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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a degenerative disease predominantly affecting motor neurons and
manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease
processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased
way to improve phenotyping for clinical and research purposes.

Methods: Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using
discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical
relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.

Results: The best model generated five distinct phenotypic classes that strongly predicted survival (p,0.0001). Eight
variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two
variables: site of first symptoms (bulbar or limb) and time from symptom onset to diagnosis (p,0.00001).

Conclusion: The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to
stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and
risk factor research.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of

motor neurons resulting in progressive paralysis and death from

respiratory failure within three to five years [1]. The cause of

sporadic ALS (SALS) is unknown but genetic analyses show

disease heterogeneity for familial cases, and this is likely for SALS

as well. This is a problem for research into risk factors as the

effective sample size is reduced with a concomitant reduction in

power. Similarly, the search for biomarkers is hampered if there

are several underlying disease processes with similar clinical

phenotypes [2,3]. Furthermore, the effectiveness of a drug may be

masked if a clinical trial does not take into account heterogeneity

in survival. This is particularly important if the different disease

mechanisms respond to different therapies.

ALS has been classified using various systems, the best known of

which is based on predominant site of symptom onset and the

predominance of upper and lower motor neuron signs at

presentation: progressive bulbar palsy, pseudobulbar palsy, progres-

sive muscular atrophy, primary lateral sclerosis and amyotrophic

lateral sclerosis. The El Escorial criteria and its descendants confer

diagnostic certainty based on the regional distribution of upper and

lower motor neuron signs that distinguishes them from other motor

neuron disorders.[4–7]. These classification systems depend on

agreement between clinicians who specialise in ALS to recognize

underlying disease patterns, and as such are subjective. We sought to

explore whether clinical or demographic variables available to a

clinician tended to occur in a predictable pattern that might be

apparent to unbiased statistical analysis and could therefore be used

to dissect out underlying disease types in an objective way. We

restricted the variables to those available at a first visit as these would

be the most useful for clinical prognostication and in clinical trials.

Methods

Patients
A tertiary referral centre clinical database containing information

on 1467 people with motor neuron disease was analysed. All

patients included were diagnosed as having ALS or an ALS variant

by at least two consultant neurologists after full investigation to

exclude other conditions between 1993 and 2007. The study was

approved by the Institutional Research Ethics Committee.

Clinical variables
The variables selected were: age of onset of weakness, sex,

ethnicity, family history of ALS in a first degree relative, site of

onset of first symptoms, diagnostic delay (interval between first
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symptoms of weakness and diagnosis), physician-classified pheno-

typic group and the number of functional regions affected.

Because vital capacity was not available for a large proportion of

patients, this was not included in the analysis. Functional regions

were defined as bulbar, upper limb, lower limb and respiratory.

Symptoms or signs defined involvement. Respiratory involvement

was defined by the presence of orthopnoea, breathlessness on

minimal exertion, or forced vital capacity or sniff nasal inspiratory

pressure less than 70% of predicted. The physician-classified

phenotypic groups were progressive muscular atrophy (lower

motor neuron signs only), amyotrophic lateral sclerosis (upper and

lower motor neuron signs fulfilling the El Escorial criteria for

possible, probable or definite ALS), primary lateral sclerosis, flail

arm syndrome (brachial amyotrophic diplegia as defined previ-

ously [8,9] and flail leg syndrome (pseudopolyneuritic variant of

ALS) [10].

Statistical methods
We used latent class cluster analysis (LCCA) to explain

associations between observed manifest indicator variables (clinical

observations) through hypothesized underlying unobserved latent

variables. LCCA is a model based cluster analysis method used to

identify subtypes of related cases (latent classes) from categorical,

ordinal and continuous multivariate data [11–14]. The method

assumes k latent groups or latent classes underlying the data set

and that each case belongs to only one group. The number of

classes and their sizes are not known a priori. LCCA uses maximum

likelihood estimation methods to minimize association among the

responses across multiple observed variables. It recognizes that

there is some degree of uncertainty in the classification by

assigning each case a posterior probability of belonging to each

class.

To estimate the number of classes underlying the sample, we

compared the fit of models with increasing numbers of classes

using three different methods. Firstly values of the Akaike

information criteria (AIC) and Bayesian information criteria

(BIC) were used to estimate the optimal number of classes. Lower

AIC and BIC values suggest better fitting models. Secondly, we

used the model entropy, an overall measure of how well a model

predicts class membership, which ranges from 0 (no predictive

power) to 1 (perfect prediction) [15]. Thirdly, we used the mean

posterior probability of a case belonging to each class. A good

fitting model would have high individual probabilities for each

case belonging to just one class since this is one of the underlying

assumptions. A case was assigned to the latent class that

corresponded to the highest (modal) posterior conditional response

probability across the indicator variables. LCCA statistical

analyses were carried out in MPlus 5.1 [14].

To characterize the latent classes and to identify the clinical

variables that best described class membership we used discrim-

inant function analysis (DFA) and multinomial regression [16].

Categorical variables were included as dummy coded variables in

the DFA. DFA determines n functions, (where n is the smaller of

the number of groups-1 or the number of variables), in a way that

the first function provides the most overall discrimination between

groups, the second provides second most, and so on. DFA allows

visualization of how the two functions discriminate between

groups by plotting the individual scores for the two first

discriminant functions.

DFA assumes continuous and normally distributed data.

Although DFA is known to perform reasonably well when using

dummy coded variables [17,18], we used a multinomial regression

with robust standard errors to confirm the conclusions derived

from the DFA. Multinomial regression is an extension of logistic

regression to categorical dependent variables with more than two

outcomes. Multinomial regression allows the use of both

categorical and continuous independent variables and the

predictors do not have to be normally distributed, linearly related,

or of equal variance within each group [16].

To validate the model clinically, we performed a Kaplan-Meier

survival analysis to test if the classes had prognostic value, since

survival was not a variable used in the cluster analysis.

Discriminant analysis and Kaplan Meier analysis were performed

in SPSS v15.0 (SPSS Inc) and multinomial regression in STATA

10.1 (STATA Inc.).

Results

Latent class model selection
A five class model gave the best fit (Table 1), with the lowest

AIC and BIC values (Table S1.) Using six or more classes did not

result in convergence to any underlying model even after

increasing the number of iterations and using different starting

values. Further evidence that the five-class solution was the most

parsimonious was that most cases could easily be assigned to just

one class, with high mean posterior probabilities of class

membership ranging from 86.1 to 100% (Table 1). Furthermore,

the entropy of the five class model was 0.842, a good overall

certainty in classification.

Characteristics of a five-class solution
The discriminant function analysis revealed two main functions

that explained 98.9% of the total variance (Table S2). The first

Table 1. Latent class membership based on the estimated posterior probability.

Class Based on estimated posterior probabilities Based on most likely class membership Class 1 Class 2 Class 3 Class 4 Class 5

1 728.4 (49.7%) 763 (52%) 86.1% 12.1% 0.0% 1.8% 0.0%

2 558.8 (38.1%) 527 (35.9%) 11.5% 88.1% 0.0% 0.4% 0.0%

3 4 (0.3%) 4 (0.3%) 0.0% 0.0% 100.0% 0.0% 0.0%

4 133.6 (9.1%) 130 (8.9%) 8.4% 1.7% 0.0% 89.7% 0.2%

5 42.2 (2.9%) 43 (2.9%) 0.0% 0.0% 0.0% 2.9% 97.1%

The first column shows the membership based on the mean posterior probability for each class. The second column shows the number of subjects (%) classified in a
given class based on their most likely average latent class membership (row) by latent class (column). For example: The estimated average posterior probability of
belonging to Class 1 is 49.7% corresponding to an estimated sample size of 728.8 subjects in this class. 52% of the subjects were classified into Class 1 based on their
highest posterior probability. Their average posterior probability for membership of Class 1 was 86.1%, while their probability of belonging to Classes 2, 3, 4 or 5 was
12.1%, 0%, 1.8% and 0% respectively.
doi:10.1371/journal.pone.0007107.t001
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function mainly corresponded to delay between first symptoms

and diagnosis, while the second function mainly corresponded to

site of onset of first symptoms (bulbar or not) and to a lesser extent,

clinical phenotype and age of onset. Figure 1 shows a plot of the

individuals of each group on the first two discriminant dimensions.

The five latent classes are clearly separated by the two functions

and a jack-knife cross-validation reveals a very high correct

classification rate of almost 90% (Table S3). The results were

confirmed by a multinomial regression with classes 1, 2, 3 and 4 as

the dependent variables. Stepwise model selection revealed that

bulbar onset and diagnostic delay were the best predictors of class

membership (Table S4). 86.1% of the cases were correctly

classified using only those two variables (Table 2), suggesting that

two variables alone, diagnostic delay and site of onset of first

symptoms, were quite effective at predicting group membership.

Class 1 was characterized by non-bulbar onset and a very short

diagnostic delay of as little as 2 months (Figure 1 and Table 3).

Class 2 was characterized by a similar, but slightly shorter

diagnostic delay, the major difference with class 1 being a higher

predominance of bulbar onset. The two classes also differed in

clinical phenotype assigned by the neurologist. Class 2 consisted

almost entirely of those with ALS, while class 1 also included those

with progressive muscular atrophy, flail arm and flail leg

phenotypes. Furthermore those in Class 1 tended to be younger

than those in Class 2. Interestingly, the only class in which the

normal male excess was reversed was Class 2.

The four members of Class 3 were clearly separated from the

members of the other classes by an extremely long diagnostic delay

of at least 234 months. Classes 4 and 5 were also mainly separated

from each other and from the other two classes by diagnostic delay,

which ranged from 26–70 months in class 4 and from 74 to 158

months in class 5 (Figure S1). Most members of class 4 had non-

bulbar onset, while almost 20% of the members of class 5 did have

bulbar onset. Members of class 4 had a higher proportion of those

with a flail leg phenotype than other classes. Family history, ethnicity

and number of symptomatic regions were similar across all classes.

Validation analysis
A Kaplan-Meier analysis of 1311 cases showed good separation

for survival curves of each class (Logrank test chi2(3) = 340.2,

p,0.0001, Figure 2). Class 3 was excluded from the statistical

analysis because of small sample size. Survival of each class was

significantly different from each other group and 95% confidence

intervals did not overlap between the four classes showing that the

latent class groupings have prognostic value (Table 4). Median

survival was shortest for patients of Class 2 followed by Classes 1, 4

and 5. Survival time was longest for the three cases of Class 3 with

known survival.

Discussion

We have applied a latent class cluster analysis to a database of

over 1467 people with ALS to identify clinical sub-groups that

have prognostic value. We used eight clinical variables that can be

easily assessed at the first visit to generate a five class model. Two

variables alone, site of first symptoms (bulbar or limb) and time to

diagnosis from first symptoms were sufficient to classify most

people accurately. Discriminant function and multinomial regres-

sion analyses allowed us to convert this mathematical construction

into a clinically useful tool in which the two major contributors to

the classification were bulbar or limb onset and diagnostic delay.

However, classification additionally depended on the distribution

of phenotypes and to a lesser extent age of onset. Cluster analysis

will draw out clusters based on factors that have the largest impact

on classification. The exclusion of age from the simplified, two-

factor model does not mean that age is not relevant, but that it can

be subsumed into the information available from site of onset and

disease duration. Also closer inspection of Table 3 reveals gender

ratio differences between the classes, particularly between Classes

1 and 2. As a concurrent validation of the LCCA classification we

used survival duration as an external criterion of clinical relevance.

The five classes had significantly differing, non-overlapping

survival durations, which suggest that the classification is clinically

relevant. The prognostic value of this model suggests that we have

found groups that could potentially correlate with differences in

pathological mechanisms [19,20]. It is of interest that over 1200 of

the 1467 patients are grouped into just two classes. This suggests

that ALS as a whole is more homogenous than is often reported.

Figure 1. A plot of the location of each case on the first two
axes of the discriminant function analysis. Circles have been
coloured according to assigned class. (Blue - class 1, Green - class 2, Red
– class 3, Purple – class 4, Orange – class 5). The black square represents
the centroid for each group distribution. Discriminant function 1
corresponds mainly to time to diagnosis from symptom onset
(diagnostic delay), while discriminant function 2 corresponds mainly
to bulbar onset (higher values) with some contribution from clinical
phenotype and age of onset (see Table 3).
doi:10.1371/journal.pone.0007107.g001

Table 2. Prediction matrix based on multinomial regression.

Class 1 2 4 5 Total

1 748 (98%) 1 (0.1%) 8 (1%) 6 (0.8%) 763

2 170 (32.3%) 351 (66.6%) 3 (0.6%) 3 (0.6%) 527

4 11 (8.5%) 1 (0.8%) 117 (90%) 1 (0.8%) 130

5 0 (0%) 0 (0%) 0 (0%) 43 (100%) 43

Total 929 353 128 53 1463

Observed classes are in rows, predicted in columns. Overall correct classification
rate was 86.1%. Class 3 was omitted because of small sample size. Classes 1, 2
and 4 show a very high predictive probability using diagnostic delay and bulbar
onset. However the predicted Class 2 appears to include cases that appeared in
Class 1. This may require the use of other variables not included in this study to
better distinguish between Classes 1 and 2.
doi:10.1371/journal.pone.0007107.t002
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Latent class clustering is a model-based technique that assumes

that data are generated by a mixture of probability distributions

[13]. This makes it different from classical cluster analysis, such as

k-means clustering, which is based on a statistical measure of

distances between observations. Associations among the observed

(manifest) variables, in this case clinical observations at the first

clinic visit, are explained through hypothesized unobserved (latent)

categorical variables. Manifest variables are therefore assumed to

be independent within each latent class. LCCA can be seen as a

categorical analogue of factor analysis. However, factor analysis

analyzes the structure of manifest variables, whereas LCCA is

more concerned with the structures of cases.

LCCA has several additional advantages over traditional cluster

analysis methods. Firstly, classification based on posterior

probability allows assessment of the quality of classification.

Secondly, it can deal with a mix of nominal, ordinal, count or

continuous variables, any of which may contain missing values.

Thirdly, because LCCA is scale independent, data do not need to

be standardized. Fourthly, because LCCA is based on a statistical

model, statistics such as information criteria can be used to

objectively determine the number of classes in the data. LCCA is

also objective because it does not use a clustering algorithm and so

the choice of clustering algorithm and its effects on results is not an

issue. We are therefore confident that four of the five classes we

have identified represent an objective classification of ALS

phenotypes. Class 3 consisted of only four cases and therefore

should be treated with caution, and larger numbers would be

useful for confirmation. Finally, LCCA is a type of latent variable

methodology [21], and therefore allows flexible modelling such as

including covariates in the model or lowering the restrictions of

local independence.

There are limitations to this study. The categorical nature of five

of the seven variables meant that reduction of the sample size to

replicate the latent class structure and cross-validate the results was

not possible. Further studies are therefore needed to confirm the

existence and characteristics of the five distinct classes.

There are many current classification systems for ALS. The

oldest is based on the distinction between upper and lower motor

neuron involvement and site of predominant disease burden, with

categories progressive bulbar palsy, pseudobulbar palsy, progres-

sive muscular atrophy, primary lateral sclerosis and amyotrophic

lateral sclerosis. In 1999, a classification was proposed based on

the underlying causative mechanisms and acknowledgement of

different phenotypes where cause was unknown [4]. Subsequently,

the El Escorial criteria were established for research purposes, and

primarily to assist in recruitment for clinical trials [22]. These have

Table 3. Characteristics of the subjects within each latent class.

Variable Class 1 2 3 4 5 Total

Gender Male 596 (78.1%) 200 (38%) 3 (75%) 72 (55.4%) 30 (69.8%) 901 (61.4%)

Female 167 (21.9%) 327 (62%) 1 (25%) 58 (44.6%) 13 (30.2%) 566 (38.6%)

Ethnicity White 714 (93.6%) 512 (97.2%) 4 (100%) 117 (90.7%) 38 (88.4%) 1385(94.5%)

Black 16 (2.1%) 9 (1.7%) 0 (0%) 4 (3.1%) 3 (7%) 32 (2.2%)

Other 33 (4.3%) 6 (1.1%) 0 (0%) 8 (6.2%) 2 (4.7%) 49 (3.3%)

Age at onset (years) 54.4 (12.3) 61.3 (11.2) 45.3 (14.6) 55.9 (12.2) 52.6 (11.8) 56.9 (12.3)

Family history Yes 45 (5.9%) 34 (6.5%) 2 (50%) 5 (3.8%) 1 (2.3%) 87 (5.9%)

No 718 (94.1%) 493 (93.5%) 2 (50%) 125 (96.2%) 42 (97.7%) 1380(94.1%)

Number of regions (number) 4.2 (0.8) 4.7 (0.81) 4.3 (0.96) 3.9 (1.14) 4.1 (1.06) 4.4 (0.89)

Diagnostic delay (months) 13.1 (7.7) 10.9 (6.6) 280.3 (43.5) 44.9 (10.6) 99.8 (21.1) 18.4 (23.5)

Bulbar onset Bulbar 1 (0.1%) 354 (67.2%) 1 (25%) 6 (4.6%) 8 (18.6%) 370 (25.2%)

Non-bulbar 762 (99.9%) 173 (32.8%) 3 (75%) 124 (95.4%) 35 (81.4%) 1097(74.8%)

Phenotype PMA 42 (5.5%) 1 (0.2%) 0 (0%) 11 (8.5%) 2 (4.7%) 56 (3.8%)

Flail Arm 122 (16%) 0 (0%) 0 (0%) 24 (18.5%) 6 (14%) 152 (10.4%)

Flail Leg 50 (6.6%) 0 (0%) 0 (0%) 28 (21.5%) 2 (4.7%) 80 (5.5%)

ALS 536 (70.2%) 519 (98.5%) 2 (50%) 40 (30.8%) 18 (41.9%) 1115(76%)

PLS 13 (1.7%) 7 (1.3%) 2 (50%) 27 (20.8%) 15 (34.9%) 64 (4.4%)

Values show means (SD) and counts (%). This table demonstrates how variables that we have traditionally used to sub-divide and study ALS associate with the groups
generated in this study. While not showing significant differences, we can see trends suggesting that age of onset is associated with speed of progression. There are
some sex ratio differences, particularly between Classes 1 and 2. However, strikingly, there is no clear split with the traditionally used phenotypes.
doi:10.1371/journal.pone.0007107.t003

Figure 2. Kaplan Meier Survival curve for the five different
classes. Each line is coloured according to assigned class (Blue - class 1,
Green – class 2, Black – class 3, Grey – class 4, Red – class 5). Crosses
represent cases that are censored. Survival is significantly different
between any pair of classes. Class 3 consists of only three subjects.
doi:10.1371/journal.pone.0007107.g002
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been superseded by the Airlie House criteria [23] and may be

superseded again [6]. Unfortunately there are several well

recognised problems with the El Escorial criteria and their

revisions. Up to 40% of patients may be excluded from research

despite there being little clinical doubt about the diagnosis.

Patients with bulbar onset of symptoms, which is associated with a

reduced life expectancy, may never fulfil the El Escorial criteria.

People with atypical presentations can be difficult to classify and

are therefore excluded. Other limitations include the focus on

extent of the disease rather than burden of the disease, the lack of

discrimination between bulbar and spinal symptom onset and the

poor correlation with prognosis, although it is acknowledged that

this was not the purpose of the classification [5,7]. More recent

classifications have called for detailed phenotypic groupings of

lower motor neuron [10,24] or upper motor neuron [25]

syndromes, or for a distinction between proximal, symmetrical

disease and distal, asymmetrical disease [26]. An ideal classifica-

tion would be one that reflects homogeneity of an underlying

disease mechanism within each group or has clinical relevance, for

example in predicting prognosis. Either of these properties would

enable a classification to be truly useful in clinical trials because

patients could be stratified by prognostic group and disease

process, improving power. The classification we propose has at

least the property of being prognostically useful and may reflect

underlying disease groups each with differing mechanisms. The

main difficulty in generalising this system is that the delay between

symptom onset and diagnosis will depend to a large extent on the

local health care system and other local variables. Since this is the

most important classification variable, the equation for class

membership would need to be calibrated for each clinic. This is

not insurmountable however, if it is recognised that the diagnostic

delay is simply a marker of the rate of disease progression [1].

There are other equivalent markers that will be invariant between

geographical sites, such as the time to develop symptoms in a

second functional region, and these could be used to generate an

equivalent classification.

The variables in the model include a classification of the disease

type based on the pattern reported by the examining clinician.

This consists of the traditional phenotypic categories but further

subdivides those with progressive muscular atrophy into flail arm

or flail leg phenotypes for those with proximal symmetrical disease.

Although such a classification has prognostic value, it does not

explain the classes defined by this latent class cluster analysis

(Table S5). The key question facing researchers is whether we

should be ‘lumpers’ or ‘splitters’ in classifying ALS [27,28]. This

needs to be resolved to make further progress in genetics,

biomarker and drug discovery. The persistence in lumping

patients in the clinical design of drug trials maybe one of the

main reasons for the lack of success in finding disease modifying

therapies [29].

While we do not suggest this is the final model to be applied in

trials, biomarker discovery and genetic studies, the challenge is to

characterise further the classes we have identified. Genome-wide

association studies and protein biomarkers may help in delineating

underlying biological differences between the classes. Further

clinical variables may also assist in fine-tuning the classification.

For example, we know that up to 50% of patients demonstrate

minimal cognitive impairment with a significant proportion having

FTLD [30]. It would also be interesting to know if this model can

predict secondary end-points such as the time to use of non-

invasive ventilation, or time to insertion of gastrostomy.

In summary, sub-groups defined by latent class cluster analysis

show statistically significant differences in survival and the

classification system might therefore be used to stratify patients

in clinical trials, and to generate more homogeneous groups for

genetic, proteomic and other risk factor research.

Supporting Information

Table S1 Comparison of latent class analysis models. Informa-

tion criteria (AIC and BIC) and Entropy evaluate the quality of

different latent class solutions. Smaller AIC and BIC values suggest

a better fitting model. A five class model (bold) has the best fit

based on information criteria.

Found at: doi:10.1371/journal.pone.0007107.s001 (0.03 MB

DOC)

Table S2 Results of discriminant function analysis. The

percentage of explained variance is the percentage of discrimi-

nating power for the model associated with a given discriminant

function. The canonical correlation is a measure of the association

between the groups formed by the tested variable and a given

discriminant function. Figures given for each variable are the

factor structure coefficients, which are the pooled within-groups

correlations between the variables in the model, and the

standardized canonical discriminant functions. Correlations .0.5

are printed in bold and are considered the variables best associated

with a given function.

Found at: doi:10.1371/journal.pone.0007107.s002 (0.05 MB

DOC)

Table S3 Leave-one-out cross-classification (Jacknife). Rows are

the observed classes and the columns are the predicted classes of

the cases. Each subject has been classified using a discriminant

function analysis based on all cases except the given case. 90.1% of

Table 4. Median survival.

Class N Median in months (95% C.I.) Logrank test for pairwise comparisons

Class 2 Class 4 Class 5

1 686 39 (36.6–41.4) x2 = 100.7, p,0.001 x2 = 98.5, p,0.001 x2 = 84.0, p,0.001

2 484 27 (25.2–28.7) x2 = 191.1, p,0.001 x2 = 99.5, p,0.001

3 3 .76, .36, .276

4 104 86 (69.7–102.3) x2 = 14.2, p,0.001

5 34 164 (154.3–173.5)

Median survival is shown in months with 95% confidence intervals for Classes 1, 2, 4, and 5 and the results of pairwise comparisons of the survival curve using a log rank
test. Because for Class 3 the survival times were available for only three patients, the individual censored survival times are shown. Note that the confidence intervals do
not overlap between the groups.
doi:10.1371/journal.pone.0007107.t004
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the original grouped cases and 89.9% of the cross-validated groups

were correctly classified.

Found at: doi:10.1371/journal.pone.0007107.s003 (0.03 MB

DOC)

Table S4 Result of multinomial regression analysis. Class 1 is the

reference group. The standard interpretation of a multinomial

logit model is that for one unit change (or change from one

category to another) of the independent variable, the logit of the

outcome relative to the reference group (Class 1) is expected to

change by the respective parameter estimate. A positive regression

coefficient implies that the probability of belonging to the

reference group (Class 1) decreases. Class 3 was not included

because of small sample size. The overall model Wald chi2 was

861.8, P,0.00001.

Found at: doi:10.1371/journal.pone.0007107.s004 (0.04 MB

DOC)

Table S5 Binned adjusted standardised residuals of a chi2 cross-

tabulation analysis between phenotype and class. Arrows show the

direction of deviation. Adjusted standardised residuals outside

the range 22.5 and +2.5 indicate significant departure from

independence. Adjusted standardised residuals ,28 or .+8 are

considered as extreme departures from independence. Positive

adjusted residuals in a cell correspond to larger numbers of cases

than expected by chance, negative residuals smaller numbers.

Class 3 was excluded from the statistical analysis because of the

small sample size.

Found at: doi:10.1371/journal.pone.0007107.s005 (0.03 MB

DOC)

Figure S1 Histogram showing the distribution of diagnostic

delay for cases within each class, separately for patients with and

without bulbar onset. The frequency (Y-Axis) is shown on a

logarithmic scale.

Found at: doi:10.1371/journal.pone.0007107.s006 (0.27 MB TIF)
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