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ABSTRACT

The heart faces the challenge of adjusting the rate of fatty acid uptake to match myocardial 
demand for energy provision at any given moment, avoiding both too low uptake rates, which 
could elicit an energy deficit, and too high uptake rates, which pose the risk of excess lipid 
accumulation and lipotoxicity. The transmembrane glycoprotein cluster of differentiation 36 
(CD36), a scavenger receptor (B2), serves many functions in lipid metabolism and signaling. 
In the heart, CD36 is the main sarcolemmal lipid transporter involved in the rate-limiting 
kinetic step in cardiac lipid utilization. The cellular fatty acid uptake rate is determined by 
the presence of CD36 at the cell surface, which is regulated by subcellular vesicular recycling 
from endosomes to the sarcolemma. CD36 has been implicated in dysregulated fatty acid and 
lipid metabolism in pathophysiological conditions, particularly high-fat diet-induced insulin 
resistance and diabetic cardiomyopathy. Thus, in conditions of chronic lipid overload, high 
levels of CD36 are moved to the sarcolemma, setting the heart on a route towards increased 
lipid uptake, excessive lipid accumulation, insulin resistance, and eventually contractile 
dysfunction. Insight into the subcellular trafficking machinery of CD36 will provide novel 
targets to treat the lipid-overloaded heart. A screen for CD36-dedicated trafficking proteins 
found that vacuolar-type H+-ATPase and specific vesicle-associated membrane proteins, 
among others, were uniquely involved in CD36 recycling. Preliminary data suggest that these 
proteins may offer clues on how to manipulate myocardial lipid uptake, and thus could be 
promising targets for metabolic intervention therapy to treat the failing heart.

Keywords: Cluster of differentiation 36; Scavenger receptor B2; Lipid overload;  
Cardiac function; Cardiomyopathy

INTRODUCTION

The Western lifestyle is characterized by high dietary lipid intake and a relatively limited level 
of physical exercise, which together often result in the development of obesity. As obesity 
becomes more severe, excess lipids cannot be stored in adipose tissue, which overflows, and 
as a consequence lipids are deposited ectopically both in the vessel wall (atherosclerosis) and 
in non-adipose tissues, such as the liver, heart, and skeletal muscle.1,2 Ultimately, ectopic 
lipid storage leads to organ dysfunction. For instance, obesity triggers a marked change in 
the control of glucose and lipid metabolism in the heart, whereby long-chain fatty acids (LC-
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FA) become the major substrate for energy provision, while glucose utilization is hampered 
due to the development of insulin resistance. This change in substrate preference underlies 
the well-known association of obesity with type 2 diabetes and cardiovascular complications 
such as acute myocardial infarction and so-called diabetic cardiomyopathy.3,4 Taken together, 
these observations indicate that it is a metabolic challenge for the heart to control the rate 
of fatty acid uptake and utilization at all times, balancing the need to secure sufficient fatty 
acids for energy provision, thereby avoiding a possible energy deficit, while avoiding an 
unphysiologically high uptake rate that may lead to deleterious triacylglycerol accumulation 
and, ultimately, lipotoxic heart failure.

In this review, we summarize the current knowledge on the regulation of myocardial fatty 
acid utilization. Emerging evidence indicates that cluster of differentiation 36 (CD36; 
officially designated as scavenger receptor B2 [SR-B2]), a transmembrane glycoprotein, plays 
a pivotal role both in the healthy heart and in the development of metabolic cardiac diseases, 
such as diabetic cardiomyopathy. More recent studies have suggested that CD36 may be 
a suitable target for altering myocardial fatty acid utilization, especially in cases of lipid 
overload. Furthermore, new knowledge on subcellular proteins that influence CD36 function 
in a tissue-specific manner may even enable the development of approaches to manipulate 
fatty acid utilization specifically in the heart.

MYOCARDIAL FATTY ACID UPTAKE

LC-FA are the predominant substrate for energy provision in the heart, and are derived from 
both circulating lipoproteins and the pool of fatty acids non-covalently bound to plasma 
albumin.5 In the healthy heart, fatty acids contribute to about 60% of the myocardial ATP 
production rate, the remainder being provided mostly by glucose (25%–30%) and lactate 
(10%) with minor contributions from ketone bodies and amino acids (also depending on 
the dietary state). The amount of substrates stored endogenously in cardiac myocytes (i.e., 
glycogen and triacylglycerols), suffices to maintain contractile activity for only a limited 
duration (minutes), indicating that a virtually continuous delivery of exogenous substrates is 
mandatory for proper cardiac function.

On their way from the plasma to cardiomyocytes, fatty acids must pass through the 
endothelium, which in the heart—unlike the liver—is characterized by few, small fenestrae 
that do not allow the rapid passage of larger proteins such as albumin. Therefore, fatty acids are 
transported not alongside, but across, endothelial cells to reach the interstitium where they are 
bound to albumin. The concentration of albumin in the interstitial space is about one-third of 
that found in the plasma. The subsequent uptake of fatty acids into cardiomyocytes is facilitated 
by membrane-associated proteins, with a predominant role played by the transmembrane 
glycoprotein CD36, with additional roles played by plasma membrane fatty acid-binding protein 
(FABPpm) and a number of so-called fatty acid transport proteins (FATPs; FATP1, FATP4, and 
FATP6).6,7 CD36 is a member of the superfamily of scavenger receptor proteins - class B, and is 
officially designated as SR-B2.8 FABPpm is a 40–43 kDa peripheral membrane protein present at 
the outer leaflet of the sarcolemma that was first described in 19859; however, it has hardly been 
studied, and its precise physiological function therefore remains elusive. FABPpm likely acts 
in concert with CD36 to take up fatty acids by facilitating their passage through the unstirred 
water layer immediately adjacent to the lipid bilayer. FATPs are actually acyl-CoA synthetases 
that stimulate the rate of cellular fatty acid uptake by converting incoming fatty acids directly 
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into their acyl-CoA thioester, which is collectively referred to as metabolic trapping.10 FATPs are 
primarily involved in the uptake of very-LC-FA (C22 and beyond), and are less important for the 
bulk uptake of palmitate and of other abundant long-chain fatty acid species.10

1. Dynamic role of CD36 in myocardial fatty acid uptake
The glycoprotein CD36 is an 88-kDa transmembrane protein that is composed of 2 
transmembrane domains and a large extracellular loop containing 9 glycosylation sites and 
2 phosphorylation sites.7,11 Both the C-terminal and N-terminal of the protein are located 
intracellularly, as part of small cytoplasmic tails. The extracellular loop of CD36 contains 
a hydrophobic binding pocket that functions as an acceptor of fatty acids to promote the 
partitioning of fatty acids and their delivery to the outer leaflet of the lipid bilayer. Thereafter, 
fatty acids ‘flip–flop’ to the inner leaflet of the membrane, a process that occurs very quickly 
and does not need assistance from membrane proteins.12 The subsequent and final step in the 
transmembrane transportation process is desorption of fatty acids from the inner leaflet and 
their binding to the cytoplasmic fatty acid carrier (FABPc). This desorption is regarded as the 
rate-limiting step of overall transmembrane transport. CD36 is considered to facilitate this 
step by providing a docking site for FABPc or acyl-CoA synthetases.7 The presence of CD36 
largely in specific membrane domains designated ‘lipid rafts’ may indicate the existence of 
areas in the sarcolemma with a clustering of the specific proteins and enzymes involved in 
transmembrane fatty acid transport, which would result in a highly efficient uptake process.

Studies of isolated rodent cardiac myocytes during electric field stimulation aimed at 
increasing contractile activity revealed that the resulting increase in fatty acid uptake rate 
was accompanied by an increased amount of CD36 in the sarcolemma.13,14 The latter increase 
was due to the translocation of CD36 from intracellular storage depots, most notably 
endosomes, to the sarcolemma, a process that could be triggered on a time scale of minutes. 
Furthermore, it was observed that CD36 translocation from endosomes to the sarcolemma 
could be triggered with similar speed by the hormone insulin,15 as visualized by 2-photon 
microscopic imaging (Fig. 1). Upon removal of insulin, CD36 is rapidly internalized, leading 
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Fig. 1. Two-photon microscopy imaging of sarcolemmal CD36 before and after insulin stimulation. Isolated rat 
cardiac myocytes under basal conditions (left) or after 15 minutes of incubation with 100 nM insulin (right) were 
incubated with anti-CD36 antibody and subsequently with a fluorescein isothiocyanate-labeled secondary antibody 
(green). The more intense green labeling of the sarcolemma (right photo) is due to the insulin-induced translocation 
of CD36 from intracellular storage depots (endosomes) to the sarcolemma. Courtesy of Dr. L.K.M. Steinbusch. 
CD36, cluster of differentiation 36.



to a concomitant decrease in the fatty acid uptake rate.16 These changes in the sarcolemmal 
CD36 presence are due to the translocation and internalization of CD36, as the total cellular 
amount of CD36 remains unaltered. Subcellular recycling of CD36 between endosomes and 
the sarcolemma as a mechanism to regulate the rate of fatty acid uptake by cardiac myocytes 
closely resembles the mechanism by which glucose uptake is regulated by subcellular 
recycling of the glucose transporter (GLUT) 4, which also is triggered by increased 
contraction and the presence of insulin.17 Unlike CD36, its obligatory partner FABPpm is 
not regulated by translocation and is permanently present at the cell surface, implying that 
FABPpm plays a merely permissive role in fatty acid uptake. Most likely, upon exposure of cells 
to either electric field stimulation or to insulin, CD36 translocates to a specific area of the 
sarcolemma (lipid raft), and thereafter binds to FABPpm to form a functional uptake complex. 
Taken together, upon increased muscle contraction or insulin stimulation, both CD36 and 
GLUT4 are recruited to the sarcolemma within the same time frame, resulting in increased 
uptake rates for both fatty acids and glucose (Fig. 2).18

The availability of CD36-null mice has made it possible to study the contribution of the CD36-
facilitated pathway to the overall rate of myocardial fatty acid uptake. Habets et al.19 showed 
that under control conditions, palmitate uptake by cardiomyocytes from CD36-null mice 
was not different from that in cardiomyocytes from wild-type mice due to a compensatory 
upregulation of FATP1 in the CD36-null mice. However, during electric field stimulation the 
cardiomyocytes from CD36-null mice failed to upregulate the palmitate uptake rate, while 
cardiomyocytes from wild-type mice showed an almost 3-fold higher uptake rate. From these 
data, the authors concluded that in contracting myocytes, CD36 is responsible for about 70% 
of the rate of fatty acid uptake.19
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Fig. 2. Scheme illustrating the similarity of the regulation of CD36-mediated LC-FA uptake and GLUT4-mediated 
glucose uptake by cardiomyocytes. In response to contractile activity or stimulation with insulin, both the fatty 
acid transporter CD36 (also designated scavenger receptor B2) and the GLUT4 translocate to the sarcolemma to 
increase fatty acid and glucose uptake, respectively. Note that CD36 and GLUT4 may be recruited from distinct 
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contributes up to 25% of glucose uptake.18 
CD36, cluster of differentiation 36; GULT, glucose transporter; LC-FA, long-chain fatty acids; FABPpm, plasma 
membrane fatty acid-binding protein; FABPc, cytoplasmic fatty acid-binding protein.



2. Rate-limiting kinetic step in myocardial fatty acid utilization
Fatty acid import into the mitochondria has been considered to be the major rate-limiting 
kinetic step in the overall fatty acid utilization process in the heart.5,20 This step is regulated by 
carnitine palmitoyl-transferase-I (CPT-I) via its physiological inhibitor malonyl-CoA. However, 
from a physiological viewpoint, it would make sense to regulate the overall rate of cellular fatty 
acid utilization at the level of entry of fatty acids into the cardiomyocyte, because doing so 
would avert the risk of overloading the cell with fatty acids that cannot be immediately oxidized 
(posing a risk of lipotoxicity). Indeed, evidence is increasing that cellular fatty acid uptake, not 
CTP-I, is the rate-limiting step.21 Specifically, a study of rats administered the pharmacological 
compound etomoxir, a direct inhibitor of CPT-I, showed that inhibition of CPT-I activity by 
about 50% had no effect on cardiac fatty acid utilization as measured in vitro in cardiomyocytes 
isolated from these rats, neither with low nor high external fatty acid concentrations and 
neither in quiescent cells nor during electric field stimulation of the cells.22 As a result, it can be 
concluded that CPT-I mostly plays a permissive role in overall myocardial fatty acid utilization, 
while sarcolemmal fatty acid transport is rate-governing.

LIPID-INDUCED CARDIAC DYSFUNCTION

1. Key role of CD36 in the pathogenesis of diabetic cardiomyopathy
A chronically elevated fatty acid supply to the heart, as occurs when a high-fat diet is 
consumed and in obesity, is known to induce a shift in myocardial energy provision towards 
an increased utilization of fatty acids at the expense of glucose.23 Such a substrate switch 
eventually may lead to the accumulation of specific lipid species in cardiomyocytes together 
with mitochondrial dysfunction, subsequently resulting in insulin resistance. In turn, insulin 
resistance is a causal factor for type 2 diabetes with impaired cardiac contractile function, 
which is referred to as diabetic cardiomyopathy.3 The course of events that eventually result in 
diabetic cardiomyopathy has been elucidated in the last decade, and evidence indicates that 
CD36 plays an early pivotal role.

Chronic oversupply of fatty acids to the heart triggers alterations in the subcellular recycling 
of CD36. In the normal heart, the total cellular amount of CD36 is distributed roughly evenly 
between endosomes and the sarcolemma, but following chronic lipid oversupply, CD36 
is mostly found at the sarcolemma at the expense of endosomal CD36 (i.e., there is a net 
relocation of CD36 from endosomes to the sarcolemma). After starting a high-fat diet, this 
subcellular redistribution occurs very rapidly (e.g., within 2–3 days in the skeletal muscle of 
rodents),24 and is accompanied by a concomitant increase in the rate of fatty acid uptake before 
any other change in muscular metabolism. As a result, over the course of about 2 weeks, fatty 
acids become the main metabolic substrate for energy provision, while the use of glucose 
is downregulated.24 However, the increase in fatty acid uptake is larger than needed by the 
myocytes for metabolic energy provision, so that the intracellular storage of fatty acids as 
triacylglycerols markedly increases. This pattern of increased myocardial lipid formation has 
been observed previously,2 and was proposed to be related to the limited ability of adipose 
tissue to accommodate the overwhelming plasma availability of fatty acids, as a result of which 
fatty acids are stored ectopically in the heart and liver (myocardial and hepatic steatosis). An 
increased amount of intracellular triacylglycerols is generally accompanied by increased levels 
of fatty acid metabolites, especially diacylglycerols and ceramides, 2 compounds that are known 
to inhibit insulin signaling, thereby causing insulin resistance.25 The main consequence of 
insulin resistance is a lowered glucose uptake rate due to impaired translocation of GLUT4 
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from endosomes to the sarcolemma. In such conditions of chronic lipid overload, the heart 
relies predominantly on fatty acids for metabolic energy provision because it cannot take up 
sufficient amounts of glucose, and it shows marked contractile dysfunction.26

This cascade of events was mimicked in isolated rat cardiomyocytes by subjecting the cells 
to a culture medium with a high concentration of palmitate (e.g., 200 µM). After 48 hours 
in culture, the cardiomyocytes showed a 2-fold higher presence of CD36 in the sarcolemma, 
almost 3-fold higher intracellular triacylglycerol content, insulin resistance (measured as the 
response of Akt phosphorylation to exogenous insulin), and a peak sarcomere shortening 
reduced to approximately 50% of that found in cardiomyocytes cultured in a low-palmitate 
medium (20 µM palmitate) (Fig. 3).27 Furthermore, the pivotal early role of CD36 in this 
cascade is evidenced by the fact that addition of anti-CD36 antibodies to the culture medium 
completely prevented changes in each of these parameters and, importantly, prevented the 
loss of cardiac contractile function (Fig. 3). These in vitro findings are in line with published 
reports on mice in vivo, as CD36-null mice were found to be protected against high-fat diet-
induced loss of cardiac function.28,29 Together, these data indicate that lipid overload-induced 
increased translocation of CD36 to the sarcolemma is an early event prior to the development 
of insulin resistance and contractile dysfunction (Fig. 4).7 Of note, the pivotal early role of 
CD36 translocation in this series of events induced by lipid oversupply to the heart was very 
recently confirmed to occur by another group of investigators.30 Finally, the data further 
suggest that CD36 is a suitable target to treat myocardial insulin resistance and contractile 
dysfunction (see below), indicating that the in vitro model described above can be applied to 
screen for compounds that would impair CD36 function at the sarcolemma.

2. Tissue-specific approach to manipulate fatty acid utilization
While CD36 has been proposed as a suitable target to rescue the lipid-overloaded heart from 
contractile dysfunction, targeting its function at the sarcolemma by specific antibodies or 
inhibitors may not be a preferable systemic approach because such interventions would most 
likely also impair fatty acid uptake in other organs, especially in adipose tissue, and may 
affect other known functions of CD36, such as scavenging of oxidized low-density lipoprotein 
by macrophages.31 Therefore, a preferable approach would be to manipulate the subcellular 
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recycling of CD36, aiming to reduce its presence at the sarcolemma, and if possible, to do 
so specifically in the heart. Such an approach requires a detailed knowledge of the factors 
involved in the vesicular trafficking machinery of CD36 recycling between endosomes and the 
sarcolemma, and of the triggers that regulate the recycling process.

Studies on the intracellular trafficking of various membrane proteins and receptors have 
revealed that some 50 to 60 distinct proteins are involved in vesicular trafficking pathways, 
with specific sets of proteins participating in the 3 subprocesses that are commonly 
identified. Specifically, 1) the fission process involves coat proteins (inducing membrane 
curvature), Rab proteins (driving unidirectional trafficking via GTP–GDP cycling), vacuolar-
type H+-ATPase (v-ATPase; see next section), lipid kinases (locally producing bilayer-
destabilizing lipid species), and several adaptor proteins; 2) the translocation process is 
mediated by motor proteins that transport the vesicles alongside trafficking roads provided 
by filamentous networks; and 3) the fusion process is mediated by vesicle-associated 
membrane proteins (VAMPs), Rab proteins, bilayer-destabilizing proteins, and adaptor 
proteins.32,33 Although the CD36-dedicated vesicular trafficking machinery is only beginning 
to be elucidated, recent reports describing a role played by v-ATPase and specific VAMPs 
in myocardial CD36 recycling suggest the feasibility of targeting CD36-specific vesicular 
trafficking to treat lipid overload-induced cardiomyopathy.
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3. v-ATPase disassembly and cardiac contractile function
Endosomes, which form the subcellular storage compartment of CD36, are acidic organelles. 
The low pH (about 5.5) of the lumen of endosomes is maintained through the active import 
of protons by v-ATPase. Experimental studies with rats fed a high-fat diet have shown that 
lipid oversupply inhibits the proton-pumping activity of v-ATPase, causing the endosomes 
to lose their acidification.34,35 Importantly, the resulting endosomal alkalinization appeared 
as early as increased CD36 translocation, and was clearly present before the onset of insulin 
resistance and the decline in cardiac contractile function. Subsequent studies have revealed 
that the loss of v-ATPase activity directly caused increased translocation of CD36 from 
endosomes to the sarcolemma.35

v-ATPase is a multimeric protein complex consisting of 14 subunits. Six of these subunits 
form the integral membrane subcomplex V0, comprising the proton channel, while 8 subunits 
make up a peripheral membrane subcomplex V1, which contains the ATP-binding pocket.36,37 
The functional activity of v-ATPase is assessed by measuring the accumulation of [3H]-labeled 
chloroquine, a weak base, in isolated cells.34 A main mechanism of regulation of the proton-
pumping activity of v-ATPase, originally identified in yeast, is its reversible disassembly into 
the 2 subcomplexes V0 and V1, whereby the V1 subcomplex may move away from the endosomal 
membrane to enter the soluble cytoplasm.38 Indeed, the latter mechanism appears to be the 
cause of v-ATPase inhibition upon lipid oversupply.35 In addition, CD36-mediated lipid uptake 
is a prerequisite for v-ATPase inhibition, while a consequence of v-ATPase inhibition is the 
increased translocation of CD36 from endosomes to the sarcolemma.35 The latter observations 
jointly suggest the occurrence of a feed-forward cycle, in which lipid overexposure increases 
CD36-mediated lipid uptake, which impairs v-ATPase function, consequently leading to 
increased CD36 translocation to the sarcolemma and further increased lipid uptake, eventually 
causing the heart to develop insulin resistance and contractile dysfunction (Fig. 4).35 The 
corollary is that in cardiomyocytes, endosomal v-ATPase acts like a lipid sensor. However, 
the molecular mechanism of palmitate-induced v-ATPase disassembly is currently unknown. 
Searching for interventions that would stabilize the assembly of the v-ATPase subcomplexes V0 
and V1 is of interest, as such interventions would form the basis of a novel strategy to interrupt 
the lipid-induced feed-forward cycle of CD36 translocation and thereby help overcome the 
detrimental effects of lipid overexposure on cardiac function.

4. VAMP isoforms bring specificity to CD36 trafficking
As with any other protein regulated by translocation, the family of VAMPs has been 
implicated in the subcellular trafficking of CD36. VAMPs belong to the group of vesicle-
associated soluble N-ethylmaleimide-sensitive factor attachment protein receptors, which 
together with their cognate target-membrane associated SNAREs form so-called SNARE 
complexes that bring transport vesicles to close enough proximity to the target membrane 
for the water barrier to be overridden and for fusion of the 2 membranes to occur. A 
detailed analysis of the various VAMP isoforms present in the heart, seeking to characterize 
their involvement in insulin-stimulated and/or contraction-induced changes in CD36 
translocation, in comparison to that of GLUT4, found 2 VAMPs to be required for both CD36 
and GLUT4 translocation (VAMP2 in response to insulin stimulation and VAMP3 in response 
to electric field stimulation) and 1 VAMP (VAMP4) to be specifically involved in CD36 traffic.39 
These differences suggest the possibility of using VAMPs to manipulate specifically CD36-
mediated lipid uptake without affecting GLUT4 translocation. The latter point is crucial 
to allow sufficient glucose uptake and thereby avoid an energy deficit of the heart. VAMP4 
would be an especially suitable target for modulating lipid uptake, because targeting VAMP2 
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and VAMP3 would have similar effects on lipid uptake and glucose uptake. In more detail, 
inhibiting VAMP4 would block CD36 translocation, and thereby counteract myocellular 
lipid accumulation and associated lipid-induced cardiac dysfunction. Because VAMP4 is 
also expressed in skeletal muscle, and has been associated with muscular insulin resistance 
and type 2 diabetes,40 its inhibition may affect skeletal muscle in a similar manner, limiting 
muscular lipid accumulation and thereby mitigating whole-body insulin resistance.

CONCLUSION

In this review, we discussed the overwhelming evidence that the transmembrane protein 
CD36 (SR-B2) plays a pivotal role in the regulation of lipid metabolism, both in the healthy 
heart and in the development of metabolic cardiac disease. The presence of CD36 in the 
sarcolemma governs the rate of myocardial lipid uptake, a process that can be seen as the 
gatekeeper that tunes lipid uptake to the metabolic needs of the cardiomyocyte. In line 
with this notion, aberrations in the control of CD36 abundance in the sarcolemma—which, 
in turn, is regulated by the reversible recycling of CD36 between subcellular storage in 
endosomes and the sarcolemma—appear to constitute the basis of the development of 
cardiac metabolic diseases, such as diabetic cardiomyopathy. As a result, CD36 can be 
regarded as a primary therapeutic target to treat metabolic cardiac diseases, not only 
by lowering lipid uptake in order to combat cardiac lipid overload, but most likely also 
by increasing lipid uptake in cases of excess utilization of glucose (as seen in cardiac 
hypertrophy).41 This possibility is underscored by the finding that re-balancing cardiac 
energy substrate metabolism towards the utilization of an appropriate mix of substrates is a 
prerequisite for proper cardiac contractile function.42

Insights into the molecular mechanism underlying the subcellular recycling of CD36 between 
endosomes and the sarcolemma have increased markedly over the last decade, and research 
in this area has already elucidated the central roles played by v-ATPase and specific VAMP 
isoforms. Retention of CD36 in the endosomal compartment requires v-ATPase activity, 
while lipid oversupply decreases this activity. Further research into the mechanism by which 
lipids (most notably palmitate) induce ATPase disassembly might lead to the design of novel 
pharmacological agents that reactivate v-ATPase, preferably in a high-lipid environment. 
Additionally, genetic or pharmacological inhibition of VAMP4 might imprison CD36 within 
endosomes, thereby restricting cardiac fatty acid uptake. Both strategies may be applied to 
fight Western lifestyle-induced myocardial insulin resistance and loss of contractile function.

Several aspects of CD36 (patho)physiology still require further study. For instance, at the 
protein level, the precise mechanism of action of CD36 is not yet clear. The protein undergoes 
several post-translational modifications, including glycosylation, phosphorylation, and 
ubiquitination, but whether these are involved in its facilitatory action on lipid uptake 
remains to be determined.43 In addition, the roles of putative interactions of proteins and/or 
factors that may influence the functioning of CD36 (e.g., those present in lipid rafts) is still 
elusive. Interestingly, CD36 is also found in endothelial cells of the heart. Recent studies in 
rodents suggest that CD36 facilitates transendothelial fatty acid transport through a similar 
molecular mechanism as outlined above for cardiomyocyte fatty acid uptake.44 Based on these 
latter findings, it was speculated that in endothelial cells, CD36 may act as a gatekeeper for 
myocardial fatty acid availability and uptake, thereby indirectly affecting myocardial glucose 
utilization and insulin action.44 However, in view of the markedly greater abundance of CD36 
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on the cell surface of endothelial cells compared to cardiomyocytes,45 transendothelial fatty 
acid transport is not expected to be rate-limiting for overall myocardial fatty acid uptake.

Finally, sarcolemmal substrate transporters are increasingly being recognized as representing 
the rate-limiting kinetic step of myocardial substrate flux and thus playing a main role in 
myocardial metabolism and energy provision. As described in the present review, this central 
role of sarcolemmal substrate transporters for fatty acids and glucose has been established, 
with major roles played by CD36 and by GLUT1 and GLUT4. The cardiac utilization of 
alternative substrates (i.e., lactate, ketone bodies and amino acids) is also facilitated by 
specific membrane substrate transporters, but whether these transporters also regulate 
substrate uptake is not yet clear.41 In light of increasing evidence for a marked role of these 
alternative substrates in myocardial homeostatic and pathological processes,46,47 such 
knowledge would be of appreciable interest and may lead to additional targets for metabolic 
modulation therapy.48,49
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