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Background: The N terminus is required for localization and functions of Mps1, Bub1, and BubR1 kinases.

Results: A novel Bub1/BubR1-related TPR motif is identified in Mps1 and is required for kinase activity.

Conclusion: TPR domain of Mps1 regulates kinase activity, Mps1 chromosome alignment, and checkpoint functions.
Significance: Identification of a novel domain in Mps1 enhances our understanding of its contribution to maintaining genome

integrity.

Kinetochore targeting of the mitotic kinases Bubl, BubR1,
and Mpsl has been implicated in efficient execution of their
functions in the spindle checkpoint, the self-monitoring system
of the eukaryotic cell cycle that ensures chromosome segrega-
tion occurs with high fidelity. In all three kinases, kinetochore
docking is mediated by the N-terminal region of the protein.
Deletions within this region result in checkpoint failure and
chromosome segregation defects. Here, we use an interdisci-
plinary approach that includes biophysical, biochemical, cell
biological, and bioinformatics methods to study the N-terminal
region of human Mps1. We report the identification of a tandem
repeat of the tetratricopeptide repeat (TPR) motif in the N-ter-
minal kinetochore binding region of Mps1, with close homology
to the tandem TPR motif of Bub1 and BubR1. Phylogenetic anal-
ysis indicates that TPR Mpsl was acquired after the split
between deutorostomes and protostomes, as it is distinguish-
able in chordates and echinoderms. Overexpression of TPR
Mpsl1 resulted in decreased efficiency of both chromosome
alignment and mitotic arrest, likely through displacement of
endogenous Mpsl from the kinetochore and decreased Mpsl
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catalytic activity. Taken together, our multidisciplinary strategy
provides new insights into the evolution, structural organiza-
tion, and function of Mps1 N-terminal region.

Mitosis equally distributes the duplicated genome to each of
the nascent daughter cells. Defects in chromosome segregation
can lead to aneuploidy, which in turn is implicated in tumori-
genesis (1, 2). Attachment of mitotic chromosomes to spindle
microtubules is mediated by the kinetochore (KT),” a protein-
rich framework that assembles onto the centromeric region of
DNA molecules (3, 4). Notably, the KT functions not only as a
structural platform but also as a signaling hub to coordinate
chromosome attachment, spindle assembly checkpoint (SAC)
activity, and the metaphase to anaphase transition (5). The SAC
is a signaling cascade that prolongs mitosis until all chromo-
somes form stable attachments. The target of the checkpoint is
Cdc20, a substrate-specific subunit of the anaphase-promoting
complex/cyclosome that catalyzes the polyubiquitination of the
key mitotic proteins cyclin B and Securin, targeting them for
eventual degradation. The delay imposed on mitotic exit is not
permanent, and cells that cannot satisfy the checkpoint ulti-
mately die or exit mitosis as a result of cyclin B degradation or
inactivation and enter the next G, as single tetraploids (6).

The core components of the spindle checkpoint are highly
conserved and include a number of serine/threonine kinases
such as Bubl, BubRl, and the dual specificity kinase Mpsl1.
Mpsl was originally discovered in a yeast genetic screen for
mutants producing monopolar spindles (7). Its role in SAC sig-
naling was subsequently identified in yeasts and confirmed in

°> The abbreviations used are: KT, kinetochore; TPR, tetratricopeptide repeat;
SAC, spindle assembly checkpoint; STLC, S-trityl-L-cysteine; BAM, Brewster
angle microscopy; mN, millinewton.
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higher eukaryotes (7-10). During mitosis, Mps1 kinase activity
is crucial for Madl and Mad2 kinetochore recruitment (10—
14). Recent inhibitor and chemical genetics studies confirmed
these observations and indicated that Mps1 activity facilitates
the conformational activation of Mad2 to a form capable of
Cdc20 binding and inhibition (14, 15).

In addition to the Mpsl C-terminal kinase domain, the
N-terminal region is critical for KT localization of Mpsl and
the recruitment of core checkpoint components to unat-
tached kinetochores in mammalian cells (9, 11, 12, 15-17).
In budding yeast, distinct regions of N-terminal Mpsl1 are
required for spindle pole body duplication and biorientation
(18). In mammalian mitoses, deletion of the N-terminal 100
amino acids prevented kinetochore recruitment and re-
sulted in chromosome alignment defects as well as ineffi-
cient mitotic arrest in response to microtubule poisons (15).
More recently, studies of Mps1 in meiosis I of mammalian
oocytes demonstrated that N-terminal Mpsl is required for
spindle checkpoint control, for correct timing of prometa-
phase I, and for chromosome alignment (19). Indeed, mice
expressing an Mpsl fragment lacking residues 47-154
exhibited severely reduced fertility confirming the essential
role of Mps1 for embryonic development (19).

The TPR is a degenerate tandem repeat of 34 amino acid
residues encoding an a-helix-turn-a-helix motif that is pres-
ent in proteins of diverse biological functions in diverse
organisms, ranging from bacteria to humans (20). In Bubl
and BubR1, the TPR adopts an overall fold that closely
resembles that of many other triple TPR folds despite the
high amino acid sequence divergence (21). The uniform
arrangement of neighboring a-helices gives rise to the for-
mation of a right-handed superhelical structure that creates
a regular, elongated amphipathic (i.e. one side hydrophobic
and the other side hydrophilic) groove. This topology also
creates a continuous concave surface on one side with a con-
trasting convex surface on the other side. At the same time,
TPR Bubl and TPR BubR1 exhibit unique features, including
a shallow groove in the first TPR unit, the insertion of a
3,0-helix between the second and third TPR tandem repeats,
and the noncanonical packing interactions established
between the a-helices of the second TPR unit (21).

Because the functions thus far attributed to the KT localiza-
tion domain of Mpsl are reminiscent of the role of the N-ter-
minal regions of Bub1l and BubR1, we set out to investigate the
biophysical, functional, and evolutionary characteristics of the
N-terminal region of Mps1. Using a interdisciplinary strategy,
we demonstrate that the N-terminal domain of Mps1 is globu-
lar, predominantly c-helical, stable in a wide range of pH, and
likely to be organized as a triple tandem repeat of the TPR motif.
We also show that overexpression of the TPR-containing frag-
ment of Mpsl in cells results in mislocalization of endogenous
Mps1, chromosome congression defects, and a weakened spin-
dle checkpoint response. Evolutionary analysis of the putative
Mps1 TPR regions reveals its presence in chordates and echi-
noderms and indicates that it likely evolved from the TPR
domain of Bubl or BubR1 at or after the emergence of the
deuterostomes.
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EXPERIMENTAL PROCEDURES

Structural Bioinformatics Analyses—The sequence of
human N-terminal Mpsl was compared with all the protein
sequences deposited in Swiss-Prot by using BLAST. A PSI-
BLAST search produced an alignment between N-terminal
Mpsl and close homologues and highlighted conserved resi-
dues in N-terminal Mps1 family. Homologous proteins with
known structure were identified by using the sequence-struc-
ture homology (fold)-recognition program FUGUE (22), which
initially searches for homologues in the structural profile
library derived from structure-based alignments in the HOM-
STRAD (23) database. The alignment produced by FUGUE for
the highest scoring hit (TPR BubR1) was formatted with JOY
(24) and analyzed visually to highlight the conservation of
structurally and functionally important residues. The model of
N-terminal Mps1 was constructed with MODELLER (25) and
validated with PROCHECK (26), VERIFY3D (27), JOY, and vis-
ual inspection by using three-dimensional graphics software.
All of these programs revealed that the model needed no fur-
ther modifications.

Protein Expression and Purification—N-terminal Mps1 frag-
ments (1-239, 55-239, 58 -210, 51-210, 58 =175, 51-175, and
55-210; numbering according to human Mps1) were amplified
and cloned into pGEX-6P3 and expressed in Escherichia coli
BL21(DE3) at 20 °C, 250 rpm in 2X YT broth. Expression was
induced with isopropyl 1-thio-B-p-galactopyranoside for 3 h.
Cell lysis was performed using BugBuster (Merck) in TBS buffer
(40 mm Tris, 200 mm NaCl, 1 mm DTT, pH 8.0). The lysate was
cleared by centrifugation, and the soluble fraction was loaded
onto a chromatographic column packed with TBS-equilibrated
GST-Sepharose. After washing, recombinant Mps1 fragments
were eluted in TBS buffer containing 20 mm reduced glutathi-
one and concentrated. The cleaved GST tag was removed by
passing the digested sample through a GST-Sepharose column.
As the final purification step, Mps1 fragments were loaded onto
a gel filtration column (Superdex 75, HR 26/60) and eluted in 10
mM Tris buffer, 200 mMm NaCl, pH 8.0, at 1 ml/min. After anal-
ysis by SDS-PAGE and measurement of UV absorption spectra
(200-300 nm), fractions containing pure Mps1 were collected,
concentrated, and stored at —20 °C. N-terminal sequencing
and mass spectrometry were carried out to confirm protein
identity and purity.

Monolayers, Null Ellipsometry, and Surface Pressure
Measurements—Protein monolayers were prepared on a circu-
lar trough (surface = 20 cm?), and the surface pressure was
measured with a sensor (Nima Technology Ltd., Coventry, UK)
using a Wilhelmy plate with a precision of = 0.5 mN/m. All
measurements were performed in 20 mm phosphate buffer, pH
7 (0.01 mm Na,HPO,, 0.01 mm NaH,PO,, ultrapure water), and
a temperature of 20 = 2 °C.

Ellipsometry measurements were carried out with an
in-house automated ellipsometer (28) in a “null ellipsometer”
configuration (29). He-Ne laser beam (A = 632.8 nm, Melles
Griot) is polarized with a Glan-Thompson polarizer and
reflected on the surface of the trough (incidence angle of
52.12°). After reflection on the water surface, the laser light
passed through a A/4 retardation plate, a Glan-Thompson ana-
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lyzer, and a photomultiplier. The analyzer angle, multiplied by
two, yielded the value of the ellipsometric angle (A), i.e. the
phase difference between parallel and perpendicular polariza-
tion of the reflected light. The ellipsometric angle, A, is pro-
portional to the quantity of protein adsorbed at the interface in
case of a monolayer. Hence, the variation of the ellipsometric
angle is a relevant probe for changes occurring at the interface.
Using the measured ellipsometric angle, A, and estimating the
refractive index increment of the protein to 0.2 ml/g, the sur-
face concentration, I'j of adsorbed protein was calculated using
the relationship between A and I' reported by De Feijter et al.
(30), ' (mg/m?) = (0.2) A,. The laser beam probed a surface of
1 mm? and a depth on the order of 1 wm. Initial values of the
ellipsometric angle (A,) and surface tension of pure buffer solu-
tions were recorded on the subphase for at least half an hour.
These values have been subtracted from all data presented
below. Values of A were stable and recorded every 4 s with a
precision of +0.5°.

Determination of the Shear Elastic Constant—The principles
and implementation of our experimental setup for the meas-
urement of the lateral rigidity of monolayers and the procedure
for data analysis have been extensively described before (31).
Briefly, at the center of a 48-mm diameter Teflon trough, a
10-mm diameter paraffin-coated aluminum disc floats at the
air/water interface, in contact with the monolayer, whose rigid-
ity is measured. The subphase is 5 mm deep. The float carries a
small magnet and is kept centered by a permanent magnetic
field, B, = 6 X 10~ " tesla, parallel to the earth’s field and created
by a small solenoid located just above the float. Sensitive angu-
lar detection of the float rotation is achieved by using a mirror
fixed on the magnet to reflect a laser beam onto a differential
photodiode. A sinusoidal torque excitation is applied to the
float in the 0.01-100 Hz frequency range by an oscillating field
perpendicular to the permanent solenoid field. The latter field
acts as a restoring torque equivalent to a monolayer with a
rigidity of 0.16 mN/m. This number set the sensitivity limit of
the rheometer. The device behaves like a simple harmonic
oscillator. The resistance that the monolayer opposes to the
rotation of the float is directly measured. An important advan-
tage of this setup is the absence of a physical link between the
outside and the float torsion (i.e. no torsion wire). This allows
high sensitivities such that the applied deformation is very
small, below z,, ~1077, where u,, is the horizontal component
of the deformation tensor. This device introduces very small
excitation strains (from 10> down to 10~ °) to the system.
Because in previous experiments we have shown that pure
shear elastic response spectra exhibit a linear stress-strain rela-
tionship over this range (31), we concluded that the rotation
coupling between the float and the contacting monolayer is
satisfactory. Moreover, we have showed that such small strains
do not create plastic deformations on fragile surface objects
(32). For the experimental procedure, the amplitude and phase
of the mechanical response of the pure subphase was first ana-
lyzed in the frequency range 0.01-100 Hz to assess that no
rigidity was detected. This measurement takes approximately
1 h. Then the protein solution was directly poured into the
trough, and the mechanical response of the layer formed at the
interface was recorded at the fixed frequency of 5 Hz. At the end
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of the kinetics, when the shear elastic constant, u (expressed in
mN/m), reached a constant value, a new measurement between
0.01 and 100 Hz was recorded to determine whether the system
behaves as an elastic layer. Rigidity measurements were per-
formed at 20 °C in parallel to ellipsometry.

Far-UV Circular Dichroism—Spectra were recorded on an
AVIV 62-S spectropolarimeter (AVIV) previously calibrated
with camphorsulfonic acid and equipped with a temperature
control unit. In all experiments, spectra were recorded at 25 °C
ina 0.1-cm quartz cell using an average time of 1.0 s, a step size
of 0.5 nm, 1-nm bandwidth, and averaged over 20 scans. After
subtraction of the buffer base line, the CD data were normalized
to calculate the mean molar ellipticity. For studies on protein
stability as a function of temperature, five unfolding curves
were recorded upon heating from 25 to 95 °C at a rate of 1 °C/
min and 50 s accumulation time. The apparent melting temper-
ature, T, was determined from differential melting curves of
the function d[0222](T)/dt. The concentration of protein solu-
tions was determined from amino acid composition analysis at
the PNAC facility (Department of Biochemistry, University of
Cambridge).

Analytical Gel Permeation Chromatography and Protein
Analysis—Analytical and preparative size-exclusion chroma-
tography was performed in a HiLoad 26/60 Superdex 75 pre-
parative grade column previously equilibrated in TBS buffer.
For determination of the protein oligomerization state, the fol-
lowing proteins standards were used: BSA (67 kDa), ovalbumin
(43 kDa), chymotrypsinogen A (25 kDa), thaumatin I (22 kDa),
and ribonuclease A (13 kDa). MALDI-TOF, amino acid com-
position analysis ,and N-terminal sequencing by the Edman
degradation method were conducted at the PNAC facility.

Evolutionary Bioinformatic Analysis—To study the evolu-
tionary history of N-terminal Mpsl, we generated 160 amino
acids overlapping (by 10 amino acids) sequence fragments
encompassing the entire human Mpsl protein, which corre-
sponds to the approximate length of a triple tandem repeat of
the TPR domain. This allowed us to examine whether the dif-
ferent regions of the protein may have different evolutionary
histories. Each fragment was then blasted (PSI-BLAST) against
all sequences in the nonredundant protein sequences database
(NCBI). For each fragment, all matches were identified and
classified by organism and significance of match (E-value),
which estimates the number of hits “expected” by chance. An
interactive electronic version of the matrix is available on line.
Secondary structure alignment of the TPR region in Mpsl
orthologs was performed using PSIPRED (33).

Cell Culture and Transfections—HeLaS3 and 293T cells were
routinely maintained in DMEM (Hyclone) containing 10% fetal
bovine serum (FBS, PAA Laboratories) at 37 °C and 5% CO.,.
Transfections and siRNA-mediated depletions in HeLa cells
were performed using TransIT-LT1 (Mirus) and Oligo-
fectamine (Invitrogen) reagents, respectively, according to the
manufacturers’ instructions. Transfections in 293T cells were
performed using polyethyleneimine (PEI) at a 15:2 (PEI/DNA)
ratio. Cell extracts for pulldowns, immunoprecipitations, and
Western blots were prepared in RIPA lysis buffer (10 mm Tris,
pH 7.5, 150 mm NacCl, 0.5% Triton X-100, 1% sodium deoxy-
cholate, 1 mm sodium vanadate, 10 ug/ml leupeptin, 1 ug/ml

VOLUME 287+NUMBER 8+FEBRUARY 17,2012



pepstatin A, 10 ug/ml aprotinin, and 1 mg/ml Pefabloc). All
Western blots and immunoprecipitations were performed with
lysates equalized for protein content using the BCA assay
(Pierce). Drug treatments were performed at the following con-
centrations and durations unless otherwise indicated: thymi-
dine (Acros Organics, 2 mM for 16 h); S-trityl-L-cysteine (STLC,
Sigma, 0.5 uM for 16 h); MG132 (Calbiochem, 20 um for 1.5 h);
reversine (Sigma, 0.5 um for 30 min); nocodazole (Sigma, 3.3
UM, 16 h).

Immunofluorescence, Microscopy, Image Processing, and
Quantification—Cells grown on coverslips were fixed and per-
meabilized simultaneously for 10 min at room temperature and
processed for indirect immunofluorescence microscopy as
described previously (34), For Mps1 staining, cells were fixed in
1% formaldehyde, quenched with glycine, and permeabilized
using 0.5% Triton X-100 before being stained (12). Cells were
imaged by confocal microscopy on a Leica DMI6000B inverted
microscope equipped with a WaveFX spinning disc and an
Orca-ER camera (Quorum Technologies). Image acquisition
was performed using Volocity software (PerkinElmer Life Sci-
ences). Optical sections were acquired with identical exposure
times for each channel within an experiment and then pro-
jected into a single picture using Image] (rsb.info.nih.gov).
Image processing was performed in Photoshop, and images
shown in the same figure have been identically scaled. Quanti-
fication of kinetochore intensities was performed essentially as
described previously (34). Antibodies against the following
were used in this study: Mpsl (Sigma, clone N1. Note that this
antibody did not recognize recombinant or overexpressed
Mps1(1-239)), Bubl (35), BubR1 (34), CREST (Immunovi-
sion), Mad2 (36), a-tubulin (DM1A, Sigma), MYC (9E10 and
A-14, Santa Cruz Biotechnology), Sgol (Abnova), Plkl (37),
and mCherry (GTX59788, GeneTex). Antibodies against
Blinkin and CenpE were kind gifts from Iain Cheeseman and
Tim Yen, respectively. Anti-Mps1 phosphospecific antibodies
(anti-Thr(P)-676, anti-Thr(P)-686, and anti-Ser(P)-821) were a
generous gift from Patrick Eyers. Hoechst 33342 (Sigma) was
used to stain the chromosomes.

RESULTS

Structure Model—The observation that the multidomain
protein kinases Bub1l, BubR1, and Mpsl require kinetochore
attachment to perform efficiently their essential roles in the
SAC prompted us to investigate to what extent the similarity of
functions is the result of evolutionary conservation among
these checkpoint kinases. Sequence alignments of N-terminal
Mpsl (residues 61-210) against Bub1 and BubR1 from various
species indicate that the highest similarity of N-terminal Mps1
is with the N-terminal region of BubR1 (20.3% sequence iden-
tity, Fig. 1A) followed by N-terminal Bubl (14.2% sequence
identity). Analysis using FUGUE software shows a Z-score for
N-terminal Mpsl of 24.36 thus indicating (with 99% confi-
dence) that an evolutionary relationship and common fold exist
between the TPR domains of Bubl and BubR1 and N-terminal
Mpsl. Because of the higher amino acid sequence identity
between human Mpsl and human BubR1l, we modeled the
N-terminal region of Mps1 using the crystal structure of human
BubR1 (38) as template (Fig. 1, B and C). Some conserved fea-
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tures of a canonical TPR can be recognized in the Mps1 struc-
ture model, including a pattern of large residues (WYFL) in
TPR helix A and smaller ones (ESAG) in TPR helix B at equiv-
alent positions to those described for canonical TPRs (Fig. 1B).
Such residue distribution is expected to be important for the
establishment of interactions between TPR-forming helices, as
these interactions should confer stability to the N-terminal
domain (Fig. 1C). Furthermore, the model of the three-dimen-
sional structure includes an additional a-helix immediately
downstream of the third TPR unit of N-terminal Mps1, which
might function as a C-terminal “capping” helix, as observed in
certain TPR structures (39, 40). The model allows the mapping
of residues that are fully conserved and predicted to be exposed
at the surface. For instance, serine 80, a residue that can be
phosphorylated in vivo (41), is mapped onto the flexible loop
region that links helices A and B of TPR1 (Fig. 1C). The pre-
dicted spatial location of this residue is consistent with its
accessibility to protein kinases. These observations prompted
us to investigate further the predicted structural similarity
between N-terminal Mps1, Bub1, and BubR1 using a multidis-
ciplinary experimental strategy involving biochemical, bio-
physical, and cellular methods.

N-terminal Mpsl Is Homodimeric and Predominantly
a-Helical—Based on our secondary structure analysis for the
possible domain boundaries of the putative Mpsl TPR region
using diverse secondary structure prediction programs (JPred,
PsiPred, and PredictProtein), several N-terminal fragments
encompassing the N-terminal Mps1 region were generated (see
under “Experimental Procedures”), of which fragment 1-239
was the most stable after GST cleavage and removal. Far-UV
CD confirms that Mps1(1-239) is a predominantly a-helical
protein (Fig. 1D) with ~62% a-helix content as estimated from
2,2,2,-trifluoroethanol titration experiments (data not shown).
The thermal unfolding of Mps1(1-239) resembles that of Bub1
and BubR1 TPRs and follows a highly cooperative two-state
transition process (7,, = 62 °C; Fig. 1D, inset), indicating that
Mps1(1-239) functions as a single independently folded
domain. As Mpsl1 dimerization has been suggested to be critical
for Mpsl1 functions in mitotic checkpoint signaling (14, 42), we
investigated the oligomerization state of Mps1(1-239) in aque-
ous solutions. Analytical gel (filtration chromatography
revealed that Mps1(1-239) associates to form homodimers
(Fig. 1E), thus lending support to this notion.

Some of the seven predicted a-helices of Mps1(1-239) are
also predicted to be of an amphipathic nature. Because the
affinity of this class of a-helices for water/air interfaces is
importantly influenced by the magnitude of the hydrophobic
moment (wH), this parameter was estimated for each of the
predicted a-helices of this domain. The calculated pwH values
were as follows: helix 1 (61-75), 0.43; helix 2 (84 —94), 0.59; helix
3 (107-119), 0.62; helix 4 (126 -135), 0.02; helix 5 (143-155),
0.09; helix 6 (159-172), 0.54; and helix 7 (177-192), 0.34. The
average hydrophobic moment (uH,,,) of Mps1(1-239) was
0.37 kcal/mol per residue, which is very close to that calculated
for TPR Bub1 and TPR BubR1 (uH,,, = 0.38 and juH,,, = 0.32
kcal/mol per residue, respectively) (43) indicating similarity in
tertiary structure. Because the amphipathic character that
results from the spatial arrangement of tandem repeats of the
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highlighting the Mps1 residues that are conserved and located in positions that define a canonical TPR motif. Most of these conserved residues are predicted
to be engaged in stabilizing stacking interactions. Purple indicates the phosphorylation site serine 80 is highlighted. D, far-UV CD confirms N-terminal Mps1 is

organized as a predominantly a-helical region. Inset, the thermal denaturation
E, size-exclusion chromatogram of molecular mass markers only (@): peak 1, b
ribonuclease A. For the second chromatogram (—), the same molecular mass

of this domain is highly cooperative and follows a two-state unfolding process.
ovine serum albumin; peak 2, ovalbumin; peak 3, chymotrypsinogen A; peak 4,
markers were combined with Mps1(1-239) prior to gel filtration. Mps1(1-239)

retention time was closed to that of ovalbumin (43 kDa) thus revealing the former self-associates to form stable dimers.

TPR motif confers surface activity to the protein when depos-
ited onto monolayers, we set out to investigate in more detail
the physiochemical properties of the putative TPR tandem
repeat of N-terminal Mps1 at the air/water interface.
Mps1(1-239) as a Surface-active Domain—A typical feature
of amphiphilic molecules (such as TPR folds) is the gradual
migration of molecules toward the air/water interface. This
property leads to an increase of the surface pressure until the
surface is saturated and can be characterized by monitoring the
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evolution of surface pressure as a function of protein subphase
concentration. The ellipsometric angle (A) at equilibrium (20 =
1°), which is proportional to the quantity of protein adsorbed at
the interface, as well as the maximum surface pressure (18
mN/m) confirmed that N-terminal Mps1(1-239) is highly sur-
face-active (Fig. 2, A and B). After 6 h, the surface concentration
remains virtually constant at 2.1 mg/m?. The maximal surface
pressure of Mps1(1-239) as measured at the bulk concentra-
tion of 30 wg/ml is very similar to that of TPR domains of Bub1,
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FIGURE 2. Biophysical characterization of the N-terminal fragment Mps1(1-239). Interfacial properties of Mps1(1-239), TPR Bub1, and TPR BubR1 are
shown. Surface pressure (A) and surface concentration (I' = 0.2 A) (B) together with the corresponding ellipsometric angle at air/water interfaces were
determined by null ellipsometry measurements. Solutions of Mps1(1-239) (), TPR Bub1 (O), and TPR BubR1 (®) are shown. Protein solutions were prepared
at 30 ug/ml in 20 mm phosphate buffer, pH 7. C, surface pressure versus surface concentration of Mps1(1-239) (CJ), TPR Bub1 (O), and TPR BubR1 (@®). 0
corresponds to the slope dn/dI’, and Iy is the surface concentration at which the surface pressure becomes different from zero. I' is calculated from the
intersect of the slope 7 versus I'. Mps1(1-239) (), TPR Bub1 (O), and TPR BubR1 (®) at 1 pg/ml in 20 mm phosphate buffer, pH 7, are shown. D, rheology
measurements of Mps1(1-239) (L), TPR Bub1 (O), and TPR BubR1 (®). The graph shows the evolution of the shear elastic constant, u, versus time measured at
the fixed frequency of 5 Hz, during protein adsorption at the interface. Protein solutions were prepared at 30 pg/mlin 20 mm phosphate buffer, pH 7. The error
bar on wis = 5 mN/m. Inset, at the end of the kinetic (around 9 h, indicated by the arrow in the graph) the angular deviation 6(w) versus the pulsation was
measured. The curves correspond to Mps1(1-239). An elastic layer model (harmonic oscillator) fit the imaginary and real part of the response. For clarity, the

imaginary part has been plotted versus —w.

BubR1, and PP5 (i.e. between 18 and 20 mN/m), again suggest-
ing a similar tertiary structure (43).

The adsorbed surface concentration (2.1 mg/m?) and surface
pressure (1.3 mN/m) of Mps1(1-239) monitored at the low
bulk concentration of 5 ug/ml made it possible to record initial
adsorption events, which in turn allowed extraction of several
parameters that are relevant to surface activity such as I, the
surface concentration at which the surface pressure becomes
different from zero, and 6, which corresponds to the increase
of surface pressure relative to the increase of surface concen-
tration. The I'; value of Mps1(1-239) was 0.84 mg/m?, and 6
value was 25 mN'm/mg, similar to those of Bubl and BubR1
(Fig. 2C).

In the first steps of Mps1(1-239) adsorption at this low bulk
concentration, the transport of protein molecules from the sub-
phase to the interface is assumed to be a diffusion-controlled
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process. Thus, estimation of the diffusion coefficient allows a
comparison of the transport rate of protein molecules from the
subphase to the interface. The magnitude of the diffusion coef-
ficient of Mps1(1-239), 0.2 X 10—10 m* s~ ', was of the same
order of magnitude as that of TPR Bub1 (0.7 X 10-10 m*s™ '),
TPR BubR1 (4.8 X 10-10 m*s~ '), and TPR PP5 (3 X 10-10
m>s ™).

Consistent with null ellipsometry, Brewster angle micros-
copy (BAM), which is very sensitive to the amount of matter
adsorbed at the interface, allowed the direct observation of the
rapid migration of Mps1(1-239) from the bulk toward the sur-
face. At the low concentration of 5 ug/ml, protein adsorption
could be noticed as early as 1 min after deposition (Fig. 2D).
After 6 h, the protein interfacial layer thus formed remained
stable, showed a high contrast with respect to pure buffer solu-
tion, and was homogeneous at the micrometer scale (Fig. 2D).
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FIGURE 3. Mps1 TPR domain appeared after the emergence of deuterostomes. A, human Mps1 overlapping fragments (length, 160 amino acids; offset, 10
amino acids) were blasted (PSI-BLAST) against the entire NCBI sequence database (nonredundant). For each listed organism for which we could find a hit for
one or more fragments, we show if the hit was highly significant (red rectangles, E-value <1e-5), close to the threshold (orange rectangles, ~1e-5 < E-value <
1), or not significant (yellow rectangles, E-value =1). If we could not find a hit for a specific fragment, the corresponding rectangle s gray. The column highlighted
between white lines corresponds to the exact hMps1 TPR region. B, secondary structure prediction of the TPR region of hMps1 and the corresponding region
in Mps1 orthologues. Alignment and prediction were performed using PSIPRED (33).

Such behavior closely resembles BAM observations of TPR
Bub1 and TPR BubR1 monolayers (43, 46).

The study of the evolution of the shear elastic constant as a
function of time provides clues about the cohesiveness and pos-
sible self-organization of the molecules reaching the interface
to form a layer. The shear elastic constant of Mps1(1-239)
monolayers measured at a fixed frequency of 5 Hz reveals an
elastic monolayer thus indicating that medium and long range
interactions play a major role in the cohesion of the layer (sup-
plemental Fig. S1). This is consistent with the observation that
extensive medium and long range interactions are one impor-
tant functional characteristic of the TPR motif (47) and consti-
tute the interactions most frequently observed in all-a-helix
proteins compared with the classes all-B, a+ 3, and o/ (48).
Collectively, our bioinformatics, biochemical, and biophysical
data indicate that Mps1(1-239) most likely adopts a TPR fold
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that is highly similar to that of the mitotic kinases Bubl and
BubR1.

Evolutionary Analysis of the Mpsl N-terminal Region—To
study the evolutionary history of the Mpsl TPR domain, we
blasted overlapping regions of the hMps1 protein sequence (see
under “Experimental Procedures”) against all sequences in the
nonredundant protein sequences database. Our bioinformatic
analysis indicates that the MPS1 TPR appeared in the lineage
leading to the deuterostomes (Fig. 3A4) as no significant PSI-
BLAST hits for the N-terminal region were detected outside the
group, except for few exceptions such as Albugo (oomycetes,
data not shown) that may result from either contamination in
the sequenced genomic DNA or horizontal gene transfer from
animals. We identified fragments homologous to the human
MPS1 TPR region in some Urochordates (Ciona intestinalis)
and Echinoderms (Strongylocentrotus purpuratus) but in no
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arthropods or other animal lineages (see full sequence analysis
on Landry lab homepage). Secondary structure analysis of the
hMpsl TPR and the corresponding regions in Mpsl ortho-
logues corroborate these results and support the idea that the
TPR domain appeared with the emergence of the deuterostome
lineage, as deuterostomes share the great majority of the sec-
ondary structures present in that region, in particular the pat-
tern of a-helix-turn-a-helix (Fig. 3B), although organisms like
Drosophila and Saccharomyces cerevisiae do not.

Mps1(1-239) Localization—The identification of a pre-
sumptive TPR fold in the N-terminal region of Mpsl1 that is
related to and behaves similarly to the TPR domains of Bub1
and BubR1 led us to postulate that these regions may have sim-
ilar functions in the cell. As the Mps1 N-terminal region and the
TPR domain of Bubl and BubR1 are critical for KT localization
of these proteins, we investigated the role of Mps1(1-239) in
Mpsl KT recruitment. We first overexpressed triple MYC
(3XMYC)-tagged Mpsl wild-type (WT), kinase-dead (KD),
and Mps1(1-239) and compared the localization of each of
these constructs with the KT marker CREST. As expected,
3XMYC-Mpsl-WT and 3XMYC-Mps1-KD localization over-
lapped that of CREST, and both were clearly visible at KT’ (Fig.
4A, rows i and ii), as confirmed by colocalization profiles across
sister KT pairs. We also noted that Mps1-KD showed stronger
KT staining as reported previously (11, 14, 42). In contrast, we
found that 3XMYC-Mps1(1-239) was largely cytoplasmic (Fig.
4A, row iii). However, we occasionally observed low level kine-
tochore recruitment as demonstrated by partial overlap with
CREST (Fig. 44, row iv), in good agreement with previous
observations (16).

While studying the localization of the Mpsl1 constructs, we
noticed that in cells strongly overexpressing Mps1(1-239),
endogenous Mps1 was often absent from or difficult to detect at
KTs. To address this in more detail, we compared endogenous
Mpsl KT recruitment in cells expressing low, medium, and
high levels of Mps1(1-239). Because Mps1 kinase activity neg-
atively regulates its KT localization (11, 14, 42), we performed
these experiments with or without treatment of cells with the
Mpsl inhibitor reversine prior to fixation. The same results
were obtained under both conditions. Whereas low mCherry-
Mps1(1-239) expression did not visibly interfere with KT
docking of endogenous Mps1 (data not shown), we observed a
decrease in KT Mpsl levels in cells expressing medium levels of
mCherry-Mps1(1-239) compared with cells expressing similar
levels of the mCherry-tag alone (Fig 4B, row ii versus i). This
effect was further enhanced in cells expressing high levels of
mCherry-Mps1(1-239) where endogenous Mpsl was almost
undetectable at KTs, suggesting that overexpression of this
Mpsl N-terminal fragment interferes with KT targeting of
endogenous Mpsl. Quantification of the levels of endogenous
Mpsl relative to the CREST autoimmune antigen in cells highly
expressing mCherry-Mps1(1-239) confirmed these observa-
tions (Fig. 4C). These results argue that Mps(1-239) on its own
is not sufficient for KT docking but likely plays an important
role in the context of the full-length Mps1 protein as its over-
expression interferes with docking of endogenous Mps1. As the
Mps1(1-239) purified fragment behaved as a dimer in solution,
we interpret these results to mean that Mps1(1-239) interferes
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with endogenous Mpsl by recruiting it away from KTs. In
agreement with this, we found that a GST-Mps1(1-239) frag-
ment is able to pull down endogenous Mps1 from mitotic cell
extracts (supplemental Fig. S2).

Mps1 kinase activity is required for the KT docking of a num-
ber of checkpoint proteins, including Madl, Mad2, Bubl,
BubR1, CenpE, PIk1, and Sgo1 (10, 15, 16, 49, 50). However, in
most cases whether the N-terminal region plays a role is not
clear. To investigate this, we overexpressed the empty 3XMYC
vector or 3XMYC-Mps1(1-239) in HeLa cells and determined
whether overexpression of Mps1(1-239) disrupted KT recruit-
ment of these proteins in cells synchronized in mitosis by
release from G,/S arrest. Our results indicate that whereas
endogenous Mpsl is clearly reduced in cells expressing
Mps1(1-239), Bubl, Mad2, BubR1, CenpE, Plk1, Sgol, and the
KNL-1/Mis12/Ndc80 (KMN) subunit Blinkin (also known as
hKNL1, AF15q14, D40, and CASC5), are all normally localized
to the KT (Fig. 4D).

Overexpression of Mps1(1-239) Disrupts Chromosome Con-
gression and Weakens the Spindle Checkpoint—It has been
demonstrated that Mps1 kinase activity is required for both
spindle checkpoint function and efficient chromosome con-
gression (13, 51). In addition, overexpression of an extended
N-terminal kinetochore-binding fragment of Mps1(1-301) or
an Mpsl allele lacking the first 100 amino acids (Mps1Y)
decreased mitotic arrest efficiency in cells treated with nocoda-
zole (15, 16). Similar to the case of TPR Bubl and TPR BubR1, a
series of bioinformatics analysis of the Mpsl region following
the TPR domain, residues 240 —301, consistently predicted this
region to be of low structural complexity (data not shown). In
oocyte meiosis I, the absence of Mpsl from KTs severely
impairs chromosome segregation and fertility in mice (19). To
test whether the TPR domain of Mpsl is involved in regulating
these processes, we overexpressed Mps1(1-239) in HeLa cells
and determined the efficiency of chromosome alignment in
these cells. Although most Mps1(1-239)-expressing cells were
able to align chromosomes to a metaphase formation aftera 1-h
treatment with the proteosomal inhibitor MG132, about 10%
(compared with 5% of control cells) displayed mild alignment
defects, including 1-2 lagging chromosomes and broad meta-
phase plates (data not shown). We reasoned that Mps1(1-239)
overexpression may reveal a more severe phenotype in cells
undergoing recovery from spindle stress. To test this, we
treated Mps1(1-239)-overexpressing cells with STLC, an
inhibitor for the Eg5 kinesin motor, which results in monopolar
spindle formation and mitotic delay because of the inability of
the centrosomes to separate. STLC washout reverses this phe-
notype and allows for bipolar spindle formation, although the
rate of KT-MT attachment errors is elevated. We found that
significantly fewer Mps1(1-239)-expressing cells aligned at
metaphase plates in the presence of MG132 1.5 h after release
from STLC compared with control cells (Fig. 54). This indi-
cates that Mps1(1-239) overexpression disrupts efficient chro-
mosome congression and metaphase alignment during the
recovery from spindle stress.

Mpsl is required for SAC function, but the role of the N-ter-
minal domain remains controversial (15, 16, 19). To test
whether overexpression of TPR Mpsl1 interferes with efficient
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FIGURE 4. Localization of Mps1(1-239). A, localization of 3XMYC-Mps1 constructs. HeLa cells were transfected with 3XMYC-Mps1 WT (row i), -Mps1-KD (row
ii) or Mps1(1-239) (rows iii and iv) and synchronized in mitosis by release from a single thymidine arrest before being fixed and stained forimmunofluorescence
with antibodies against MYC (green) and CREST (blue). The panel on the right shows the colocalization profile between MYC and CREST signal across sister
kinetochore pairs (3-4 pairs). A, row iii, colocalization of one sister kinetochore pair is included, and the pair is detailed in the inset. B, immunofluorescence of
cells expressing mCherry alone (row i, medium; row iii, highly overexpressing) or mCherry-Mps1(1-239) (row ii, medium; row iv, highly overexpressing) were
synchronized in mitosis and fixed forimmunofluorescence as in A. Cells were stained with anti-Mps1 antibodies (green) and CREST autoimmune serum (blue).
C, endogenous Mps1/CREST signal ratio (arbitrary units; a.u.) in cells highly overexpressing mCherry or mCherry-Mps1(1-239), n = 9 cells each. D, cells were
transfected, synchronized, and fixed as in A and were then stained for the indicated proteins. Kinetochore localization was scored for these proteins in cells
overexpressing Mps1(1-239) relative to control cells.

tions. DMSO-treated mCherry and mCherry-Mps1(1-239)
cells demonstrated no significant difference in the percentage

checkpoint activity, we took two independent approaches.
Recent reports have indicated that rigorous assessment of

checkpoint signaling requires microtubules to be completely
depolymerized, as occurs at very high concentrations of
nocodazole (3.2 um) (52). The spindle checkpoint by definition
cannot be satisfied under these conditions, thus enabling the
dissection of checkpoint function from chromosome congres-
sion. We therefore treated cells expressing mCherry or
mCherry-Mps1(1-239) with DMSO or 3.3 um nocodazole and
quantified the percentage of mitotic cells under these condi-
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of mitotically arrested cells (Fig. 5B). However, treatment of
Mps1(1-239)-overexpressing cells with 3.3 um nocodazole
resulted in an attenuated checkpoint response with a signifi-
cantly smaller percentage of cells remaining in mitosis com-
pared with cells expressing mCherry alone 16 h after drug treat-
ment (Fig. 5B). These observations indicate that Mps1(1-239)
overexpression disrupts SAC signaling independent of its role
on chromosome alignment.
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with either mCherry or mCherry-Mps1 were treated for 16 h either with DMSO as control or 3.3 um nocodazole (Noco), fixed, and stained with Hoechst 33342
to visualize the DNA. The mitotic index of transfected cells was counted (n = 5, =100 cells/experiment). C, cells were transfected as in B but were also
simultaneously transfected with siRNA oligonucleotides targeting GI2 (as control) or CenpE. 48 h after transfection, the cells were fixed and stained as in B
before mitotic index counts were performed (n = 3, =100 cells/experiment). D, cells were transfected with either mCherry or mCherry-Mps1(1-239) and
treated with 3.3 um nocodazole for 16 h before being fixed and stained for Mad2 (green) and CREST (Cy5, shown here in blue). E, quantification of the
Mad2/CREST ratio from cells in D. F, 293T cells were transfected with 3XMYC Mps1-WT or 3XMYC Mps12N and treated with nocodazole for 16 h before being
harvested. Immunoprecipitated Mps1 fragments were resolved by SDS-PAGE and immunoblotted with anti-Thr(P)-676, anti-Thr(P)-686, and anti-Ser(P)-5821
Mps1 antibodies. The membranes were stripped and reprobed for MYC to demonstrate equal input.

As a second approach, we tested the effect of Mps1(1-239)
overexpression on CenpE-mediated mitotic delay. In mamma-
lian cells, disruption of CenpE function prolongs mitotic timing
in a checkpoint-dependent manner (53). Cells in which CenpE
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is depleted or inhibited exhibit elevated levels of checkpoint
proteins at unaligned kinetochores, including Mps1, and co-in-
jection of antibodies targeting both CenpE and Mps1 abrogated
the mitotic arrest observed upon inactivation of CenpE alone
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(16). To test whether overexpression of TPR Mpsl attenuates
the checkpoint response in CenpE-depleted cells, we expressed
either mCherry or mCherry-Mps1(1-239) in cells treated with
control siRNA or in cells depleted of CenpE. Overexpression of
mCherry-Mps1(1-239) did not increase the percentage of
mitotic cells compared with the expression of mCherry alone in
control cells as indicated above (Fig. 5C). As expected, deple-
tion of CenpE resulted in an increase in the mitotic index of
cells expressing mCherry. This increase was significantly atten-
uated in cells transfected with mCherry-Mps1(1-239) indicat-
ing that this fragment disrupted the SAC response induced by
CenpE inactivation (Fig. 5C). Collectively, our data indicate
that Mps1(1-239) overexpression attenuates the checkpoint
response under conditions of both partial and complete micro-
tubule disruption.

Mpsl kinase activity is thought to mediate checkpoint func-
tion by facilitating the KT recruitment of Mad2 and its conver-
sion from open and inactive (O-Mad2) to closed and activated
(C-Mad2) capable of Cdc20 binding and inhibition (14). We
therefore reasoned that the increased slippage observed in
nocodazole-treated cells overexpressing Mps1(1-239) may be
due to a decrease in KT recruitment of Mad2. To test this, we
took advantage of a recently described Mad2 monoclonal anti-
body that specifically recognizes the Cdc20 inhibitory form of
Mad2, C-Mad2, to determine KT recruitment of “active” Mad2
in cells overexpressing Mps1(1-239) (54). Using this antibody,
we observed that although Mad2 was not completely lost at KT's
in Mps1(1-239)-expressing cells treated with 3.3 um nocoda-
zole, C-Mad2 levels at KTs were visibly diminished (Fig. 5D).
Quantification of Mad2/CREST ratios in these cells indeed
revealed a significant trend toward lower Mad2 levels at KTs
compared with control cells (Fig. 5E). As tight control of Mad2
is crucial for optimal checkpoint function and even a small
reduction of the protein attenuated checkpoint signaling (see
for example Refs. 55, 56), our observations suggest that
Mps1(1-239) overexpression may allow increased slippage by
reducing the levels of active KT-bound C-Mad2.

The conversion of O-Mad2 to checkpoint-proficient
C-Mad2 is dependent on Mpsl1 kinase activity (14, 15), implying
that the decrease in C-Mad2 at KTs in cells overexpressing
Mps1(1-239) may be due to decreased Mps] catalytic activity.
Mpsl dimerization, which is likely mediated by the TPR
domain, has been shown to enhance its catalytic activity (57);
we therefore reasoned that mutation of the Mps1 TPR domain
may inhibit Mps1 function through attenuation of kinase activ-
ity. Mpsl1 is known to autophosphorylate both in vitro and in
vivo at Thr-676 and Thr-686 in the activation loop resulting in
increased catalytic activity (57—60), whereas phosphorylation
at Ser-821 is likely due to MAPK (58, 61). To test the contribu-
tion of the Mps1 TPR to kinase function, we generated Mpsl
lacking the N-terminal 100 amino acids (Mps14™ (15)) and thus
a significant portion of the TPR domain, and we tested the
effect of this mutation on kinase function using phosphospe-
cific antibodies against Mpsl (58). Immunoprecipitation of
Mps1-WT and Mps1*N followed by Western blotting clearly
revealed that autophosphorylation of Mpsl at Thr-676 and
Thr-686 is severely compromised in Mps1“N compared with
Mps1-WT, whereas phosphorylation of the proline-directed,
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MAPK site Ser-821 remains unchanged. Together, these results
indicate that Mps1 TPR is required for efficient functioning of
this checkpoint protein, and mutations in this region reduce the
checkpoint response, likely through attenuation of kinase
activity.

DISCUSSION

Biophysical Characteristics of the Mpsl N Terminus—Al-
though the requirement of the N-terminal region of Mps1 for
both its localization at KTs and efficient functionality has been
reported by several groups (9, 15, 16, 18, 19), a more detailed
understanding of the functional significance and structural
organization of this region was a pending assignment in the
field. To this purpose, we combined a bioinformatics approach
with biochemical and biophysical analyses and provided novel
evidence strongly suggesting that Mps1 residues 1-239 adopt a
stable TPR fold that remarkably mimics the N-terminal TPR-
containing region of Bubl and BubR1. For instance, far-UV
circular dichroism confirmed that Mps1(1-239) is a predomi-
nantly a-helical protein domain, whereas analytical gel filtra-
tion shows that the protein self-associates to form stable
dimers. Moreover, ellipsometry, polarized fluorescence
microscopy, and BAM experiments revealed that like TPR
Bub1 and TPR BubR1 domains, when deposited onto monolay-
ers, Mps1(1-239) functions as a surface-active domain that
forms stable, rigid monolayers at the air/water interface. Defi-
nition of protein physicochemical properties and behavior at
interfaces can yield relevant information such as the molecular
orientation of protein domains in phospholipid films (62), the
differential affinity for the substrate across lipid-binding pro-
teins (63), and the relative surface activity and interfacial stabil-
ity of proteins sharing the TPR motif, including Bub1, BubR1,
and protein phosphatase 5 (43). The latter case is of particular
importance as it provided a framework to investigate the inter-
facial behavior of Mps1(1-239) at the air/water interface.
Indeed, the biophysical characterization of the N-terminal frag-
ment Mps1(1-239) revealed striking similarities with TPR
Bubl and TPR BubR1. For instance, Langmuir-Blodget films
coupled to null ellipsometry measurements showed a similar
maximal surface pressure and surface concentration at air/wa-
ter interfaces for the three proteins, whereas BAM observations
revealed the rapid migration of Mps1(1-239) from the bulk
toward the surface in a fashion that closely resembles the
behavior of TPR Bub1l and TPR BubR1 monolayers. Moreover,
the evolution of the shear elastic constant of Mps1(1-239)
interfacial layers measured at the end of the adsorption kinetics
(i.e. around 4 h) also reveals a monolayer of a rigidity compara-
ble with that of TPR Bub1l and TPR BubR1 films.

Evolution ofthe Mps1 TPR Domain—Through extensive pro-
tein database searches, we found that the MPS1 TPR most likely
appeared at the split between the protostomes and deuteros-
tomes because it is found in the chordates as well as in echino-
derms. We favor this scenario over domain loss in other animal
lineages such as the insects, as the domain also appears to be
absent in fungi. This conclusion is supported by secondary
structure analysis that identified the analogous pattern of
a-helices and turns predicted in hMps1 in the Mpsl homo-
logues of other deuterostomes. Our results also imply that the
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MPS1 TPR region has a more limited phylogenetic distribution
than the BUB1 or BUBR1 TPR, suggesting that the MPS1 TPR
could have been acquired from one of these two genes. Indeed
alignment generated by FUGUE indicated that the highest
scoring hit was TPR BubR1, and a search in the SMART data-
base using the human Mps1 TPR fragment as query retrieved
the Mad3_BUBI_I domain (SMART accession number
SM00777,5.02e+01) as the most significant hit. The reciprocal
SMART search with S. cerevisiae and Drosophila Mps1 N-ter-
minal regions, neither of which is predicted to form a TPR
domain, returned no significant hit. Together, these observa-
tions suggest two possible scenarios for the emergence of MPS1
TPR. If BUB1 and BUBRI1 duplicated in the deuterostome
ancestor, the MPS1 TPR was acquired at about the same time as
this duplication, making it difficult to assign its origin to either
BUBI1 or BUBRI1 because little divergence would have accumu-
lated between the two genes. The alternative scenario holds
that duplication occurred after the chordate divergence from
the echinoderms. In this case, the MPS1 TPR would have
derived from the BUB1 and BUBRI1 ancestor. Because of the
limited set of genomes from echinoderms available to date, it is
difficult to favor one scenario over the other.

Mpsl TPR Functions—The demonstration that Mpsl(1-
239) behaves as an independently folded domain prompted us
to test its function(s) in mitotic cells. Our data show that
Mps1(1-239) is only partially competent in KT localization, but
its overexpression nevertheless causes mislocalization of
endogenous Mpsl, likely through dimerization with endoge-
nous Mpsl and its titration away from KTs. This idea is sup-
ported by our gel filtration and GST pulldown experiments
(Fig. 1E and supplemental Fig. S2). Also in agreement with our
observations, deletion of N-terminal residues that are predicted
to form part of TPR Mps1 preclude Mps1 KT binding and inter-
fere with full Mpsl1 functionality in both mitotic and meiotic
systems (15, 19). This behavior is remarkably reminiscent of the
Bub1 TPR domain. Mutations in the Bub1 TPR that eliminated
the interaction with the KMN subunit Blinkin and thus abro-
gated KT recruitment resulted in checkpoint deficiency and
caused severe defects in chromosome alignment and segrega-
tion (64, 65). These data are in full agreement with the shared
evolutionary history between the TPR domains of the Bub
kinases and Mps1 and argue that at least transient KT docking
of TPR Mpsl is required for optimal activity.

The direct binding partners of Mps1 responsible for its KT
recruitment are not known, although both Aurora B and Hecl
play an important role in this process (9, 50, 66). Bubl and
BubR1 TPR domains bind directly to Blinkin, and disruption of
this interaction by depletion of Blinkin or mutation of the TPR
domains precludes KT recruitment of Bubl and BubR1 result-
ing in loss of checkpoint control and severe errors in chromo-
some segregation during mitosis (64, 67). However, despite the
close relationship between the TPR domains of Bub1, BubR1,
and Mps1, we found no interaction between Mps1(1-239) and
Blinkin, and depletion of Blinkin did not significantly affect KT
docking of endogenous Mps1, nor did Mps1(1-239) noticeably
interfere with Blinkin KT docking (data not shown and Fig. 4D),
suggesting that Mps1 may bind to other core KT proteins to
facilitate its recruitment. Because TPR Mpsl overexpression
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FIGURE 6. Model for Mps1 TPR function. A, Mps1-WT can both dimerize and
dock at KTs, thus increasing its local concentration and activity. Mps1 auto-
phosphorylation or phosphorylation of a KT protein allows for its release into
the cytoplasm. B, inactive Mps1 can dimerize and localize but cannot phos-
phorylate itself or other targets and is thus not released from the KT as effi-
ciently as the WT protein. C, Mps1 lacking a functional TPR cannot localize to
the KT and cannot dimerize resulting in reduced concentration of Mps1 pro-
tein and reduced kinase activity. This is manifest as reduced autophosphoryl-
ation and reduced phosphorylation of potential targets. Ultimately this
results in suboptimal Mps1 activity.

may affect not only the function of Mps1 but also that of Bub1
and BubR1l, we decided to investigate whether N-terminal
Mps1 physically interacts with N-terminal Bub1 and/or N-ter-
minal BubR1. For this, we used recombinant proteins and stud-
ied the possibility of heterodimer complex formation between
TPR Bubl and TPR Mpsl as well as between TPR BubR1 and
TPR Mps1 using analytical size-exclusion chromatography and
dynamic light scattering. The formation of stable binary com-
plexes between N-terminal Mpsl with N-terminal Bubl or
BubR1 was not detected with the aforementioned techniques
suggesting that these TPRs do not physically interact with each
other at least under our in vitro conditions (data not shown).
Mpsl KT localization is also regulated by its own catalytic
activity (11, 42), and recent studies identified a number of auto-
phosphorylation sites that map to the N-terminal domain,
which may regulate Mpsl KT recruitment (17, 41, 58, 59).
Importantly, we demonstrate here that the Mps1 TPR enhances
kinase activity as N-terminal truncation of Mps1 resulted in a
marked decrease of Mps1 autophosphorylation at two sites in
the activation loop critical for optimal kinase function (Fig. 5F).
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We imagine that the TPR contributes to Mps1 activation and
function through both dimerization and KT enrichment, both
of which increase the local concentration of Mps1 (Fig. 6A).
Because kinase-inactive Mps1 exhibits longer residency at KT,
autophosphorylation or phosphorylation of a KT target may
promote release of Mps1 into the cytoplasm (Fig. 6B). Abolish-
ing TPR function (Fig. 6C) results in inefficient dimerization
and KT binding of Mpsl, effectively diluting the monomeric
enzyme in the cytoplasm and reducing kinase activity.

Our interdisciplinary approach demonstrates that the N-ter-
minal region of Mps1 likely forms a TPR domain that is evolu-
tionarily, structurally, and biophysically related to the TPR
domains of Bub1 and BubR1. Functionally, this region in Mps1
is critical for KT binding and for optimal Mps1 kinase activa-
tion in cells. Although the Mps1 TPR awaits direct structural
confirmation, the data presented here provide novel evidence
for the close relationship between these three checkpoint
kinases and prompt a closer examination of the role of KT bind-
ing and the TPR domains in regulating their catalytic activity
during mitosis.
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