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Abstract

Meta-analysis has been established as an effective approach to combining summary
statistics of several genome-wide association studies (GWAS). However, the accuracy of
meta-analysis can be attenuated in the presence of cross-study heterogeneity. We
present sPLINK, a hybrid federated and user-friendly tool, which performs privacy-aware
GWAS on distributed datasets while preserving the accuracy of the results. sPLINK is
robust against heterogeneous distributions of data across cohorts while meta-analysis
considerably loses accuracy in such scenarios. sPLINK achieves practical runtime and
acceptable network usage for chi-square and linear/logistic regression tests. sPLINK is
available at https://exbio.wzw.tum.de/splink.
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Background
Genome-wide association studies (GWAS) test millions of single nucleotide polymor-
phisms (SNPs) to identify possible associations between a specific SNP and disease [1].
They have led to considerable achievements over the past decade including better com-
prehension of the genetic structure of complex diseases and the discovery of SNPs playing
a role in many traits or disorders [2, 3]. GWAS sample size is an important factor in
detecting associations, and larger sample sizes lead to identifying more associations and
more accurate genetic predictors [2, 4].
PLINK [5] is a widely used open source software tool for GWAS. Themajor limitation of

PLINK is that it can only perform association tests on local data. If multiple cohorts want
to conduct collaborative GWAS to take advantage of larger sample sizes, they can pool
their data for a joint analysis (Fig. 1a); however, this is close to impossible due to privacy
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Fig. 1 Comparison of sPLINK (c), aggregated analysis (a), and meta-analysis (b) approaches: Aggregated
analysis requires cohorts to pool their private data for a joint analysis. The meta-analysis approaches
aggregate the summary statistics from the cohorts to estimate the combined p-values. In sPLINK, the cohorts
calculate the model parameters (M) from the local data and global model, generate noise (N), and make the
parameters noisy (M′) in an iterative manner. The aggregated noise and noisy parameters are in turn
aggregated to update the global model or build the final model. sPLINK combines the advantages of the
aggregated analysis and meta-analysis, i.e. robustness against heterogeneous data and enhancing the
privacy of cohorts’ data. Yellow/blue color indicates case/control samples

restrictions and data protection issues, especially concerning genetic and medical data.
Hence, the field has established methods for meta-analysis of individual studies, where
only the results and summary statistics of the individual analyses have to be exchanged
[6] (Fig. 1b).
There are several software packages such as METAL [7], GWAMA [8], and PLINK [5]

that implement different meta-analysis models including fixed or random effect models
[9]. Although meta-analysis approaches are privacy-aware, i.e. the raw data is not shared
with third parities, they suffer from twomain constraints: first, they rely on detailed plan-
ning and agreement of cohorts on various study parameters such as meta-analysis model
(e.g. fixed effect or random effect), meta-analysis tool (e.g., METAL or GWAMA), het-
erogeneity metric (e.g. Cochran’sQ or the I2 statistic), the covariates to be considered, etc
[4]. Second and more importantly, the statistical power of meta-analysis can be adversely
affected in the presence of cross-study heterogeneity, leading to inaccurate estimation of
the joint results and yielding misleading conclusions [10, 11].
To address the aforementioned shortcomings, privacy-aware collaborative GWAS can

be developed using homomorphic encryption (HE) [12], secure multi-party computation
(SMPC) [13], and federated learning [14, 15]. In HE, the cohorts encrypt their private data
and share it with a single server, which performs operations on the encrypted data from
the cohorts to compute the association test results. In SMPC, there are several comput-
ing parties and the cohorts extract a separate secret share (anonymized chunk) [16] from
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the private data and send it to a computing party. The computing parties calculate inter-
mediate results from the secret shares and exchange the intermediate results with each
other. Each computing party computes the final results given all intermediate results. In
federated learning, the cohorts extract model parameters (e.g. Hessian matrices) from the
private data and share the parameters with a central server. The server aggregates the
parameters from all cohorts to calculate the association test results.
Kamm et al. [17] and Cho et al. [18] proposed GWAS frameworks based on SMPC. The

former developed simple association tests including Cochran–Armitage and chi-square
(χ2) and the latter implemented only the Cochran–Armitage test for trend. Shi et al.
[19] presented an SMPC-based logistic regression framework for GWAS. Constable et al.
[20] implemented an SMPC-based framework for minor allele frequency and chi-square
computation. These frameworks inherit the limitations of SMPC itself: They follow the
paradigm of “move data to computation,” where they put the processing burden on a few
computing parties. Consequently, they are computationally expensive [21] and are not
scalable for large-scale GWAS. Moreover, they suffer from the colluding-parties problem
[17] in which, if the parties send the secret shares of the cohorts to each other, the whole
private data of the cohorts is exposed.
Lu et al. [22], Morshed et al. [23], and Kim et al. [24] developed chi-square, linear

regression, and logistic regression tests using HE for GWAS, respectively. Sadat et al. [25]
introduced the SAFETY framework based on HE and Intel Software Guard Extensions
technology, which implements the linkage disequilibrium, Fisher’s exact test, Cochran-
Armitage test for trend, and Hardy-Weinberg equilibrium statistical tests. Similar to
SMPC-based methods, they are not computationally efficient because a single server
carries out operations over encrypted data, causing considerable overhead [26]. Addition-
ally, HE-based methods introduce accuracy loss in the association test results [23, 24].
This is because HE only supports addition and multiplication, and as a result, non-linear
operations in regression tests should be approximated using those two operations.
To address the computational limitation of HE/SMPC-based methods, the association

tests can be implemented in a federated fashion. Federated learning-based methods fol-
low the paradigm of “move computation to data,” distributing the heavy computations
among the cohorts while performing lightweight aggregation (simple operations such as
addition andmultiplication of the parameters) at the central server.Wang et al. [27] intro-
duced EXPLORER for distributed logistic regression algorithm. EXPLORER is a model
but not a tool for GWAS. Moreover, it does not provide a “guarantee for optimal global
solution,” implying that its results can be different from the aggregated analysis in gen-
eral. GLORE [28, 29] implemented a federated logistic regression test but the parameter
values computed by each cohort are revealed to the server.
Several hybrid federated frameworks including HyFed [30] have been introduced to

improve the privacy of federated learning by hiding the local parameters of a cohort
from third parties. HyFed is a suitable framework for developing federated GWAS algo-
rithms because it provides enhanced privacy while preserving the accuracy of the results.
It also supports federated mode, where different components can run in separate physical
machines and securely communicate with each other over the Internet.
In this paper, we present a hybrid federated tool called sPLINK (safe PLINK) based on

the HyFed framework for privacy-aware GWAS. sPLINK consists of four main compo-
nents (Fig. 2): Web application (WebApp) to configure the parameters (e.g. association
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Fig. 2 Architecture of sPLINK : (1) The coordinator creates a new project through the WebApp component
and (2) invites a set of cohorts to join the project; (3) the cohorts join the project and select the dataset using
the client component. The project is started automatically, when all cohorts joined. The computation of the
test results is performed in a an iterative manner, where the clients (4) obtain the global parameters from the
server, (5) compute the local parameters, mask them with noise, and share the noise and noisy local
parameters with the compensator and server, respectively; (6) the compensator aggregates the noise values
and sends the aggregated noise to the server; the server calculates the global parameters by aggregating the
noisy local parameters and the negative of the aggregated noise; (7) after the computation is done, the
cohorts and coordinator can access the results. All communications are performed in a secure channel over
HTTPS protocol. The cohorts can use Linux distributions, Microsoft Windows, or MacOS to run the client
component

test) of the new study; client to compute the local parameters, mask them with noise, and
share the noise with compensator and noisy local parameters with server; compensator
to aggregate the noise values of the clients and send the aggregated noise to the server;
server to compute the global parameters by adding up the noisy local parameters and the
negative of the aggregated noise. Notice that the utility of the global model is preserved
because the aggregated noise from the compensator cancels out the accumulated noise
from the noisy local parameters during the aggregation.
Unlike PLINK, sPLINK is applicable to distributed data in a privacy-aware fashion.

In sPLINK, neither the private data of cohorts leaves the site nor the original values of
the local parameters are revealed to the other parties (Fig. 1c). Contrary to the existing
HE/SMPC-based methods, sPLINK is computationally efficient because heavy compu-
tations are distributed across the cohorts while simple aggregation is performed on the
server and compensator. Compared to the current federated tools like GLORE, sPLINK
not only provides enhanced privacy but also supports multiple association tests including
logistic and linear regression [31], and chi-square [32] for GWAS.
The advantage of sPLINK over the meta-analysis approaches is twofold: usability and

robustness against heterogeneity. sPLINK is easier to use for collaborative GWAS com-
pared tometa-analysis. In sPLINK, a coordinator initiates a collaborative study and invites
the cohorts. The only decision the cohorts make is whether or not to join the study.
After accepting the invitation, the cohorts just select the dataset they want to employ
in the study. More importantly, sPLINK is robust to data heterogeneity (phenotype and
confounding factors). It gives the same results as aggregated analysis even if the pheno-
type distribution is imbalanced or if confounding factors are distributed heterogeneously
across cohorts. In contrast, meta-analysis tools typically lose statistical power in such
imbalanced or heterogeneous scenarios (details in the “Results” section).
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Results
We first verify sPLINK by comparing its results with those from aggregated analysis con-
ducted with PLINK for all three association tests on a real GWAS dataset from the SHIP
study [33]. We refer to this dataset as the SHIP dataset, which comprises the records of
3699 individuals with serum lipase activity as phenotype. The quantitative version repre-
sents the square root transformed serum lipase activity, while the dichotomous (binary)
version indicates if the serum lipase activity of an individual is above or below the 75th
percentile. The SHIP dataset contains around 5 million SNPs as well as sex, age, smok-
ing status (current-, ex-, or non-smoker), and daily alcohol consumption (in g/day) as
confounding factors (Table 1).
We employ the binary phenotype for logistic regression and the chi-square test, and

the quantitative phenotype for linear regression. We incorporate all four confounding
factors in the regressionmodels and no confounding factor in the chi-square test.We hor-
izontally (sample-wise) split the dataset into four parts, simulating four different cohorts
(Additional file 1: Table S1). PLINK computes the statistics for each association test using
the whole dataset while sPLINK does it in a federated manner using the splits of the indi-
vidual cohorts. To be consistent with PLINK, sPLINK calculates the same statistics as
PLINK for the association tests.
We compute the difference between the p-values as well as the Pearson correlation

coefficient (ρ) of p-values from sPLINK and PLINK. We use -log10(p-value) because the
p-values are typically small and -log10(p-value) can be a better indicator of small p-value
differences. According to Fig. 3a–c, the p-value difference is zero for most of the SNPs.
We also observe that the maximum difference is 0.162 for a SNP in the linear regression.
sPLINK and PLINK report 4.441 × 10−16 and 3.058 × 10−16 as p-values for the SNP,
respectively. This negligible difference can be attributed to inconsistencies in floating
point precision.
The correlation coefficient of p-values from sPLINK and PLINK for all three tests

is 0.99, which is consistent with the results of p-value difference from Fig. 3a–c. We
investigate the overlap of significantly associated SNPs between sPLINK and PLINK. We

Table 1 Description of datasets

Dataset # Samples # SNPs Adjustments Phenotype

SHIPa 3699 ∼5M Sex, age, smoking status,
daily alcohol consumption

SLAb, dichotomous (75th
percentile, 934 cases, 2765
controls)

SLA, quantitative,
Mean±SDc 1.23±0.3

COPDGened 5343 ∼600K Sex, age, smoking status,
pack years of smoking

COPDe, dichotomous,
(2811 cases, 2532 controls)

FEV1f, quantitative,
Mean±SD 2.993±0.635

FinnGen 135,615 ∼ 1M Sex and age Hypertension, dichoto-
mous, (34,257 cases,
101,358 controls)

aStudy of Health in Pomerania
bSerum lipase activity
cStandard deviation
dGenetic Epidemiology of chronic obstructive pulmonary disease
eChronic obstructive pulmonary disease
fForced expiratory volume in one second
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Fig. 3 �log10(p-value) between sPLINK and PLINK as well as the set of SNPs identified by sPLINK and PLINK as
significant for logistic regression (a, d), linear regression (b, e), and chi-square test (c, f), respectively. For most
of the SNPs, the difference is zero, indicating that sPLINK gives the same p-values as PLINK. The negligible
difference between p-values for the other SNPs can be attributed to differences in floating point precision.
The spikes in some genomic positions are due to the strong association of the corresponding SNPs, which
result in higher absolute error. sPLINK and PLINK also recognize the same set of SNPs as significant. Genomic
positions (ticks in a–c) indicate chromosome numbers. The details of the experiments are available in
Additional file 1: Table S1

consider a SNP as significant if its p-value is less than 5 × 10−8 (genome-wide signif-
icance). PLINK and sPLINK recognize the same set of SNPs as significant (Fig. 3d–f).
Notably, the identified SNPs, e.g. rs8176693 and rs632111, lying in genes ABO (intronic)
and FUT2 (3-UTR), respectively, have also been implicated in a previous analysis of this
dataset [34]. We also leverage the Bonferroni significance threshold (which is ≈ 1× 10−8

for our tests) to compare the overlapping significant SNPs from sPLINK and PLINK. The
results remain similar and the associated plot is available at Additional file 1: Fig. S1.
These results indicate that p-values computed by sPLINK in a federated manner are the
same as those calculated by PLINK on the aggregated data (ignoring negligible floating
point precision error). In other words, the federated computation in sPLINK preserves
the accuracy of the results of the association tests.
Next, we compare sPLINK with some existing meta-analysis tools, namely PLINK,

METAL, and GWAMA. We leverage the COPDGene (non-hispanic white ethnic group)
[35] and FinnGen (data release 3) [36] datasets. The COPDGene dataset has an equal dis-
tribution of case and control samples unlike the SHIP dataset. It contains 5343 samples
(ignoring 1327 samples with missing phenotype value) and around 600K SNPs. We uti-
lize chronic obstructive pulmonary disease (COPD) as the binary phenotype and include
sex, age, smoking status, and pack years of smoking as confounding factors [37]. FinnGen
is much larger dataset (in terms of sample size) compared to the SHIP and COPDGene
datasets. It consists of 135,615 samples (ignoring 23 samples with missing phenotype
value) and about 1 million SNPs. We use Hypertension as the (binary) phenotype and
adjust for sex and age as confounding factors (Table 1).
To simulate cross-study heterogeneity [38] on the COPDGene dataset, we consider six

different scenarios: Scenario I (Balanced), Scenario II (Slightly Imbalanced), Scenario III
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(Moderately Imbalanced), Scenario IV (Highly Imbalanced), Scenario V (Severely Imbal-
anced), and Scenario VI (Heterogeneous Confounding Factor) (Figs. 4a and 5). In each
scenario, we partition the dataset into three splits with the same sample size (more details
in Additional file 1: Table S2). The distribution of all four confounding factors is homoge-
neous (similar) across the splits for the first five scenarios. The splits have the same (and
balanced) case-control ratio in Scenario I and Scenario VI but their case-control ratio is
different for the imbalanced scenarios (Fig. 4a). In Scenario VI, the values of two con-
founding factors (i.e. smoking status and age) are homogeneously distributed among the
splits; however, the distribution of sex and pack years of smoking is slightly and highly
heterogeneous across the splits, respectively (Fig. 5). We obtain the summary statistics
(e.g. minor allele, odds ratio, and standard error) for each split to conduct meta-analyses.
The results are then compared to the federated analysis employing sPLINK. Figure 6a
shows the Pearson correlation coefficient of -log10(p-value) between each tool and the
aggregated analysis for all six scenarios. Figure 6c depicts the number of SNPs correctly
identified as significant by the tools (true positives).
According to Fig. 6a, the correlation of p-values between sPLINK and the aggre-

gated analysis is ∼ 1.0 for all six scenarios, implying that sPLINK gives the same
p-values as the aggregated analysis regardless of how phenotypes or confounding fac-
tors have been distributed across the cohorts. In contrast, the correlation coefficient
for the meta-analysis tools shrinks with increasing imbalance/heterogeneity, indicating
loss of accuracy. Figure 6c illustrates that sPLINK correctly identifies all four significant
SNPs in all scenarios. In the balanced scenario, almost all meta-analysis tools perform
well and recognize all significant SNPs. An exception is METAL, which misses one of
them. However, they miss more and more significant SNPs as the phenotype imbal-
ance across the splits increases. In the Highly Imbalanced and Severely Imbalanced
scenarios, the meta-analysis tools cannot recognize any significant SNP. This is also
the case if the distribution of some confounding factors becomes heterogeneous across
the cohorts (Scenario VI). We checked the number of SNPs wrongly identified as sig-
nificant by the tools (false positives) too. sPLINK has no false positive in any of the
scenarios and the meta-analysis tools introduce zero or one false positive depending on
the scenario.

Fig. 4 Scenario I-V : The case-control ratio is the same for all splits in the balanced scenario (I) while the splits
have different case-control ratios in the imbalanced scenarios (II–V). All three splits have the same sample size
in the COPDGene dataset as well as the balanced scenario in the FinnGen dataset. For the imbalanced
scenarios in the FinnGen dataset, the splits have different sample sizes
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Fig. 5 Scenario VI (Heterogeneous Confounding Factor) for the COPDGene case study: The phenotype
distribution is the same and balanced; the values of smoking status and age are homogeneously distributed;
the distribution of sex and pack years of smoking are slightly and highly heterogeneous across the splits,
respectively

To show that our findings on the COPDGene dataset also hold true for a much larger
dataset, we repeat the simulations on the FinnGen dataset (more details in Additional
file 1: Table S3). Similar to the COPDGene case study, we divide the dataset into three
splits and define Scenario I to Scenario V, where the splits have the same case-control
ratio (1.0) and sample size (22,838) as in Scenario I but different case-control ratios in
the remaining scenarios (Fig. 4b); Unlike the COPDGene case study in which the sample
size of the splits are equal for all scenarios including the imbalanced ones, the splits have
different number of samples in the imbalanced scenarios of the FinnGen case study. For
instance, split1, split2 and split3 have 22,838, 12,561, and 99,345 samples in Scenario V,
respectively (a split with lower case-control ratio has larger sample size). It implies that
the aggregated datasets have different number of samples in the scenarios, and as a result,
there are different set of significant SNPs in each scenario of the FinnGen case study (total
of 110, 116, 199, 304, and 446 significant SNPs in Scenario I to Scenario V, respectively).
Figures 6b and 6d illustrate the Pearson correlation coefficient and percentage of

correctly identified significant SNPs for each scenario on the FinnGen case study, respec-
tively. According to Fig. 6b, the correlation coefficient diminishes for the meta-analysis
tools as the scenario becomesmore andmore imbalanced. This is also the case for the per-
centage of the SNPs correctly identified as significant by each meta-analysis tool (Fig. 6d).
These results are consistent with those from the COPDGene case study. Moreover, we
observed that themeta-analysis tools report high number of false positives (14–88) in Sce-
nario IV. Thus, the limitations of meta-analysis tools towards class imbalance observed
in the COPDGene dataset can be reproduced on a large dataset. However, sPLINK always
provides the same results as PLINK with the aggregated analysis (the “Methods” section,
Figs. 3 and 6a, c).
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Fig. 6 The Pearson correlation coefficient (ρ) of -log10(p-value) between each tool and aggregated analysis
(a, b) and the number (c) and the percentage (d) of SNPs correctly identified as significant (true positives) by
each tool. F and R stand for fixed-effect and random-effect, respectively. The details of the experiments are
available in Additional file 1: Table S2, and Table S3

We also leverage the Spearman correlation to check whether or not the meta-analysis
tools maintain the ordering of significance compared to the aggregated analysis. Our
results show that this is not the case, and the Spearman correlation values for the meta-
analysis tools reduce as the phenotype imbalance across the splits increases, similar to the
results from Fig. 6, where the Pearson correlation is used. The corresponding plot can be
found in Additional file 1: Fig. S2.
Table 2 shows a concise comparison between sPLINK and the state-of-the-art

approaches. Unlike PLINK, sPLINK is privacy-aware, where the private data never
leaves the cohorts. sPLINK is also robust against the imbalance/heterogeneity of phe-
notype/confounding factor distributions across the cohorts. sPLINK always delivers the
same p-values as aggregated analysis and correctly identifies all significant SNPs inde-
pendent of the phenotype or confounding factor distribution in the cohorts. In contrast,
meta-analysis tools lose their statistical power in imbalanced phenotype scenarios, miss-
ing some or all significant SNPs. This is also the case if the phenotype distribution
is balanced but the values of confounding factor(s) have heterogeneously been dis-
tributed across the datasets. Compared to the existing SMPC/HE-based approaches,
sPLINK is computationally efficient and supports multiple association tests including chi-
square and linear/logistic regression. sPLINK provides enhanced privacy by hiding the
model parameters of each cohort from the third parties while federated learning-based
frameworks such as GLORE reveal them to the server.
Finally, wemeasure the runtime and network bandwidth usage of sPLINK for each asso-

ciation test using the COPDGene dataset partitioned into three splits of the same sample
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Table 2 Comparison between sPLINK and the state-of-the-art approaches

Tool/Study Privacy-
aware

Robust to het-
erogeneity

Computationally
efficient

Linear
regres-
sion

Logistic regres-
sion

PLINK ✗ ✓ ✓ ✓ ✓

Meta-analysis ✓ ✗ ✓ ✓ ✓

Kamm et al. [17] ✓ ✓ ✗ * ✗

Cho et al. [18] ✓ ✓ ✗ * ✗

Morshed et al. [23] ✓ ✗ ✗ ✓ ✗

Kim et al. [24] ✓ ✗ ✗ ✗ ✓

GLORE [28] ✓ ✓ ✓ ✗ ✓

sPLINK ✓ ✓ ✓ ✓ ✓

*The study supports the Cochran–Armitage test, which is computationally comparable to linear regression

size. We use COPD in chi-square as well as logistic regression and FEV1 in linear regres-
sion as phenotype. We include age, sex, smoking status, and pack years of smoking as
confounding factors only for the regression tests. The server and WebApp packages are
installed on a physical machine located at Freising (Germany) while the compensator is
running on a machine atOdense (Denmark). Three commodity laptops located atMunich
or Freising are running the client package and host the splits. They communicate with the
server and compensator through the Internet. The system specification of the machines
and laptops as well as the details of the experiments can be found in Additional file 1:
Table S4 and S5.
Figure 7a plots the sPLINK’s runtime for each association test. sPLINK computes the

results for chi-square, linear regression, and logistic regression in 8 min, 20 min, and
75 min, respectively. Sending parameters from the clients to the server and compen-
sator contributes the most in sPLINK’s runtime. Compared to Kamm et al. [17], sPLINK
is almost 13 times faster for chi-square test (8 min vs. 110 min1 ) with less powerful
hardware, larger sample size (5343 vs. 1080), and more number of SNPs (∼ 580K vs.
∼ 263K).
Figure 7b depicts the network usage of sPLINK. The clients, server, and compensator

exchange total of 0.967 GB, 2.49 GB, and 11.06 GB traffic in chi-square, linear regres-
sion, and logistic regression, respectively. Logistic regression has higher volume of traffic

Fig. 7 Runtime and network bandwidth consumption of sPLINK. Logistic regression is the most
time-consuming association test and exchanges the highest traffic over the network due to the iterative
nature of the algorithm. The experimental setup can be found in Additional file 1: Table S5

1The best result from Kamm et al. [17] has been considered.
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exchange because the computation of beta coefficients are performed in an iterative fash-
ion. A fair comparison between sPLINK and SMPC-based frameworks from the network
communication aspect is tricky. However, in general, (hybrid) federated learning-based
approaches consume more network bandwidth than SMPC-based ones.
We also conduct a set of experiments to investigate how the runtime and network band-

width consumption of sPLINK change with varying number of samples, SNPs, and clients.
The results demonstrate that the traffic exchanged over the network is independent of
the sample size and linearly increases with the number of SNPs and clients (as expected).
Moreover, runtime is not affected much by the sample size thanks to the multi-threading
capability of sPLINK ’s client package, and linearly/non-linearly increases with the num-
ber of SNPs/clients. The corresponding plots are available in Additional file 1: Fig. S3, S4,
and S5.

Discussion
We first provide a general discussion on the privacy of the existing tools for collabora-
tive GWAS including sPLINK. To be more accurate, we draw a distinction between the
privacy-aware and privacy-preserving definitions [39]. In a privacy-aware approach, it is
not required to share the private data with a third party. A privacy-aware approach is
privacy-preserving if the approach offers a privacy guarantee that captures the privacy
risk associated with individual samples in the dataset. Given that, meta-analysis, SMPC,
HE, federated learning, and hybrid federated learning based on SMPC are privacy-aware
because they do not share the raw data with a third party. In meta-analysis/federated
learning, the summary statistics/model parameters of each cohort are shared with a third
party. In SMPC-based hybrid federated learning, the aggregated (global) parameters are
revealed to the server and cohorts. These approaches, including HE and SMPC, reveal
the final model too. However, these methods are not privacy-preserving because none
of them provides a privacy guarantee indicating to what extent the revealed information
leaks the private data of a particular sample in the dataset. To our knowledge, differential
privacy (DP) [40] and DP-based hybrid federated learning can offer such a guarantee at
the cost of the utility of the model and are considered as privacy-preserving approaches.
While privacy-aware approaches do not offer a privacy guarantee, they might provide

stronger/weaker privacy compared to each other based on the amount and nature of
the information they share with third parties. For instance, HE-based methods provide
stronger privacy because they only reveal the final model (results) while other privacy-
aware approaches disclose not only the final results but also other information such as
summary statistics or local parameters. Similarly, sPLINK provides enhanced privacy in
comparison with existing federated learning based tools such as GLORE. This is because
GLORE discloses the local parameters of each cohort to the server, which is not revealed
in sPLINK.
sPLINK is a privacy-aware tool, assuming honest-but-curious server, compensator, and

clients, which (I) follow the protocol as it is; for instance, the server always sends the global
beta values resulted from the aggregation but not the beta values tampered with such
as all zeros to the clients, and (II) do not collude with each other, e.g. the compensator
never shares the individual noise values of the clients with the server and similarly, the
server does not send the noisy local parameters to the compensator, but (III) they try to
reconstruct the raw data using the model parameters. Additionally, (IV) there are at least
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three different cohorts participating in the study, and their client components as well as
the server and compensator components are running in separate physical machines.
Given these assumptions, we discuss the privacy of the masking mechanism of sPLINK

(inherited from HyFed) for the supported association tests. To this end, we use the infor-
mation theoretic criterion called mutual information between two random variables X
and Y [30, 41]:

I(X,Y ) = H(X) − H(X|Y )

whereH(X) andH(X|Y ) indicate the entropy of X and the conditional entropy of X given
Y, respectively. The mutual information measures (in bits) the decrease in uncertainty
about X having the knowledge of Y. In sPLINK, the noisy local parameter M′

L is a secret
share from the local parameter ML (the secret), and random variables X and Y indicate
the distributions ofML andM′

L, respectively.
The local parameter ML of a client is either a non-negative integer (e.g. sample count,

allele count, or contingency table) or floating-point number (e.g. Hessian or covariance
matrix) in the association tests. For non-negative integers, sPLINK capitalizes on addi-
tive secret sharing based on modular arithmetic over the finite field Zp={0, 1, p − 1},
in which p is a prime number [13]. For floating-point numbers, sPLINK employs real
value secret sharing based on Gaussian (Normal) distribution [42, 43] (more details in
“Methods” section).
For non-negative integers, noise NL is generated from a uniform distribution over Zp,

andM′
L is the modular addition ofML andNL:M′

L = (ML +NL) mod p. For this scheme,
it has been shown that the knowledge of Y (noisy local parameter) provides no informa-
tion about X (local parameter), which means the mutual information between them is
zero: I(X,Y ) = 0 [13, 16]. Notice that this is the case for any value of prime number p.
For floating-point numbers, noise NL is generated using Gaussian distribution with

variance of σ 2
N . Assuming that the variance of X is σ 2

ML
, the mutual information between

X and Y is maximum if Y follows the Gaussian distribution (variance σ 2
ML

+ σ 2
N ) [43].

Thus, the upper bound on the mutual information between X and Y is:

I(X,Y ) = 1
2
log2(1 + σ 2

ML

σ 2
N

)

That is, the amount of reduction in uncertainty about the local parameters having the
knowledge of the noisy local parameters depends on the relative variance of the cor-
responding distributions. Therefore, using larger values for variance in the Gaussian
random generator will provide lower information leakage. The value of mean for the
Gaussian random generator does not remarkably impact the privacy and can be set to
zero [43], which is the case for sPLINK. The default value of σ 2

N is 1012 for sPLINK, which
is large enough for typical GWAS, but it can be set to higher values if needed to ensure

that
σ 2
ML
σ 2
N

remains small.
Notice that although sPLINK significantly enhances the privacy of data compared to

existing federated learning tools by hiding the local parameters of clients from a third
party, it does not eliminate the possibility of data reconstruction using the aggregated
parameters or final results. For example, the XTX parameter (covariance matrix) in the
linear regression algorithm can be exploited to determine the sex of the patients if the
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total number of samples across all cohorts is comparable to the number of the confound-
ing factors. However, for a reliable GWAS study, the total sample size is considerably
larger than the number of confounding factors, and therefore, the reconstruction of the
cohorts’ private data from the aggregated parameters can be difficult (but still possible) in
practice. A similar argument is also applicable to meta-analysis approaches, which reveal
the summary statistics of each cohort to a third party.
The value of prime number p impacts the correctness of the masking mechanism. To

ensure the correctness, overflowmust not occur in
∑i=K

i=1 NLi and
∑i=K

i=1 M′
Li calculations,

and
∑i=K

i=1 MLi < p. sPLINK uses the default value of p = 254 − 33, which is the largest
prime number than can fit in 54-bit integer. A higher value of p can be employed to han-
dle larger integer values but at the expense of a lower number of clients [30]. Likewise,
too large values of variance σ 2

N (e.g. 1030) can impact the precision of the results. With
default values of p and σ 2

N , however, our experiments indicate that there are no statistically
significant differences between the results from sPLINK with and without the masking
mechanism for all three association tests (the experimental setup of Fig. 7 is used in the
experiments).
sPLINK currently supports chi-square and linear/logistic regression tests, but it can

be extended to compute other useful statistics in GWAS such as minor allele frequency
(MAF), Hardy-Weinberg equilibrium (HWE), and linkage disequilibrium (LD) between
SNPs in a privacy-aware manner. The federated computation of the aforementioned
statistics in sPLINK is expected to be straightforward because they are based on the allele
frequencies, and sPLINK already calculates the minor and major allele counts in theNon-
missing count step of its computational workflow (the “Methods” section). Moreover,
population stratification using the principal component analysis (PCA) will be addressed
in the future version of sPLINK due to the complexity of the problem. sPLINK ’s imple-
mentation of the association tests is horizontally-federated, where the datasets have
different samples but the same features (i.e. SNP and confounding factors). However, cor-
recting for population structure using sPLINK requires a vertically-federated [44] PCA
algorithm because the eigenvectors should be computed from the sample by sample
covariance matrix, and therefore, the samples and features swap roles in the federated
PCA (SNPs are considered as samples and patients as features) [45]. Vertical federated
learning algorithms are still understudied, and they are consideredmore complicated than
the horizontal algorithms.
Additionally, the federated PCA algorithm should be an iterative, randomized algorithm

[46] so that it can handle large GWAS datasets with a practical amount of main memory.
The iterative nature of the algorithmwill present network and runtime challenges because
it might need dozens or hundreds of iterations and exchange huge traffic over the net-
work to converge to the final eigenvectors. From the privacy perspective, a recent study
[45] demonstrates that even if we assume the federated PCA and linear regression algo-
rithms individually provide perfect privacy, federated population stratification in GWAS,
where the eigenvectors are used as the confounding factors in the association test, does
not necessarily offer perfect privacy. Consequently, the server can reconstruct the SNP or
binary confounding factor values in polynomial time. To tackle this issue, they suggested
that the final eigenvectors should be computed at the clients and themodel parameter val-
ues should be hidden from the server. The federated population stratification in sPLINK
should be implemented taking into account those suggestions.
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We showed that sPLINK is robust against an important source of data heterogeneity,
namely the heterogeneous distribution of the phenotype or confounding factor values
across the distributed datasets of the cohorts. Population heterogeneity across the cohorts
is another source of data heterogeneity in GWAS, which is commonly tackled by pop-
ulation stratification using the PCA algorithm. sPLINK currently does not address this
kind of data heterogeneity but the future versions of the tool will support population
stratification to this end.

Conclusions
We introduce sPLINK, a user-friendly, hybrid federated tool for GWAS. sPLINK enhances
the privacy of the cohorts’ data without sacrificing the accuracy of the test results. It
supports multiple association tests including chi-square, linear regression, and logistic
regression. sPLINK is consistent with PLINK in terms of the input data formats and
results. We compare sPLINK to aggregated analysis with PLINK as well as meta-analysis
with METAL, GWAMA, and PLINK. While sPLINK is robust against the heterogeneity
of phenotype or confounding factor distributions across separate datasets, the statisti-
cal power of the meta-analysis tools is declined in imbalanced/heterogeneous scenarios.
We argue that sPLINK is easier to use for collaborative GWAS compared to meta-
analysis approaches thanks to its straightforward functional workflow. We also show that
sPLINK achieves practical runtime, in order of minutes or hours, and acceptable network
usage. sPLINK is an open-source tool and its source code is publicly available under the
Apache License Version 2.0. sPLINK is a novel and robust alternative to meta-analysis,
which performs collaborative GWAS in a privacy-aware manner. It has the potential to
immensely impact the statistical genetics community by addressing current challenges in
GWAS including cross-study heterogeneity and, thus, to replace meta-analysis as the gold
standard for collaborative GWAS.

Methods
Federated learning [14, 15] is a type of distributed learning, where multiple cohorts col-
laboratively learn a joint (global) model under the orchestration of a central server [47].
The cohorts never share their private data with the server or the other cohorts. Instead,
they extract local parameters from their data and send them to the server. The server
aggregates the local parameters from all cohorts to compute the global model parameters
(or global results), which in turn, are shared with all cohorts. While federated learning is
privacy-aware, where the private data of the cohorts is not shared with the server, studies
[48, 49] have shown that for some models such as deep neural networks, the raw data can
be reconstructed from the parameters shared by the cohorts.
To improve the privacy of federated learning, privacy-enhancing technologies (PETs)

such as DP, HE, or SMPC can be combined with federated learning to avoid revealing the
original values of the local parameters to third parties including the server [50]. DP-based
hybrid federated learning approaches can provide a privacy guarantee but their final
results might be considerably impacted by the random noise employed for the perturba-
tion of the model. HE-based aggregation methods can incur remarkable computational
overhead because they require the cohorts to encrypt/decrypt the local/global model
parameters and the server to perform the aggregation over the encrypted parameters.
SMPC-based hybrid federated learning methods [30, 51] increase the network bandwidth
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usage but does not adversely affect the final results. HyFed is an open-source hybrid
federated framework, which combines federated learning with additive secret sharing-
based SMPC to enhance the privacy of the federated algorithms while preserving the
utility (performance) of the global model. HyFed provides a generic API (application
programming interface) to develop federated machine learning algorithms. It supports
the federated mode of operation, where different components of the framework can
be installed in separate physical machines and securely communicate with each other
through the Internet.
sPLINK implements a hybrid federated approach using the HyFed API to enhance the

privacy of data. sPLINK works with distributed GWAS data, where samples are individu-
als and features are SNPs and categorical or quantitative phenotypic variables. While the
samples are different across the cohorts, the feature space is the same because sPLINK
only considers SNPs and phenotypic variables that are common among all datasets (hori-
zontal or sample-based federated learning)[44]. The client package of sPLINK is installed
on the local machine of each cohort with access to the private data. The compensator is
running in a separate machine. sPLINK’s server and WebApp packages are installed on a
central server.
In sPLINK, the original values of the parameters computed from the private data in one

cohort is not revealed to the server, compensator, or other cohorts, improving the privacy
of the cohorts’ data. sPLINK provides the chunking capability to handle large datasets
containingmillions of SNPs. The chunk size (configured by the coordinator) specifies how
many SNPs should be processed in parallel. Larger chunk sizes allow for more parallelism,
and therefore less running time in general but require more computational resources
(e.g. CPU and main memory) from the local machines of the cohorts, the server, and
compensator. sPLINK ’s client package is multi-threaded, where the number of cores is
configurable by the participants. This makes the computation of the model parameters
in the cohorts very fast, especially for large datasets. While we provide a readily usable
web service running at exbio server (https://exbio.wzw.tum.de/splink) and online com-
pensator at compbio server (https://compensator.compbio.sdu.dk), the server, WebApp,
and compensator packages can, of course, be deployed on customized physical machines.
The functional workflow of sPLINK is comprised of the following steps:

1. Project creation: The coordinator creates the project (new study) through the
Web interface. To this end, she/he first specifies the project name, association test
name, chunk size, and the list of confounding features (only for regression tests),
and then, generates a unique project token for each cohort.

2. Cohort invitation: The coordinator sends the project ID (automatically
generated) and token to each participant (a human entity interacting with the
client package in a cohort) through a secure channel such as email for inviting the
cohorts to the project.

3. Cohort joining: The participants use their corresponding username, password,
project ID, and token to join the project. After joining, they can view the general
information of the project such as the coordinator, server/compensator
name/URL, and etc. If they agree to proceed, they choose the dataset they want to
employ in the study. To be consistent with PLINK, sPLINK supports .bed (value of
SNPs), .fam (sample IDs as well as sex and phenotype values), .bim (chromosome

https://exbio.wzw.tum.de/splink
https://compensator.compbio.sdu.dk
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number, name, and base-pair distance of each SNP), .cov (value of confounding
factors), and .pheno (phenotype values that should be used instead of those in .fam
file) file formats as specified in the PLINK manual [52]. For linear regression,
phenotype values must be quantitative while for logistic regression and chi-square,
phenotype values have to be binary (control/case are encoded as 1/2).

4. Federated computation: In sPLINK, the association test results are computed by
the client package (running on the local machines of cohorts), server package
(running in the central server), and compensator (running in its own machine) in a
federated manner. The computation is iterative and consists of six general steps:

(a) Get global parameters: All clients obtain the required global parameters
MG from the server.

(b) Compute local parameters: Each client i computes the local parameters
MLi using the local data and global parameters.

(c) Mask local parameters: Each client i generates random noise NLi with
the same shape asMLi , and masksMLi with NLi to obtain the noisy local
parametersM′

Li .
(d) Share noisy local parameters and noise: Each client i sharesM′

Li and
NLi with the server and compensator, respectively.

(e) Aggregate noise: The compensator computes the aggregated noise N
given the noise values from the clients and sends the aggregated noise N
to the server.

(f) Compute global parameters: The server calculates (unmasks) the global
parameters given the noisy local parameters and the negative of the
aggregated noise.

5. Result download: The final results are automatically downloaded for the cohorts
but the coordinator needs to download them manually through the web interface.
Similar to PLINK, sPLINK reports minor allele name (A1) and p-value (P) for all
three association tests, chi-square (CHISQ), odds ratio (OR), minor allele
frequency in cases (F_A), and minor allele frequency in controls (F_U) for
chi-square test, and the number of non-missing samples (NMISS), beta (BETA),
and t-statistic (STAT) for linear and logistic regression tests.

sPLINK inherits its maskingmechanism fromHyFed, whichmasks the local parameters
with non-negative integer and floating-point values in different ways. For a local parame-
ter with a non-negative integer value, sPLINK considers a finite field Zp={0, 1, p − 1} (p
is a prime number) [13], where each client i generates a uniform random integer from Zp
as noiseNLi and masks its local parameterMLi withNLi by performing themodular addi-
tion over Zp: M′

Li = (MLi + NLi ) mod p. Notice that MLi ,NLi ,M′
Li ∈ Zp. For MLi with a

floating-point value, each client i generates noise NLi using Gaussian random generator
with zero-mean and variance σ 2

N , and masks MLi with NLi using the ordinary addition:
M′

Li =MLi + NLi .
The compensator computes the aggregated noise N by taking sum over the noise val-

ues of the clients using the modular or ordinary addition depending on the data type of
the noise: if NLi is non-negative integer, then N = (

∑i=K
i=1 NLi ) mod p; if NLi is floating-

point type, then N =
∑i=K

i=1 NLi . To calculate the global parameters with non-negative



Nasirigerdeh et al. Genome Biology           (2022) 23:32 Page 17 of 24

integer values, the server first computes the aggregated noisy parameter by taking sum
over the noisy local parameters using the modular addition, and then subtracts the aggre-
gated noise from the aggregated noisy parameter using the modular subtraction: MG =
(((

∑i=K
i=1 M′

Li ) mod p) - N) mod p. For model parameters with floating-point values,
the server adds up the noisy local parameters and the negative of the aggregated noise
using the ordinary addition:MG =

∑i=K
i=1 M′

Li − N .
The computational workflow of sPLINK involves seven steps common among all asso-

ciation tests as well as a couple of steps specific to each association test (Fig. 8). In the first
three steps (i.e. Init, SNP name, and Allele name) as well as the sixth step (Minor allele),
the clients only communicate with the server, where the name of the SNPs and alleles
(which are not considered private) are directly shared with the server. In the remaining
steps, the compensator is involved and clients mask the local parameters with noise to
hide their original values from the server. The formulas associated with the steps indi-
cate how the clients compute local parameters and how the server calculates the global
parameters using the noisy local parameters of the clients and the aggregated noise from
the compensator. In the following, we provide an overview of each step:

1. Init: Each client i opens the files of the dataset selected by the participant to be
employed in the study and creates its phenotype vector (Yi) and feature matrix (Xi),
which includes the value of SNPs and confounding factors. It is worth noting that
there is a separate feature matrix for each SNP but the phenotype vector is the
same for all SNPs. Assume a dataset containing three SNPs named SNP1, SNP2,
and SNP3 and age and sex as confounding features. There will be three different
feature matrices, one feature matrix per SNP. For instance, the feature matrix of
SNP1 has three columns including SNP1, age, and sex values. Phenotype vector
and feature matrix are the private data of the cohorts. They cannot be shared with
the server, compensator, or the other cohorts. The aggregation process in the
server just makes sure that all clients successfully initialized their data.

2. SNP name: Each client shares the SNP names with the server. In the aggregation
process, the server computes the intersection of all SNP names. Only common
SNPs are considered in the computation of the association test results.

3. Allele name: Each client sends the allele names (e.g. G,A) of each SNP to the
server. In the aggregation process, the server ensures that all cohorts employ the
same allele names for the SNPs. Notice that the clients sort the allele names to
avoid revealing which one is minor or major allele.

4. Sample count: Each client i calculates its local sample count Ti (number of
samples in its dataset including missing samples, which is the size of vector Yi).
The server computes the corresponding global sample count: T = (((

∑i=K
i=1 T ′

i )

mod p) - NT ) mod p, where T ′
i is the noisy local sample count of client i : T ′

i =
(Ti + Ni) mod p and NT is the aggregated noise from the compensator: NT =
(
∑i=K

i=1 Ni) mod p.
5. Non-missing count: In this step, SNPs are split into chunks which can be

processed in parallel. The chunking capability is provided to handle very large
datasets containing millions of SNPs. The clients compute the non-missing sample
count by filtering out the missing samples (value of -9 is considered as missing).
Likewise, they calculate the local allele count by counting the number of alleles in
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Fig. 8 Computational workflow of sPLINK : The first six steps and the last step are common among all
association tests. Contingency table is specific to the chi-square test while Beta and Standard error are
regression test related steps

each SNP. In the aggregation process, the server computes the global non-missing
sample count (n) and allele count using the corresponding noisy parameters and
the aggregated noise similar to the sample count step. Finally, the server
determines the global minor allele based on the values of the global allele counts.

6. Minor allele: The clients compare their local minor allele with the global minor
allele. If they are the same, they do nothing. Otherwise, they update the mapping of
SNP values read from .bed file. Each SNP value can be 0, 1, 2, or 3 (missing value).
These values are encoded based on the minor allele name. If the minor allele is
changed, the value of the SNP needs to be swapped if it is 0 or 2. Thus, if a client’s
minor allele is different from global minor allele, it inverses the mapping of SNP
values (0 → 2 and 2 → 0). The aggregation in the server makes sure that all clients
successfully completed this step.

7. Association test specific steps: In the following, we elaborate on the steps
specific to each association test. Regarding regression tests, sPLINK implements
the federated versions of ordinary least squares linear regression and
Newton-Raphson method based logistic regression.
Chi-square: The only test-specific step for the chi-square test is Contingency
table, where each client i computes its local contingency table containing minor
allele frequency for cases (ti), minor allele frequency for controls (ri), major allele
frequency for cases (qi), and major allele frequency for controls (si). The server
aggregates the noisy contingency tables from the clients (t′i , r′i, q′

i, and s′i are the
elements of the table) and the corresponding aggregated noise from the
compensator (Nt , Nr , Nq, and Ns) to compute the global (observed) contingency
table (Table 3). It also calculates the expected contingency table based on the
observed contingency table (Table 4).
Given the observed contingency table (O) and the expected contingency table (E),
the server computes odds ratio (OR), χ2, and p-value (P) as follows:

OR = t × s
q × r

(1)
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Table 3 Global (observed) contingency table

Minor allele Major allele Total

Case t = (((
∑i=K

i=1 t
′
i ) mod p) - Nt ) mod p q = (((

∑i=K
i=1 q

′
i) mod p) - Nq) mod p t + q

Control r = (((
∑i=K

i=1 r
′
i ) mod p) - Nr ) mod p s = (((

∑i=K
i=1 s

′
i) mod p) - Ns) mod p r + s

Total t + r q + s 2n

χ2 =
∑ (E − O)2

E
(2)

P = 1 − Ft(χ2, 1) (3)

where Ft is the cumulative distribution function (CDF) of χ2 distribution (degree
of freedom is 1).
Linear regression: Beta and Standard error are two steps specific to linear
regression test. In the Beta step, each client i computes XT

i Xi and XT
i Yi, where XT

i
is the transpose of Xi. In the aggregation process, the server performs the following
calculations (K is the number of clients):

XTX =
i=K∑

i=1
(XT

i Xi)
′ − NXTX (4)

XTY =
i=K∑

i=1
(XT

i Yi)
′ − NXTY (5)

β = (XTX)−1(XTY ) (6)

where (XT
i Xi)′ and (XT

i Yi)′ are the noisy local parameters from the clients, NXTX
and NXTY are the corresponding aggregated noise from the compensator, and ()−1

indicates the inverse matrix.
In the Standard error step, each client i calculates the local sum square error (SSE)
Ei by having the global β vector.

Ŷi = Xiβ (7)

Ei =
∑

(Yi − Ŷi)2 (8)

and then the server calculates the global standard error vector (SE) as follows:

E =
i=K∑

i=1
E′
i − NE (9)

VAR = (
E

n − m − 1
)(XTX)−1 (10)

SE = √
diag(VAR) (11)

Table 4 Expected contingency table

Minor allele Major allele

Case (t+q)×(t+r)
2n

(t+q)×(q+s)
2n

Control (r+s)×(t+r)
2n

(r+s)×(q+s)
2n
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where E′
i and NE are the noisy SSE values and the corresponding aggregated noise,

respectively; n is the global non-missing sample count, m is the number of features
(1 + number of confounding factors), and diag is the main diagonal of the matrix.
Given the standard error vector, the server computes the T statistic (T) and
p-value (P) as follows:

T = β

SE
(12)

DF = n − m − 1 (13)

P = 2 × (1 − Ft(|T |, DF)) (14)

in which DF is degree of freedom and Ft is the CDF of T distribution.
Logistic regression: Similar to linear regression, logistic regression has two
specific steps: Beta and Standard error. However, the Beta step is iterative in
logistic regression (maximum number of iterations is specified by the coordinator
and its default value is 20). In each iteration, each client i computes local gradient
(∇i), Hessian matrix (Hi) and log-likelihood (Li) as follows:

Ŷi = 1
1 + e−Xiβ

(15)

∇i = XT
i (Yi − Ŷi) (16)

Hi = (XT
i ◦ (Ŷi ◦ (1 − Ŷi))T )Xi (17)

Li =
∑

(Yi ◦ log Ŷi + (1 − Yi) ◦ log(1 − Ŷi)) (18)
where β is the global beta vector from the previous iteration and ◦ indicates
element-wise multiplication.
The server aggregates the noisy local gradients (∇′

i ), Hessian matrices (H ′
i ) and

log-likelihood values (L′
i) from K clients and the associated aggregated noise values

N∇ , NH , NL as follows:

∇ =
i=K∑

i=1
∇′
i − N∇ (19)

H =
i=K∑

i=1
H ′
i − NH (20)

L =
i=K∑

i=1
L′
i − NL (21)

Then, it updates the β values accordingly:

βnew = βold + H−1∇ (22)

where βold is the β value from the previous iteration. The server also compares the
newly computed log-likelihood value (L) with the one from previous iteration
(Lold). If their difference is less than a pre-specified threshold, β values converged,
and therefore, it stops updating beta.
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In the Standard error step, the server shares the global β values with the clients.
Each client i computes its local Hessian matrix (Hi) using the global β . The server
gets the noisy local Hessian matrices from K clients and the aggregated noise from
the compensator and applies the following formula to obtain the global standard
error vector (SE):

SE =
√
√
√
√diag

(
( i=K∑

i=1
H ′
i − NH

)−1
)

(23)

Having standard error values, the server calculates T statistics and p-value (P) as
follows:

T = β

SE
(24)

P = 1 − Ft(|T |2, 1) (25)

where Ft is CDF of χ2 distribution (degree of freedom is 1).
8. Result: The computation of association test results have been completed for all

chunks and the results are shared with all cohorts.

The client and server components of sPLINK has been written using the Python API of
the HyFed framework [53]. TheWebApp component has been implemented using Angu-
lar and HTML/CSS. sPLINK employs the algorithm-agnostic compensator of the HyFed
framework. The pandas package [54] is used in the client component to open the dataset
files while NumPy [55] is leveraged to pre-process the data and to compute the local
parameters. In the server component, the NumPy and SciPy [56] packages are used for
aggregation and computing p-values.
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Finnish biobanks after approval by Fimea, the National Supervisory Authority for Welfare and Health. Recruitment
protocols followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital
District of Helsinki and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen project is
approved by Finnish Institute for Health and Welfare (THL), approval number THL/2031/6.02.00/2017, amendments
THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019 Digital and population
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data service agency VRK43431/2017-3, VRK/6909/2018-3, the Social Insurance Institution (KELA) KELA 58/522/2017, KELA
131/522/2018 and Statistics Finland TK-53-1041-17. The Biobank Access Decisions for FinnGen samples and data utilized
in FinnGen Data Freeze 3 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67,
BB2018_71, Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank AB17-5154,
Biobank Borealis of Northern Finland_2017_1013, Biobank of Eastern Finland 1186/2018, Finnish Clinical Biobank
Tampere MH0004, Central Finland Biobank 1-2017. The FinnGen project is funded by two grants from Business Finland
(HUS 4685/31/2016 and UH 4386/31/2016) and eleven industry partners (AbbVie Inc, AstraZeneca UK Ltd, Biogen MA Inc,
Celgene Corporation, Celgene International II Sàrl, Genentech Inc, Merck Sharp & Dohme Corp, Pfizer Inc.,
GlaxoSmithKline, Sanofi, Maze Therapeutics Inc., Janssen Biotech Inc). Following biobanks are acknowledged for
collecting the FinnGen project samples: Auria Biobank (https://www.auria.fi/biopankki), THL Biobank (https://www.thl.fi/
biobank), Helsinki Biobank (https://www.helsinginbiopankki.fi), Biobank Borealis of Northern Finland (https://www.ppshp.
fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere
(https://www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland
(https://www.ita-suomenbiopankki.fi/en), Central Finland Biobank (https://www.ksshp.fi/fi-FI/Potilaalle/Biopankki),
Finnish Red Cross Blood Service Biobank (https://www.veripalvelu.fi/verenluovutus/biopankkitoiminta) and Terveystalo
Biobank (https://www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/). All Finnish Biobanks are
members of BBMRI.fi infrastructure (https://www.bbmri.fi). Figures 2 and 8 were created with BioRender.com.
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