal features
contribute to invasion, vascular extravasation, dissemination and drug resistance [14]. Since
it is a multistep process that includes many signalling pathways, it offers numerous targets
for therapy. These include TGF-β, IL-6, IL-1 and Hedgehog [14]. Combination therapies
with chemotherapy and inhibitors of these targets are currently being studied in clinical
trials for clinical applications [14]. To identify and quantify proteins associated with drug
resistance, mass spectrometry-based proteomics has demonstrated to be a useful tool [15].
Using this tool for stable isotope labelling by amino acids in cell culture (SILAC)-based
quantitative proteomics analysis, Kim et al. investigated which proteins are associated with
oxaliplatin resistance in PANC-1 cells [15]. They identified 107 proteins (p ≤ 0.05), includ-
ing myristoylated alanine-rich C-kinase substrates and WNTless homoloog proteins. The
siRNA-mediated suppression of these two proteins also improved oxaliplatin sensitivity,
underlining their involvement in chemotherapeutic responses.

Another method for improving chemosensitivity in PDAC, especially considering
its challenging TME as a chemotherapeutic obstacle, is to gain control over drug-release
sites and time [16]. Iacobazzi et al. focused on a double targeting strategy: pH and PDAC-
specific receptor uPAR [16]. They developed pH-responsive polymeric micelles using
a microfluidic-assisted preparation. To improve the selective targeting of PDAC, they
functionalized micelles with a ligand for the uPAR receptor. Loaded with gemcitabine, this
drug delivery system was tested in pancreatic cancer models that were co-cultured with
cancer associated fibroblasts (CAFs). It showed increased apoptosis and arrest of the cell
cycle, encouraging further in vivo studies [16].
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Understanding the molecular mechanisms of oncogenic processes and interactions
can lead to novel targets for targeted therapy. Targeted therapeutic approaches such as
monoclonal antibodies to prevent HER2 interaction or tyrosine kinase inhibitors to block
the phosphorylation of HER2 have not been successful and quickly result in resistance [17].
Stoup et al. studied the MUC4, which is already present in early stages of carcinogenesis,
and MUC4/HER2 interaction for an alternative approach to target HER2 driven malignancy.
The EGF domains of MUC4 showed an important role in HER2 binding affinity and tumour
growth activity [17]. Therefore, MUC4EGF domains could be of therapeutic value. Another
promising novel therapeutic target that is proposed in the review of Wijnen et al. is
cyclin-dependent kinase 1 (CDK1) [18]. CDK1 is involved in cell cycle progression by
regulating the G2/M cell cycle checkpoint, and it promotes proteins that contribute to
the formation of cancer stem cells (CSCs). Blockage of CDK1 resulted both in G2/M-
mediated cell cycle arrest and apoptosis, as well as the inhibition of the clonogenic potential
of CSCs by inducing cell differentiation [18]. Various preclinical studies have shown
promising results. For example, treatments with Indox and 5MeOIndox, CDK-1 inhibitors
significantly reduced tumour growth and weight in mice [18]. Moreover, the combination
of CDK-1/2/4/5 inhibitors milciclib and gemcitabine in a phase I dose-escalation study in
patients with refractory cancer suggested that the treatment was well tolerated, that there
was minimal toxicity and that there seemed to be some clinical benefits [18]. These studies
suggest that CDK1 could play a role in therapeutics when combined with ionising radiation
therapy and DNA-damaging chemotherapy [18]. Evidently, clinical trials are warranted to
evaluate and confirm the clinical use of CDK-1.

As a distinct alternative to directly targeting tumour cells, various studies are being
conducted that evaluate the TME as a therapeutic target [19]. The TME of PDAC consists
of dense, fibrous tissue with stromal cells, including both tumour-associated macrophages
(TAMs) and CAFs. Malik et al. studied CXCL12, which is a chemokine that is secreted
by these CAFs [19]. It promotes many carcinogenic signalling pathways, contributes to
immune evasion, and promotes chemoresistance [19]. Thus, the inhibition of CXCL12 could
possibly promote the effectiveness of immune therapy or chemotherapy. In KPC mouse
models, targeting fibroblast activation protein-α (FAP+) CAFs that produced CXCL12
caused the suppression of antitumor immunity. When combined with previous targeted
approaches, including CXCR4 inhibitor AMD3100 and anti PD-L1, it resulted in a syner-
gistic response with tumour regression. This CXCL12/CXCR4 axis is also notorious for
promoting gemcitabine resistance. Again, treatments with AMD3100 resulted in sensitized
PDAC cells in vitro and in vivo [19]. Malik et al. suggest directly targeting CXCL12 through
CXCL12 antagonists (NOX-A12) or oral farnesyl transferase inhibitor tipifarnib. However,
further preclinical studies of these inhibitors are required.

Unlike previous mentioned strategies, it is hypothesized that it is also possible to target
tissue injury repair mechanisms after another initial treatment [20]. In particular, Sugyo et al.
hypothesized that refractory tumours that have received radiation therapy induce repair
processes that could be targeted with additional therapy [20]. They selected an extracellular
matrix glycoprotein that is upregulated specifically in tissue repair, tenascin-C (TNC), as
repair-associated target. They developed three antibodies that recognized both human
and murin TNCs and radiolabelled these with 111In. TNC expression was assessed using
immunohistochemical staining and using single-photon emission computed tomography
with computed tomography (SPECT/CT) studies. BxPC-3 pancreatic cancer xenografts
were used as tumour model and initially treated with X-irridiaton or no X-irridation.
Biodistribution studies showed higher tumour uptake of antibody 3–6. This was confirmed
by SPECT/CT results. Therefore, antibody 3–6 could be a potential therapeutic strategy.

To conclude, this Special Issue of Cancers includes a collection of articles discussing
some of the major challenges that we are facing in caring for pancreatic cancer patients
as well as the latest strategies that have been deployed to overcome these. An important
message emerging from all these studies is that more research studies and collaborations
between different working fields are essential to change the prognosis of our PDAC patients.
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