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Emergence of event cascades in 
inhomogeneous networks
Tomokatsu Onaga & Shigeru Shinomoto

There is a commonality among contagious diseases, tweets, and neuronal firings that past events 
facilitate the future occurrence of events. The spread of events has been extensively studied such 
that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of 
reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we 
report that these systems are possessed by nonstationary cascades of event-occurrences already in the 
subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes 
vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such 
that spontaneous activity in neural networks may be used to generate motion or store memory. Thus 
it is important to comprehend the mechanism by which such cascades appear, and consider controlling 
a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the 
emergence of cascades depends greatly on the network structure in which individuals are connected. 
We demonstrate that we can predict whether cascades may emerge, given information about the 
interactions between individuals. Furthermore, we develop a method of reallocating connections 
among individuals so that event cascades may be either impeded or impelled in a network.

Our life is full of cause-and-effect relationships, such that past events influence the future occurrence of events. 
The proliferation process has been studied using both macroscopic models, such as the epidemic model1, and 
microscopic models, such as the self-exciting point process proposed by Hawkes2,3. These models have been 
applied to analyze not only the communication of diseases4–8 but also urban crime9, human activity10–14, econom-
ics15, genome sequences16, and neuronal firing17,18. A key quantity representing the interaction in these various 
phenomena is the basic reproduction ratio, which is defined as the average number of additional events induced 
by a single event19. In epidemics, a disease becomes a pandemic in a homogeneous network if the reproduction 
ratio is greater than unity, as in a nuclear chain reaction20–22, and vanishes otherwise.

Nevertheless, the event-occurrence does not cease if individuals are stimulated in external communities or 
exhibit spontaneous activity. In such situations, the system may still exhibit cascades of event-occurrences inter-
mittently, even if the reproduction ratio is smaller than the epidemic threshold, as in tweets11,23,24 and neuronal 
firings in vivo25. The nonstationary fluctuations may be terminated by reducing the reproduction ratio further26. 
Event cascades can be a nuisance in some contexts, such as when the peak-demand causes vaccine shortages27,28 
or heavy traffic on communication lines29, but may be beneficial in other contexts; for example, spontaneous 
activity in neural networks may be used to generate motion or store memory30–32. Thus, it is important to com-
prehend the mechanism by which such cascades appear. We show that such a transition between stationary and 
nonstationary states generally occurs in every proliferation system, obtain the condition on which cascades may 
emerge in a given network, and suggest a systematic method for controlling systems to oppress or promote the 
event-occurrence bursts.

Results
Mean rate of event-occurrence. Although the epidemic model and the Hawkes process appear to differ 
from one another, they have something in common because both were constructed to describe the proliferation 
processes. To identify their common features, we first revise them by considering realistic constraints.

For an epidemic model, we consider the susceptible-infected-susceptible (SIS) model describing the situation 
in which infected individuals may recover without immunity:

β γ= −di dt si i/ , (1)
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where i and s are the fractions of infected and susceptible individuals, respectively (i + s = 1); β is the rate at which 
susceptible individuals are infected by contacting infected individuals; and γ is the rate at which infected individ-
uals recover and regain susceptibility. The infected individuals asymptotically vanish if the reproduction ratio 
R0 = β/γ is smaller than or equal to unity; otherwise, the fraction is finite: ≡ = −∞ →∞i i t Rlim ( ) 1 1/t 0. To con-
sider extrinsic or spontaneous activation, we suggest revising the SIS model by adding an inflow to the infected 
population from the susceptible one:

β γ ρ= − + .di dt si i s/ (2)

In the presence of spontaneous activity ρ(>0), the asymptotic fraction of infected individuals remains positive 
and smoothly increases with R0, and, accordingly, the epidemic transition at R0 = 1 is softened (Fig. 1a).

The Hawkes process considers spontaneous occurrences in terms of the positive base rate ρ and describes the 
manner in which the event-occurrence rate λ(t) is modulated by past events:

∑λ ρ= + −t R h t t( ) ( ),
(3)k

k0

where tk is the occurrence time of the kth event. The history kernel h(t) satisfies the causality, h(t) = 0 for t < 0, and 
the normalization, ∫ =

∞ h t dt( ) 1
0

. By taking the ensemble average, the average rate of event-occurrence is 
obtained as 〈λ(t)〉 = ρ/(1 − R0). The divergence at R0 = 1 arises from instantaneous reactivation, which is an arti-
fact caused by the simplicity of the linear model, which ignores the refractory period during which each individ-
ual does not recover susceptibility. Here, we suggest revising the model by introducing the effect of a refractory 
period 1/γ:

∑λ λ
γ

ρ=




−










+ −





.t t R h t t( ) 1 ( ) ( )

(4)k
k0

By taking an ensemble average and approximating 〈λ2〉 with 〈λ〉2, we obtain the average rate of event-occurrences 
as 〈λ〉 = γi∞, where i∞ is the asymptotic fraction obtained for the revised SIS model (Fig. 1b). Thus, the epidemic 
model and the Hawkes process may represent the identical mean occurrence rate by taking the spontaneous acti-
vation and the refractory periods into account.

Fluctuations in the event-occurrence. Although the systems no longer exhibit a clear transition at R0 = 1 
causing the catastrophic chain reaction, they may still show nonstationary fluctuations with intermittent cascades 
of event-occurrences at lower reproduction ratios; when the reproduction ratio is even smaller, they may remain 
stationary, producing apparently random events over time.

The SIS model that addresses the mean population dynamics cannot represent fluctuations in the 
event-occurrences. Here, we construct and simulate a Markov process of microscopic dynamics in which indi-
viduals become infected and recover to be susceptible (Fig. 2a). In every interval of a small time-step δt, each 
susceptible individual in total population of size N may become infected with a probability (βi + ρ)δt, which 

Figure 1. Mean occurrence rate obtained by the revised epidemic model and the revised Hawkes process. 
(a) The equilibrium fraction of infected individuals i∞ obtained by the susceptible-infected-susceptible (SIS) 
model revised by considering spontaneous activity ρ > 0. (b) The mean occurrence rate 〈λ〉 of the Hawkes 
process revised by introducing the refractory period 1/γ > 0. These models give identical equilibria, 〈λ〉 = γi∞, 
for the same spontaneous activation ρ and the refractory period 1/γ (magenta lines in (a,b)).
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shifts as i → i + 1/N. Each infected individual may regain their susceptibility with the probability γδt, which shifts 
as i → i − 1/N. Figure 2b depicts sample sequences of infected times: At a reproduction ratio of R0 = β/γ = 0.2, 
the occurrence of infection appears random across individuals but stationary in the whole system. By contrast, 
at R0 = 0.6 or 0.8, the event sequence appears nonstationary, exhibiting spontaneous cascades of occurrences. 
Indeed, microscopic fluctuations are amplified to be macroscopically visible, whereas the average rate is restrained 
to be finite.

We suggest deciding whether a given series of events is stationary or nonstationary based on whether proper 
rate estimators conclude a constant rate or a fluctuating rate, respectively. Here, we adopt a method of selecting 
the histogram bin size to minimize the expected mean square error between the histogram and the unknown 
underlying rate33. Note that the decision regarding stationary vs nonstationary state is common across proper rate 
estimators, such as the Empirical Bayes and variational Bayes Hidden Markov estimators34.

Histograms were fitted to the data: The optimal bin size Δ* was diverging (becoming as large as the entire 
observation period) when R0 = 0.2, whereas it was finite (significantly smaller than the entire period) when 
R0 = 0.6 and 0.8. Figure 2c depicts the manner in which the inverse bin size 1/Δ* varies with the reproduction 
ratio R0. 1/Δ* remains near zero if R0 is smaller than approximately 0.3, and it departs from zero otherwise, thus 
exhibiting the stationary-nonstationary (SN) transition.

We also simulated the revised Hawkes process (4) with parameters identical to those used for the epidemic 
Markov process. Here, events are indicated by repeating the Bernoulli trials with a probability of λ(t)δt in every 
small interval of δt. By plotting 1/Δ* versus R0, we can also observe the transition (Fig. 2c). Figure 2d depicts the 
critical reproduction ratios obtained for the epidemic Markov process and the revised Hawkes process plotted 
against the refractory period 1/γ, indicating that the SN critical points for both models are robustly close to 
− ≈ .1 1/ 2 0 3, which was obtained for the original (linear) Hawkes process (1/γ = 0) in our previous study26. 

Note that the critical point is independent of the shape of the kernel, as well as the base rate.

Event-occurrences in inhomogeneous networks. Finally, we consider the emergence of cascades in a 
population of individuals interacting through inhomogeneous connections.

To obtain the condition for the SN transition analytically, we analyze the linear multivariate Hawkes processes 
(Fig. 3a). The rate of event-occurrences in the ith individual or node (i = 1, 2, ···, N) is given as

∑ ∑λ ρ α= + −
=

t h t t( ) ( ),
(5)

i i
j

N

ij
k

j
k

1

where ρi represents the base rate, tj
k is the occurrence time of the kth event in the jth node, and αij represents the 

interaction from the jth node to the ith node. Because of the interactions between individuals, A ≡ {αij}, the aver-
age rates 〈λ〉 = {〈λi〉} are shifted from the base rates ρ = {ρi} as 〈λ〉 = Lρ, where L is the Leontief inverse35: 
≡ ∑ = −=

∞L A I I A/( )n
n

0 .

Figure 2. Stationary-nonstationary (SN) transition in the epidemic Markov process and the revised 
Hawkes process. (a) Microscopic epidemic Markov process. (b) Sample sequences of infected times obtained 
by the epidemic Markov processes (model parameters: β = 0.06, 0.18, and 0.24, with γ = 0.3, ρ = 0.5, and 
N = 1000). Below the raster diagrams are the fitted optimal histograms. (c) Inverse optimal binsize 1/Δ* plotted 
against the reproduction ratio R0 (γ = 0.3, ρ = 0.5, and N = 1000). (d) Critical points of the SN transition Rc for 
the epidemic Markov and revised Hawkes processes, plotted against the refractory period 1/γ.
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Even when the fluctuations are not detectable at any single node, all events occurring in the entire set of nodes 
may exhibit visible fluctuations because the signal-to-noise ratio may increase when multiple series of events are 
superposed (Fig. 3b). By analyzing equation (5), we obtain the condition for a series of events occurring in an 
entire population to be nonstationary, or cascading (see Methods):

λ

Λ
≡
∑

∑
>

L L
C

( )
2,

(6)
i j

T
ij

i i

,

where Λ ≡ diag(〈λ〉).
Here, we consider 0–1 connectivity with strength αij = 0 or R0/Nc, where c is the fraction of connections. For 

a fully connected uniform network (c = 1), the summed rate λ λ= ∑ =t t( ) ( )i
N

i1  obeys the original Hawkes process 
equation (3) with ρ ρ= ∑ =i

N
i1 , thus the entire system may exhibit the SN transition at = − ≈ .R 1 1/ 2 0 3c . For 

sparsely connected networks in which every pair of nodes is randomly linked at a fraction of c, the SN critical 
point Rc remains near 0.3.

Nevertheless, it is possible to shift the cascading condition C by reallocating the connections between indi-
viduals by conserving the fraction of connections c; exchanging connections αij and αi′j′ may alter the cascading 
condition C by


α α

λ
∆ = −

−

∑
+′ ′ ′ ′C

H H
R N( / ) ,

(7)
ij ij i j i j

k k
0

2

where Hij ≡ ((∑kLki)2 − C)ρj + 2(∑kLkj)〈λj〉. To raise or lower C, we repeat exchanging a pair of connections that 
maximizes or minimizes ΔC (Fig. 4a).

A network may change the state from stationary to nonstationary if the cascading condition C steps across 
the critical value of 2 from below or vice versa by reconnecting individuals. Figure 4b demonstrates the manner 
in which C is altered by the steepest ascent or descent based on equation (7). When (R0, c) = (0.1, 0.1), C remains 
below 2, even when all connections are reallocated; however, when (R0, c) = (0.35, 0.1), C exceeds 2, indicating 
that the system may change between nonstationary (C > 2) and stationary (C ≤ 2).

In the study of epidemics, whether the epidemic threshold is higher in the clustered networks8,36,37 or not38 
has been controversial. Here, we are not addressing the epidemic transition, but we are interested in how the 
clustering of individuals influences the SN transition. Figure 4c depicts the manner in which the average cluster-
ing coefficient changes with our gradient ascent or descent of C, indicating that clustering tends to facilitate the 
event-occurrence cascades. A similar tendency was reported in neural network simulations32. An advantage of 
our method is that we can control the cascade bursting activity by systematically rearranging connections based 
on a single measure: C.

Figure 4d depicts the range of (R0, c) in which a network of a large size N may exhibit stationary and nonsta-
tionary states. In the “Stationary” regime, the systems never generate visible cascades, even when connections are 
reallocated, whereas in the “Nonstationary” regime, the systems always exhibit cascades. In the “S-N 0” regime, 
networks may be either stationary or nonstationary, depending on the manner in which individuals are con-
nected. In the “S-N 1” regime, networks may be either stationary or nonstationary if the reciprocal connections 
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Figure 3. Multivariate Hawkes process. (a) The rate of event-occurrences in each node is modulated by the 
influence of events generated at other nodes, and events are derived from the underlying rate λi(t). (b) The 
manner in which the nonstationary fluctuations become visible by superposing event series in individual nodes.
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can be controlled independently, whereas undirected networks, whose connections are reciprocally symmetric 
{αij = αji}, remain nonstationary, always generating cascades of events. For undirected networks, the critical point 
Rc appears to be bounded at approximately 0.3.

As extreme configurations with low critical points, we considered networks of (i): the nodes of one group are 
fully connected within the group, and the others are isolated; and (ii): the nodes of one group are fully connected 
within the group and also receive undirected (reciprocal) connections from all nodes of another group. The criti-
cal points Rc exhibit crossover at c = 0.20, and above and below this point, those of (i) and (ii) are lower. The crit-
icality in low R0 implies that these configurations tend to facilitate cascade bursting. As an opposite extreme, we 
considered another configuration (iii): each node of one group receives only directed connections from another 
group. We also considered a specific hierarchical networks of (iv): every node exerts the influence over the lower 
hierarchy nodes in a manner that connections form a triangular matrix. All critical points for these specific 
cases are obtained analytically (see Methods) and plotted in Fig. 4d: The configurations (i) and (ii) tend to incite 
bursting, whereas the configurations (iii) and (iv) impede bursting. These observations imply that networks in 
which small number of individuals occupy reciprocal connections favor event cascade bursting, whereas directed 
unilateral connections tend to impede cascades.

Any network exhibits the SN transition within the range of S-N 0 or S-N 1 on a plane of (R0, c), independently 
of the system size N (Fig. 4d). The precise transition point within the transition range is determined by the net-
work configuration A ≡ {αij}. Here we examine the SN transition in representative network models, such as the 
scale-free network (Barabási-Albert model)39, the random network (Erdös-Rényi model)40, and the small-world 
network (Watts-Strogatz model)41 assuming reciprocal connections. In particular, we compare the SN critical 
points Rc of those networks of identical number of nodes N and the fraction of connections inversely proportional 
to the number of nodes c = 6/N (Fig. 5). The scale-free network is assembled with the Barabási-Albert model. The 
small-world network is made by rewiring a regular ring lattice with the rewiring probability p = 0.1. The critical 
point Rc in the scale-free network is the lowest among those networks, implying that the wide disparity in degrees 
(numbers of connections) of individual nodes may facilitate the fluctuations in event occurrences. By obtaining 
the average critical point analytically, we may confirm that Rc → 0 as N → ∞ (see Methods). It is interesting to see 
that Rc is higher in the small-world network than in the Erdös-Rényi model. This may also be closely related to the 
difference in degrees; the small-world network of the small rewiring probability exhibits the smaller degree dis-
persion than the Erdös-Rényi model. Indeed, a regular ring lattice in which individual degrees are identical gives 
the highest critical point Rc = 0.2929, which is equal to the critical point of a fully connected uniform network, 

Figure 4. Controlling the emergence of event-occurrence cascades. (a) Elementary process of exchanging 
connections αij and αi′j′. (b) The manner in which the potential for the cascades C is altered by the steepest 
ascent or descent based on equation (7), starting from the Erdös-Rényi models. The blue and green lines 
represent the cases of (R0, c) = (0.1, 0.1), and (0.35, 0.1), respectively (N = 100). (c) Changes in the average 
clustering coefficient according to the reallocation of connections when (R0, c) = (0.35, 0.1). (d) Parameter 
ranges of (R0, c) in which the networks may be either stationary or nonstationary. Some solvable extreme 
configurations that give low and high critical points in R0 are depicted.
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−1 1/ 2. In this way, the SN transition points Rc can be different, crucially depending on the network structure, 
in particular on the degree dispersion.

Finally we demonstrate the manner in which the network is reconnected by our method for inciting or imped-
ing cascades (Fig. 6); we take up the network of “Zachary’s Karate Club”42 and reallocate the (undirected) friend-
ships between 34 people. By assuming that the original network is at the criticality C = 2, we reorganized the 
network so that their entire communication becomes stationary or nonstationary. The operation to impede the 
communication cascades (ΔC < 0) tended to make all people be connected harmoniously. Contrariwise, the 
operation to incite the cascade (ΔC > 0) made the society polarized into two kinds of people; a few people have 
exclusive rich connections, while others are connected only with those people.

Discussion
Here, we showed that the proliferation process may exhibit the SN transition at which nonstationary cascades 
of event-occurrences emerge from the stationary process. The critical reproduction ratio for the SN transition 
Rc is much smaller than the threshold for the conventional epidemic transition exhibiting chain reactions. The 
SN transition may depend greatly on the manner in which individuals are connected. We developed a theory 
for predicting the occurrence of cascades in a network. We also suggested a method of reconnecting individuals 
for impeding or inciting cascade bursting in a network. It was revealed that networks of reciprocal connections 
exhibiting wide disparity in degrees of individual nodes are apt to trigger the event cascades.

Note that the term “cascade” has also been used differently in other contexts, as expressing transient phe-
nomena of event spreads, as in failures in a power grid, chain bankruptcies, and information cascades in social 
systems43–45. Though their basic process is similar to that of our SN transition, the situations are different; we 
considered here the fluctuations in the process of event occurrences that involves constant spontaneous activity 
or external activation such that individuals are continually generating events at a finite probability.

In this study, we revealed that nonstationary fluctuations may occur autonomously in a static network without 
environmental fluctuations. In real-world circumstances, however, both connections and environmental inputs 
may change in time, and the event cascades may have been induced by such extrinsic cause. Thus it may be an 
important direction in future to consider discerning the factor that may have contributed to the observed fluctu-
ations, namely, whether the fluctuations were originated intrinsically or extrinsically.

To set about applying our theory to real-world problems, we should also consider adapting models to indi-
vidual situations, by collecting information regarding interactions among individuals. Interactions in epidemic 
networks may be inferred by getting hold of information of contacts between individuals and estimating the 
infectivity of the disease. Interactions in neural networks may be estimated by detecting the synaptic connections 
and measuring the strength of connections such as excitatory or inhibitory postsynaptic potentials. If the infor-
mation of interactions is given, we can predict whether the network may exhibit nonstationary fluctuations, using 
the theory developed here. However, it is practically difficult to obtain the entire information of the interactions 
among all pairs of existing nodes. Thus it is useful to devise a method of complementing information of the entire 
network from partial observation, and furthermore, to suggest controlling systems by manipulating partially 
available links.

Figure 5. Stationary-nonstationary (SN) transitions in representative complex networks. (a) The manner 
in which the critical reproduction ratio Rc varies with the number of nodes N in the scale-free network 
(Barabási-Albert model), the random network (Erdös-Rényi model), and the small-world network (Watts-
Strogatz model), possessing reciprocal connections. In all networks, the fraction of connections varied inversely 
proportional to the system size as c = 6/N. (b) Dependence of Rc on c plotted on a plane in Fig. 4d. The error 
bars represent standard deviation for 100 sample networks. The dashed line represents the average critical point 
analytically obtained for the scale-free network.
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Methods
Derivation of the condition for the SN transition. Here, we derive the condition for the SN transition 
for a given series of events. It has been proven that the optimal bin size may be finite if fluctuation in the underly-
ing rate δλ(t) ≡ λ(t) − 〈λ〉 satisfies the condition34,46

∫λ δλ δλ+ >
−∞

∞
t s t ds1 ( ) ( ) 1,

(8)

and diverges otherwise. This condition (8) is derived as follows. The mean square error between the underlying 
rate λ(t) and the histogram λ̂ t( ) is given as

∫ λ λ= −
→∞

ˆS
T

t t dtlim 1 ( ( ) ( )) , (9)T

T

0

2

where T is the entire observation interval, and the bracket represents the ensemble average over the possible real-
ization of the stochastic process. In each bin of size Δ, the histogram λ̂ t( ) is a constant whose height is the number 
of events K divided by the bin size Δ. Thus, the mean square error is transformed as

∫ λ λ=
∆






−
∆

+
∆






.
∆

S t K t K dt1 ( ) 2 ( )
(10)0

2
2

2

The expected number of events in each interval is given by integrating the underlying rate: ∫ λ=
∆K t dt( )

0
. 

Because events are independently drawn, the Poisson relation holds: 〈K2〉 = 〈K〉2 + 〈K〉. Inserting these relations 
into equation (10), we have

∫ ∫φ
λ

φ= +
∆
−
∆

∆

−
S dt s ds(0) 1 ( ) ,

(11)t

t

2 0

where φ(s) ≡ 〈λ(t + s)λ(t)〉 − 〈λ〉2 is the correlation of the rate fluctuation or φ(s) = 〈δλ(t + s)δλ(t)〉, where 
δλ(t) ≡ λ(t) − 〈λ〉 is the temporal fluctuation of the rate. The mean square error may have a minimum at some 
finite Δ. Based on the second-order transition in which the minimum position Δ* goes to infinity or 1/Δ* goes to 
zero continuously, the condition for the transition is given as

∆
< .

∆=∞

dS
d(1/ )

0
(12)

This can be summed up as a condition of the rate fluctuation given in inequality (8) if ∫ φ
∞ s s ds( )

0
 is finite. This 

condition was derived from the optimization of a histogram and was found to be identical to that derived from 
the marginal likelihood maximization of the Bayesian rate estimator, implying that this condition may be a uni-
versal bound for detecting rate fluctuation47.

Figure 6. Reallocating connections between individuals. (a) The manner in which the (undirected) friendships 
between 34 people in “Zachary’s Karate Club” are reconnected by increasing or decreasing C, respectively for 
inciting or impeding cascades of communications. (b) The change in the potential for the cascades C with the 
steepest ascent (rightward) or descent (leftward) based on equation (7), (c) Average clustering coefficient.
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For the linear self-exciting point process, the power spectrum of the rate fluctuation or the Fourier transfor-
mation of the autocorrelation φ(s) ≡ 〈δλ(t + s)δλ(t)〉 was obtained by Hawkes2. The result can be summarized as26

φ λ=



 − −

−



ω

ω ω−
∼ ∼

∼

R h R h
1

(1 )(1 )
1 ,

(13)0 0

where ω
∼
h  is the Fourier transform of the kernel function h(t). Because ∫ ∫φ φ δλ δλ= = +

−∞

∞

−∞

∞∼
s ds t s t ds( ) ( ) ( )0 , 

the condition for the linear self-exciting process to be nonstationary is obtained as 1/(1 − R0)2 > 2. Thus, the SN 
transition occurs at = −R 1 1/ 20  independent of the time course of supplementary probability h(t) and the 
base rate ρ.

The multivariate Hawkes process (5) is also analytically tractable; in particular, the Fourier zero-mode of the 
correlations φ(s) ≡ {φij(s)} ≡ {〈δλi(t + s)δλj(t)〉} is obtained as3,26,

φ Λ Λ= − .
∼

L L (14)T
0

Each node may exhibit the SN criticality if the correlation of each individual, φii(s), satisfies the SN condition. 
Even when rate fluctuations are not detectable at any single node, the summed activity of multiple nodes may 
exhibit fluctuations. The condition for the superposed series to exhibit the SN transition is obtained by applying 
the nonstationary condition (8) to the summed rate λ λ= ∑ =t t( ) ( )i

N
i1 , thus leading to the cascading condition, 

equation (6).

Criticality conditions for extreme configurations. In the following, we give the criticality conditions 
C = 2 in equation (6) for the proposed extreme configurations (i), (ii), (iii), and (iv) (Fig. 4d). The connectivity of 
configuration (i) is given as

=










−

− − −
A R

Nc
1 0

0 0 ,
(15)

M M M N M

N M M N M N M

0 , ,

, ,

where 1n,m and 0n,m are n × m matrices consisting of all elements of 1 and 0, respectively. In this case, the fraction 
of connections is related to M as c = M2/N2, and the critical point is obtained by solving a cubic equation:

− = − − .x c c x cx c x( ) (16)1/2 3 1/2 3 2 3/2

The connectivity of the configuration (ii) is given as
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The critical point is obtained by solving a fifth-degree equation:
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where = − = −b c N M N1 ( )/ .
The connectivity of the configuration (iii) is given as
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In this case, c is related to M with c = M(N − M)/N2, and the critical point is obtained as

=
+ −

− + + − − .−R c c c1 1 4
4

( 1 1 2 (1 1 4 ) ) (20)0
1

The connectivity of the configuration (iv) is given by the triangular matrix,

=













.

�
� � �

� � �
�

A R
Nc

0 0 0
1

0
1 1 0 (21)

0

In this case, = − =→∞c N Nlim ( 1)/(2 ) 1/2N , and the critical point is obtained as

=
−

− = ≈ .
→∞

−R Nlim 1
2

(2 1) log 2
2

0 35 (22)N

N
0

1/( 1)



www.nature.com/scientificreports/

9Scientific RepoRts | 6:33321 | DOI: 10.1038/srep33321

Critical reproduction ratio of the scale-free network. Here, we derive the critical value Rc in the scale 
free network using degree based mean field approximation48. The critical point is obtained by solving a cubic 
equation of x = Rc:

+ − + −

+ + − =

k k k k k x k k k k x

k k k x k

( 2 ) ( 3 )

(3 ) 0, (23)

3 3 2 3 2 2 2 3 2 4 2 2 2 2

2 4 6 6

where k is the degree of each node and 〈⋅〉 represents the average over the degree distribution P(k). If 
P(k) ~ k−γ(γ ≤ 3), we may confirm that Rc → 0 as N → ∞.
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