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Acute graft-versus-host disease (aGvHD) is the most common complication after
allogeneic hematopoietic stem cell transplantation (allo-HSCT) and significantly linked
with morbidity and mortality. Although much work has been engaged to investigate
aGvHD pathogenesis, the understanding of alloreactive T-cell activation remains
incomplete. To address this, we studied transcriptional activation of carbohydrate,
nucleotide, tricarboxylic acid (TCA) cycle, and amino acid metabolism of T cells before
aGvHD onset by mining the Gene Expression Omnibus (GEO) datasets. Glycolysis had
the most extensive correlation with other activated metabolic sub-pathways. Through
Pearson correlation analyses, we found that glycolytic activation was positively correlated
with activated CD4 memory T-cell subset and T-cell proliferation and migration. T-cell
receptor (TCR), mechanistic target of rapamycin complex 1 (mTORC1), myelocytomatosis
oncogene (MYC) signaling pathways and E2F6 might be “master regulators” of glycolytic
activity. aGvHD predictive model constructed by glycolytic genes (PFKP, ENO3, and
GAPDH) through logistic regression showed high predictive and discriminative value.
Furthermore, higher expressions of PFKP, ENO3, and GAPDH in alloreactive T cells were
confirmed in our pre-aGvHD patient cohort. And the predictive value of the aGvHD risk
model was also validated. In summary, our study demonstrated that glycolytic activation
might play a pivotal function in alloreactive T-cell activation before aGvHD onset and would
be the potential target for aGvHD therapy.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is the solitary therapeutic modality for many malignant and non-
malignant hematologic disorders. However, the benefits of allo-
HSCT are challenged by graft-versus-host disease (GvHD),
which affects >50% of patients and remains a major cause of
mortality after allo-HSCT. The pathophysiology of acute GvHD
(aGvHD) involves donor T cells and inflammatory cytokine-
mediated injury to patient’s organ tissues (1). The Centre for
International Blood and Marrow Transplant Research
(CIBMTR) reported that within 100 days after allo-HSCT,
aGvHD accounts for 13% and 16% of deaths in HLA-matched
related and unrelated HSCT, respectively (2). The increased non-
relapse mortality associated with GvHD may abrogate the
favorable graft-versus-leukemia (GVL) effect on disease relapse.

The clinical outcomes of patients who suffered from grade III/
IV aGvHD are dismal with a high mortality rate of 50%–70%,
even with novel therapy including the Janus kinase (JAK)1/2
inhibitor and interleukin-2-inducible T-cell kinase inhibitors (3,
4). Numerous biomarkers have been identified to have a power to
predict transplant-related mortality; however, they are the results
caused by uncontrolled alloreactive T-cell activation (3, 5–7).

Metabolic regulation governs the fate and function of T cells,
which plays a key role in aGvHD development. A growing body
of evidence from multiple reports suggested that metabolic
differences in immune cells may have significant association
with GvHD pathology (8–10). However, few studies focused on
the gene expression profile and metabolic shift in allo-activation
of donor-derived T cells during aGvHD development. The
influences of metabolic reprogramming and the gene–metabolite
networks involved in aGvHD are not well characterized.

In the present study, through integration of T-cell gene
expression signatures across different studies of aGvHD, we
identified transcriptional activation of carbohydrate, nucleotide,
tricarboxylic acid (TCA) cycle, and amino acid metabolism in
alloreactive T cells before aGvHD onset. Glycolysis had the most
extensive correlation with other enriched metabolic sub-pathways
and might play a crucial function in alloreactive T-cell activation.
Through Pearson correlation analyses, we found that glycolytic
activation might contribute to the enrichment of activated CD4
memory T-cell subset and T-cell proliferation and migration.
Glycolysis might be regulated by T-cell receptor (TCR),
mTORC1, and MYC signaling pathways and transcription factor
(TF) E2F6. High predictive value of the aGvHD risk model, which
was constructed by glycolytic genes PFKP, ENO3, and GAPDH,
further emphasizes the crucial function of glycolysis. Our study
indicates that glycolytic activation might play a pivotal function in
alloreactiveT-cell activation for aGvHDdevelopment andwouldbe
a potential therapy of GvHD.
MATERIALS AND METHODS

Data Collection and Preprocessing
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) provides an invaluable resource of high-throughput
Frontiers in Immunology | www.frontiersin.org 2
gene expression data that can be integrated and analyzed.
Datasets from GEO that were considered eligible in our
analysis met the following criteria: 1) Datasets with T-cell
transcriptomic data from patients who developed aGvHD later
(pre-aGvHD hereafter) and those who did not develop aGvHD
(non-aGvHD hereafter); 2) Datasets with group information for
each sample (pre-aGvHD vs. non-aGvHD); 3) Datasets with
information about the technology and platform used for studies;
and 4) Datasets with more than 10,000 probes. Based on the
above criteria, two aGvHD datasets were downloaded from the
GEO database. Details of each dataset are shown in Table S1.

Identification of Differentially Expressed
Genes
Bias of high-throughput experiments were commonly derived
from heterogeneity and variables. In this study, we recruited
datasets from different platforms and samples and handled by
individual researchers. To avoid the possible unreliable results,
samples from the two datasets were integrated to increase the
number of samples (37 pre-aGvHD samples vs. 48 non-aGvHD
samples), followed by batch normalization using R package “sva”
(11). Next, gene differential analysis (|LogFC| >1, P < 0.05) was
performed by comparing T cells isolated from pre-aGvHD and
non-aGvHD blood samples using R package “limma”.
Afterward, volcano map and heatmap were depicted by
“limma” package and “pheatmap” package, respectively, in the
R computing environment (12).

Single-Sample Gene Set Variation Analysis
Gene Set Variation Analysis (GSVA) was applied to calculate the
activities of metabolic and signaling pathways for each sample
(13). Pathway signatures were obtained from MSigDB of the
Broad Institute (https://www.gsea-msigdb.org/gsea/index.jsp)
and Reactome annotation (https://reactome.org) (14, 15). For
comparison of GSVA scores, the T-cell expression data were
multiplied by 1 for aGvHD-dependent lines or by −1 for
aGvHD-independent lines to reflect the direction of aGvHD
dependency (positive for aGvHD dependency and negative for
aGvHD independency). The data were then standardized to z-
scores across samples for comparison and the creation of
correlation matrix heatmaps.

Pathway and Gene Correlation Analysis
The correlation of gene expression level and pathway score
derived from GVSA was evaluated by Pearson correlation.
|Correlation coefficient| >0.4 and P < 0.05 were considered
statistically significant.

Immune Cell Profiling Analysis
We used the CIBERSORT tools (16) to identify immune cell
profile from the RNA expression data.

Prediction of Transcription Factors
TFs potentially driving the expression of glycolytic genes and
metabolic reprogramming were predicted by the module
“UCSC_TFBS” under the “Protein_Interactions” function of
DAVID (https://david.ncifcrf.gov/home.jsp) and Pearson
March 2022 | Volume 13 | Article 850177
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correlation analysis. TFs regulating the expression of individual
gene (such as PFKP, ENO3, or GAPDH) were predicted through
R package “TFBSTools” (17) and JASPAR database (http://jaspar.
genereg.net/). The target genes of E2F6 were predicted using
hematopoietic cell-specific chromatin immunoprecipitation
followed by sequencing (ChIP-seq) data collected in Cistrome
data browser (18).

Multivariable Logistic Regression Analysis
Glycolysis-associated genes, PFKP, ENO3, and GAPDH, were
applied to develop an aGvHD risk model. Nomogram was
constructed to predict aGvHD risk with multivariate logistic
regression analysis. To assess the calibration of the risk model,
calibration curves were plotted. To quantify the discrimination
performance of the risk model, Harrell’s C-index was measured,
and receiver operating characteristic (ROC) curve was drawn.
Furthermore, the risk model was subjected to bootstrapping
validation (1,000 bootstrap resamples) to calculate a relatively
corrected C-index. To determine the clinical usefulness of the
risk model, decision curve was plotted through calculating net
benefits across different threshold probabilities.

Single-Cell RNA Sequencing
CD3+ T cells were collected from 5 non-aGvHD patients and 9
pre-aGvHD patients by EasySep™ Human T Cell Enrichment
Kit (Stemcell Technology, Cat # 19051). For 5′ single-cell RNA
sequencing (RNA-seq) data, raw reads obtained from the 10×
Genomics single-cell RNA-seq platform were demultiplexed
and mapped to the human reference genome GRCh38
using the CellRanger software (version 3.0.2) (https://support.
10xgenomics.com/single-cell-gene-expression/software) with
default parameters. In this study, CD3+ cells were retained for
downstream analysis. Finally, our study included 48,718 CD3+ T
cells. Normalized gene expression values were plotted for each cell
as violin plot in R.

Flow Cytometry
For the analysis of cell surface molecules, single-cell suspensions
were prepared. CD4+ memory T cells (CD4+CD45RO+) were
detected by flow cytometry.

Study Approval
The study was approved by the Ruijin Hospital Ethics
Committee, and all processes were consistent with Helsinki
Declaration standards.

Statistical Analysis
The differentially expressed genes (DEGs) and GSVA results were
displayed with P values, fold changes, and ranks. An unpaired two-
tailed Student’s t-test (for two group comparisons) or a one-way
ANOVA was performed, and the Wilcoxon rank-sum test was
performed using R package ggplot2. The results of multivariate
logistic regressionweredisplayedwithodds ratio (OR)andP values.
The strength of the Pearson correlation was displayed with
correlation coefficient as the following guide: 0.00–0.19, “very
weak”; 0.20–0.39, “weak”; 0.40–0.59, “moderate”; 0.60–0.79,
“strong”; 0.80–1.0, “very strong.” P value <0.05 was statistically
Frontiers in Immunology | www.frontiersin.org 3
significant.All statistical tests andgraphingwereperformedbyR. In
the figures, statistical significance was shown as follows: *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
RESULTS

Metabolic Reprogramming of Alloreactive
T Cells in aGvHD Patients
To explore transcriptional metabolic reprogramming of T cells
before full onset of aGvHD, we integrated the T-cell transcriptomic
data across different studies (19, 20). The raw data and platform
information of GSE4624 and GSE73809 were downloaded from
GEO database. Both studies collected T cells prior to aGvHD onset
(pre-aGvHD group) and on matched time in control patients who
were without aGvHD (non-aGvHD group) and concluded that
gene expression signature of alloreactive T cells had a dominant
effect on the development of aGvHD.After annotation, 8,455 genes
inGSE4624 (GPL3639) and30,905 genes inGSE73809 (GPL17586)
were obtained (Table S1). To reduce the possibility of false positive
results, the two datasets were batch normalized and integrated
(Figure S1). The expression patterns of metabolic pathway genes
have been determined to reflect actual metabolic activities in
patients well (14). To analyze the metabolic activities of each
sample, we examined the gene sets of seven super-pathways based
onReactome annotation (14, 15) including amino acidmetabolism
(348 genes), carbohydrate metabolism (286 genes), energy
metabolism (110 genes), lipid metabolism (766 genes), nucleotide
metabolism (90 genes), TCA cycle (148 genes), and vitamin and
cofactor metabolism (168 genes) with GSVA approach (Table S2)
(13). Next, we compared the enrichment scores of seven metabolic
signatures between T cells from pre-aGvHD and non-aGvHD
samples. The results showed that carbohydrate, nucleotide, TCA
cycle, and amino acid metabolism were significantly enriched in
pre-aGvHD samples (Figure 1A, Table S3). Of note, carbohydrate
metabolism was the most significantly enriched (P = 0.0003). To
identify the metabolic pathways dysregulated in pre-aGvHD
samples, we examined sub-metabolic gene sets of the four
enriched super-pathways based on Reactome and Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation. The
sub-pathways with high activity in pre-aGvHD samples were
mainly glycolysis-related, such as glycolysis, pentose phosphate
pathway, fructose andmannosemetabolism, galactosemetabolism,
and respiratory electron transport (Figure 1B), of which glycolysis
had the most extensive correlation with other enriched sub-
pathways (Figure 1C). These results suggested that glycolysis
might be the crucial metabolic pathway. The extensively activated
pathwaysmight be the results of glycolysis activationbefore aGvHD
full onset.

Glycolytic Genes Differentially
Expressed in Alloreactive T Cells
Before aGvHD Onset
To further identify the genes involved in the activation of
glycolysis employed by T cells in the pre-aGvHD state, we
performed differential expression analyses of genes derived from
March 2022 | Volume 13 | Article 850177
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REACTOME_Glycolysis and KEGG_Glycolysis_gluconeogenesis
gene sets. Compared with T cells isolated from non-aGvHD
samples, 18 glycolytic genes were upregulated and six genes were
downregulated in pre-aGvHD group (|Fold Change| >1 and P <
0.05;Figure2A,TableS4). The top5upregulated geneswerePFKP,
SOD1, ENO3, GAPDH, and STMN1. Among them, PFKP, ENO3,
and GAPDH have well-known functions in glycolysis.
Frontiers in Immunology | www.frontiersin.org 4
Phosphofructokinase (encoded by PFKP) catalyzes the
phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-
bisphosphate (F16BP) byATP,which is themost important control
step of glycolysis (21). Enolase (encoded by ENO3), also known as
phosphopyruvate dehydratase, catalyzes the transformation of 2-
phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) (22).
Glyceraldehyde-3-phosphate dehydrogenase (encoded by
A

B

C

FIGURE 1 | Distinct metabolic reprogramming based on pathway gene expression. (A) Heatmap shows enrichment of four super-metabolic signatures across each
sample. The right longitudinal axis indicates the names of metabolic signatures. The left longitudinal axis represents clustering of metabolic signatures. Red denotes
high activity and blue denotes low activity of metabolic pathways. Differentially enriched pathways with P < 0.05 and |log FC| >1 were considered significant. The terms
indicated are as follows: Carbohydrate, carbohydrate signature; Nucleotide, nucleotide signature; TCA cycle, tricarboxylic acid (TCA) cycle signature; Amino acid, amino
acid signature; pre-acute graft-versus-host disease (aGvHD), T-cell samples from patients who further developed acute graft-versus-host disease; non-aGvHD, T-cell
samples from patients without graft-versus-host disease. (B) Heatmap shows different activities of metabolic sub-pathways derived from carbohydrate, nucleotide, TCA
cycle, and amino acid signatures between pre-aGvHD and non-aGvHD samples. (C) Correlations of metabolic sub-pathway activities with each other. Color indicates
the correlation direction. Each cell contains Pearson correlation coefficient.
March 2022 | Volume 13 | Article 850177
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GAPDH) is a glycolytic enzyme that catalyzes the critical step by
converting glyceraldehyde 3-phosphate (G3P) into 1,3-
bisphosphoglycerate (1,3-BPG). Inhibition of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) downregulates glycolysis in
both myeloid and lymphoid cells, preventing immune activation
(23–25). Participation of upregulated genes in glycolysis and their
interaction with other metabolic pathways are visualized
in Figure 2B.

Metabolic Reprogramming and Glycolytic
Genes Are Associated With T-Cell
Activation Signature in aGvHD Patients
In the pathogenesis of aGvHD, donor-derived alloreactive T cells
are activated by recognition of host antigens, then adopt a
pathogenic effector phenotype and migrate to target organs.
Activated T cells require more energy to proliferate and
mediate effector functions. However, the underlying relationship
between metabolic reprogramming and alloreactive T-cell
activation is still poorly understood (10). To assess the biological
relevance ofmetabolic reprogramming, we evaluated T-cell subsets
and T-cell functional signatures byGSVA.We first scored seven T-
cell subsets for their relative abundance by using CIBERSORT (16)
and evaluated the correlation of the T-cell subsets with metabolic
reprogramming and differentially expressed glycolytic genes.
Activated CD4 memory T cell was identified to be the top subset
that positively correlated with glycolysis-related pathways and
glycolytic genes (Figures 3A, B). The expressions of TXN,
ALDOB, GAPDH, STMN1, PSMC4, ENO3, PRKACB, and PFKP
Frontiers in Immunology | www.frontiersin.org 5
had strong correlations with activated CD4 memory T subset
(Figure 3B). Furthermore, we validated the positive correlation
between CD4 memory T subset with aGvHD development and
glycolysis activation in our patient cohort. We found that the
proportion of CD4 memory T cells was significantly higher in
pre-aGvHD samples than their counterparts in non-aGvHD group
(13.16% ± 6.585% vs. 1.378% ± 0.8093%, P < 0.05) (Figure S2A).
Single-cell RNA sequencing data revealed significantly higher
expression of glycolytic genes PFKP and GAPDH in CD4
memory T cells of pre-aGvHD patients than non-aGvHD
patients (Figure S2B), supporting the important function of
glycolytic activation in CD4 memory T cells during the aGvHD
development. Next, we examined enrichment of T-cell functional
signatures derived from gene ontology (GO) for validation. T-cell
proliferation and migration signatures were positively associated
with glycolysis-related pathways andglycolytic genes (FiguresS3A,
B). The expressions of ALDOB, ENO3, PRKACB, STMN1, TXN,
PFKP, GAPDH, ALDOA, PFKP, AGRN, PSMC4, and SOD1 had
significant correlations with T-cell proliferation and migration
(Figure S3B). Overall, these results suggested that metabolic
activity was intrinsically coupled with T-cell activation pathways.

Hallmark Signaling Pathways and
Transcriptional Factors Involved in
Metabolic Reprogramming and
Differentially Expressed Glycolytic Genes
Metabolic reprogramming is largely determined by signaling
pathways and TFs. TCR, the phosphatidylinositol 3-kinase
A B

FIGURE 2 | Dysregulation of glycolytic genes and glycolysis-associated metabolic pathways. (A) Heatmap and hierarchical clustering of differentially expressed
glycolytic genes. The right longitudinal axis indicates names of differentially expressed genes. The left longitudinal axis represents clustering information. The red color
represents the upregulated genes; the blue color represents the downregulated genes; the white color represents genes without change. Significance was defined in
Figure 1A, above. (B) Schematic overview of upregulated glycolytic genes and activated glycolysis-associated metabolic pathways. Red text indicates upregulated
genes, and dark red text indicates activated pathways. The yellow circles represent glycolytic metabolites, and the blue represents metabolites of pentose phosphate
pathway. G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; F6P, fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate; G3P, glyceraldehyde 3-
phosphate; DHAP, dihydroxyacetone phosphate; 1,3-BPG, 1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; TCA, tricarboxylic
acid; ATP, adenosine triphosphate; R5P, ribose 5-phosphate; NADPH, nicotinamide adenine dinucleotide phosphate.
March 2022 | Volume 13 | Article 850177
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(PI3K)/protein kinase B (AKT), mTOR, MYC signaling, and TFs
such as IRF4, SREBP, PGC1a, HIF1a, ATF4, and E2F have been
widely involved in anabolic or catabolic metabolism, including
glycolysis and REDOX balance (14, 26–28). Thus, we compared
the enrichment scores of hallmark signaling and TCR signaling
pathways between T cells from pre-aGvHD and non-aGvHD
samples. The results showed that MYC, mTORC1, TCR,
Hedgehog, and Wnt/b-catenin signaling pathways were
significantly enriched in pre-aGvHD groups (Figure S4, Table
S5). To identify specific driver signaling pathways, we performed
correlation analyses of metabolic reprogramming and
differentially expressed glycolytic genes with hallmark signaling
and TCR signaling pathways. TCR, mTORC1, and MYC
signaling pathways were identified as drivers with top positive
correlations (Figures 4A, B). The expressions of PFKP, STMN1,
PSMC4, GAPDH, TXN, ENO3, and PRKACB had stronger
Frontiers in Immunology | www.frontiersin.org 6
correlations (Correlation coefficients >0.5 and P < 0.05) with
TCR, mTORC1, and MYC signaling activity (Figure 4B).

Gene expression is generally regulated by TFs directly, which
consequently influences metabolic activity. To elucidate TFs that
potentially drive the expression of glycolytic genes and metabolic
reprogramming, DEGs between pre-aGvHD and non-aGvHD
groups (Figures S5, S6) were utilized for the prediction of TFs by
the module “UCSC_TFBS” under the “Protein_Interactions”
function of DAVID (https://david.ncifcrf.gov/home.jsp). TFs
predicted with adjusted P < 0.05 were considered to be
significantly enriched (Table S6). The enriched TFs and other
well-known metabolism-regulating TFs (26, 27, 29) whose
expression data are available to access in this study (E2F1,
E2F4, E2F6, MYC, ATF4, ATF6, NFKB1, STAT3, LPIN1,
HIF1A, RPS6KB2, YY1, SREBF2) were submitted for the
following analyses. We performed correlation analyses of
A B

FIGURE 4 | Hallmark signaling pathways associated with glycolysis-related pathways and glycolytic genes. (A) Heatmap of the Pearson correlation coefficients
between glycolysis-related metabolic signatures and hallmark as well as T-cell receptor (TCR) signaling pathways. (B) Heatmap of the Pearson correlation coefficients
between glycolytic genes and hallmark as well as TCR signaling pathways. The hallmark signaling and TCR signaling gene sets are based on MSigDB.
A B

FIGURE 3 | T-cell subsets associated with glycolysis-related pathways and glycolytic genes. (A) Heatmap of the Pearson correlation coefficients between glycolysis-
related metabolic signatures and T-cell subset signatures. (B) Heatmap of the Pearson correlation coefficients between glycolytic genes and T-cell subset signatures.
The information for the T-cell subsets was obtained using CIBERSORT.
March 2022 | Volume 13 | Article 850177
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metabolic reprogramming and differentially expressed glycolytic
genes with the abovementioned TFs. E2F6 was identified as the
top positively correlated TF (Figures S7A, B), which was
consistent with the positive correlation of E2F target signature
with metabolism reprogramming and glycolytic gene expression
(Figures 4A, B). Furthermore, expressions of MYC, MTOR, and
E2F6 were proven to be higher in pre-aGvHD T cells than those
in non-aGvHD T cells by our own patient cohort (Figure S8A).
These results suggest that TCR, mTORC1, and MYC signaling
pathways and E2F6 are potential “master regulators” of
metabolic reprogramming and glycolytic activity.

Development of an Individualized aGvHD
Predictive Model
Regarding the central function of glycolysis in alloreactive T-cell
activation in pre-aGvHD samples, we used PFKP, ENO3, and
GAPDH, which were among the most significantly upregulated
glycolytic genes and their expressions were proven to be higher
in pre-aGvHD T cells than those in non-aGvHD T cells (Figure
S8B), to construct an aGvHD predictive model. The predictive
model that incorporated the three predictors was developed and
Frontiers in Immunology | www.frontiersin.org 7
presented in the nomogram (Figure 5A). The area under the
ROC curve was 0.806, showing a high predictive value
(Figure 5B). The C-index of the nomogram was 0.806 (95%
CI: 0.713–0.899) for the cohort and was confirmed to be 0.786
through bootstrapping validation, suggesting that the risk model
had good discriminative ability. The calibration curve
demonstrated that the nomogram had good concordance to
predict aGvHD risk in this cohort (Figure 5C). The decision
curve showed that the aGvHD predictive model provided
superior net benefit when clinical decision thresholds were
between 14% and 91% (Figure 5D). Furthermore, the
predictive value of the aGvHD risk model was validated by our
own patient cohort (Figures S8C, D).

Using TFBSTools and JASPAR database, we predicted E2F1,
E2F4, and E2F6 to be possible TFs promoting the expression of
PFKP, ENO3, and GAPDH. Moreover, hematopoietic cell-specific
ChIP-seq data further supported E2F6 as a TF regulating the
expression of PFKP, ENO3, and GAPDH (Figure S9), which was
in accordance with the positive correlation between E2F6 and their
expressions (Figure S7B) (18). Furthermore, we confirmed that T
cells with higher E2F6 expression harbored increased expression of
A B

C D

FIGURE 5 | Development of an individualized predictive model for acute graft-versus-host disease (aGvHD) with logistic regression. (A) Nomogram of aGvHD
prediction. The aGvHD nomogram consists of three glycolytic genes, namely, PFKP, ENO3, and GAPDH. (B) Receiver operating characteristic (ROC) curve shows
the predictive value of the risk model. (C) Calibration curves of the aGvHD risk model. The x-axis represents the predicted aGvHD risk. The y-axis represents the
actual diagnosed aGvHD. The diagonal dotted line represents the ideal predictive model. The solid line represents the performance of our risk model, of which a
closer fit to the diagonal represents a better prediction. (D) Decision curve for the aGvHD risk model. The y-axis measures the net benefit. The blue line indicates the
aGvHD risk model. The thin solid line represents the assumption that all patients develop aGvHD. The thick solid line represents the assumption that no patient
develops aGvHD.
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PFKP, ENO3, and GAPDH in our patient cohort (Figure S10).
Taken together, these results suggest that TCR, mTORC1, and
MYC signaling pathways might promote the expression of PFKP,
ENO3, and GAPDH through TF E2F6 to activate glycolysis and its
related pathways in alloreactive T cells during aGvHD
development (Figure 6).
DISCUSSION

The benefits of allo-HSCT are challenged by GvHD, which is one
of the most common causes of treatment-related mortality in the
early phase after allo-HSCT. Although glucocorticoid is
demonstrated as the frontline therapy for aGvHD, 40%–50% is
steroid refractory and resulted in 60%–80% mortality. The
Frontiers in Immunology | www.frontiersin.org 8
optimal treatment for steroid-refractory aGvHD is still under
exploration. Thus, identification and characterization of novel
targets of aGvHD are important for therapy revolution. There is
growing evidence that metabolomics play a role in different
aspects of aGvHD (30). Therefore, to elucidate the metabolic
pathways employed by T cells is important to deepening our
understanding of aGvHD pathophysiology. However, the
comprehensive metabolic network of allogeneic T cells in
aGvHD setting is largely underestimated, particularly in humans.

Since the transcriptional expression patterns of metabolic
pathways have been demonstrated to reflect metabolic
activities definitely (14), we integrated publicly accessible GEO
datasets of human alloreactive T cells and systematically
characterized the metabolic programming in correlation with
aGvHD based on the expressional heterogeneity of metabolic
FIGURE 6 | Reprogramming of glucose metabolism in T cells during acute graft-versus-host disease (aGvHD) pathogenesis. MYC and mTORC1 signaling pathways
are known to be activated by T-cell receptor (TCR) and co-stimulating molecular CD28 during antigen recognition to promote the transcriptional activity of E2F family
transcription factors (TFs). During aGvHD pathogenesis, we found glycolysis and its related pathways, such as pentose phosphate pathway, to be enriched in
alloreactive T cells. TCR, mTORC1, MYC signaling pathways and E2F6 might be “master regulators” of glycolytic activity. Expressions of glycolytic genes, such as PFKP,
ENO3, andGAPDHwere shown to be elevated and correlated with activities of TCR, MYC, and mTORC1 signaling and E2F family. E2F6 was predicted as a TF to regulate
the expression of PFKP, ENO3, andGAPDH. High expression of glycolytic genes PFKP, ENO3, andGAPDH in T cells can predict aGvHD development. Thus, we assumed
that TCRmight interact with MYC and mTORC1 to promote E2F expression, further increasing the expression of PFKP, ENO3, andGAPDH to activate glycolysis and its
related pathways in alloreactive T cells during aGvHD development. These changes in glucose metabolism might promote T-cell activation through supplying energy and
precursors for anabolism. Red text indicates activated signaling pathways, TFs, glycolytic genes, and glycolysis-related pathways.
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genes. To the best of our knowledge, this global perspective has
not been used to study aGvHD previously. We found that
carbohydrate metabolism was the most significantly enriched
metabolic super-pathway in alloreactive T cells in the pre-
aGvHD state, and glycolysis had the most extensive correlation
with other metabolic sub-pathways (Figure 1). High predictive
value of aGvHD risk model constructed by well-known glycolytic
genes further iterated the crucial role of glycolysis in alloreactive
T cells (Figure 5). In compliance with other in vitro and in vivo
studies, activated glycolytic activity is increased in T cells to meet
their biomass demand for synthesis of macromolecules during
robust proliferation (9, 31).

The modality of metabolic reprogramming in alloreactive T
cells is controversial across different GvHD models. Gatza et al.
(32) found that alloreactive T cells, in response to allo-antigens,
greatly increased both glycolysis and oxidative phosphorylation,
and the activation of oxidative phosphorylation was due to an
increase of fatty acid oxidation via TCA cycle compared to naive
T cells (rather than donor T cells in the syngeneic recipients) in
unirradiated murine GvHD model. Compared to general T-cell
activation, alloreactive T cell experiences the inflammatory
milieu of pretransplant conditioning and reconstitution of the
immune system. As to distinguish alloreactive from
homeostatically proliferating T cells, syngeneic T cells are
better negative control than naive T cells (33). Byersdorfer
et al. (10) showed that alloreactive T cells used fatty acid
oxidation as the major fuel source during activation. However,
Nguyen et al. (9) demonstrated that inhibition of fatty acid
oxidation by etomoxir was not enough to significantly affect
alloreactive T-cell proliferation. Given the great differences
among the models, the abovementioned studies might not be
able to describe metabolic reprogramming of human alloreactive
T cells well in a pre-aGvHD state. Our previous study integrated
the metabolic and transcriptomic analyses and discovered
increased glycerophospholipid metabolism in a pre-aGvHD
state (8). However, the study used a non-targeted approach
(liquid chromatography-mass spectrometry) to detect plasma
metabolites and the transcriptomic data were derived from
mononuclear cells in peripheral blood. In the present study, we
found that CD4 memory T cell was the top subset that positively
correlated with glycolysis activation (Figures 3A, B).
Alloreactive CD4 effector memory T cell is the predominant
pathogenic subset and highly glycolytic in our clinical
observation (Zhang et al., unpublished data) and allo-HSCT
murine model (34). Activated T-cell proliferation and migration
signatures were positively associated with glycolytic activation
(Figures S3A, B). These results indicated the pivotal function of
glycolytic metabolism in specified T-cell subset activation and
immune function in pre-aGvHD state.

Identification of crucial signaling pathways and TFs that
promote glycolysis could help us to discover potential targets
to suspend the uncontrolled activation of alloreactive T cells (9,
35). Metabolic reprogramming occurs generally downstream of
TCR and the co-stimulatory receptor (such as CD28) signaling
following interaction between T cells and APCs in autoimmune
disease, which activates mTORC1 and MYC signaling.
Frontiers in Immunology | www.frontiersin.org 9
Consequently, T-cell metabolism shifts from fatty acid and
pyruvate oxidation in steady state toward glycolysis during
activation (27). mTORC1, a key driver of cell metabolism (36–
39), integrated microenvironment cues with T-cell metabolism
and activation state. E2F TF family, which is regulated by both
MYC and mTOR signaling (40, 41) and promotes glycolytic
metabolism (42) as reported, was also activated. The activation of
E2F family might bridge MYC and mTORC1 signaling with
glycolytic activation (Figure 6). In murine models, alloreactive T
cells showed higher expression of glucose transporters Glut1 and
Glut3 and glycolytic enzymes hexokinase and lactate
dehydrogenase. Furthermore, AMPK and mTOR pathways
were activated and subsequently resulted in greater increase of
glucose uptake and glycolysis than syngeneic T cells (9, 32). The
context-specific programming observed in alloreactive T cells is
unique and different from other physiological processes.

There are limitations in our study. First, although we
integrated and normalized the transcriptomic data, bias and
variabilities might also exist due to technical limitations, such
as dye effect, hybridization artifacts, and between-sample
differences (i.e., different sample acquisition times). Second,
due to the limited information provided by the original studies,
we could not correlate metabolism reprogramming with patient
background, aGvHD severity, and treatment outcome.
Moreover, we could not discriminate T-cell subsets, such as
Teff, Treg, and Tm, for detailed metabolic signatures. However,
with our integrative and robust bioinformatic analyses, we
identified glycolysis contributing to the activated allogeneic
CD4 memory T-cell subset and T-cell proliferation and
migration in a pre-aGvHD state, as well as TCR, mTORC1,
and MYC signaling pathways and E2F6 might be “master
regulators” of glycolytic activation. Moreover, the increased
CD4 memory T-cell subset and glycolytic activation in pre-
aGvHD state were validated in our patient cohort. These
results are objective and meaningful to provide clues for
aGvHD prophylaxis and treatment.

Taken together, we identified metabolic pathways that were
enriched in alloreactive T cells in a pre-aGvHD state and
highlighted T-cell subsets, T-cell immune functions, key
signaling pathways, and TFs that were closely linked with
glycolysis activation. The hypothesis of alloreactive T-cell
metabolic reprogramming during aGvHD pathogenesis
(especially a pre-aGvHD state) is presented in Figure 6. Our
data emphasize the pivotal function of glycolysis in alloreactive
T-cell activation in a pre-aGvHD state, and glycolysis would be
the potential target for GvHD treatment.
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