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Abstract: Metabolic alterations have been documented in peripheral tissues in heart failure (HF).
Outcomes might be improved by early identification of risk. However, the prognostic information offered is
still far from enough. We hypothesized that plasma metabolic profiling potentially provides risk stratification
for HF patients. Of 61 patients hospitalized due to acute decompensated HF, 31 developed HF-related events
in one year after discharge (Event group), and the other 30 patients did not (Non-event group). The plasma
collected during hospital admission was analyzed by an ultra-high performance liquid chromatography
time-of-flight mass spectrometry (UPLC-TOFMS)-based metabolomic approach. The orthogonal projection
to latent structure discriminant analysis (OPLS-DA) reveals that the metabolomics profile is able to
distinguish between events in HF. Levels of 19 metabolites including acylcarnitines, lysophospholipids,
dimethylxanthine, dimethyluric acid, tryptophan, phenylacetylglutamine, and hypoxanthine are
significantly different between patients with and without event (p < 0.05). Established risk prediction
models of event patients by using receiver operating characteristics analysis reveal that the combination
of tetradecenoylcarnitine, dimethylxanthine, phenylacetylglutamine, and hypoxanthine has better
discrimination than B-type natriuretic peptide (BNP) (AUC 0.871 and 0.602, respectively). These findings
suggest that metabolomics-derived metabolic profiling have the potential of identifying patients with high
risk of HF-related events and provide insights related to HF outcome.
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1. Introduction

The prolongation of life expectancy in patients with cardiovascular disease is accompanied with a
growing prevalence of heart failure (HF), which is recognized as a major health care problem. From a
public health perspective, more than 70% of HF-related health care expenditures are explained by
hospital admissions [1]. HF is a syndrome of cardiac disorder that represents the inability of heart to
adequately support the circulation and the need of whole body metabolism. Regardless of advances
in therapy, morbidity, and mortality of HF remain high, leading to considerable consumption of
healthcare resources [2] and substantial reduction of quality of life. Much effort has been made to
reduce frequent hospital readmissions, and to prevent decompensation of HF. Despite improvement in
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the treatment of HF, the management also remains a challenge due to limited knowledge about the
pathophysiology. Outcomes might be improved by early identification of risk. However, the prognostic
information offered is still far from enough. In order to evaluate patients at high risk, various risk
scores have been developed to quantify the risk of re-hospitalization [3,4]. However, it remains
unclear how to identify patients earlier to reduce to prevent re-hospitalization and readmission rate.
In clinical, B-type natriuretic peptide (BNP), a heart hormone synthesized in atrial and ventricular
cells, and N-terminal-pro hormone BNP (NT-proBNP) are released in response to changes in pressure
inside the heart which can be associated with cardiac problems [5]. However, for acute decompensated
heart failure, the BNP-guided therapy doesn’t improve post-discharge mortality or readmission
rates [6]. Furthermore, some patients never reached the targeted BNP threshold even careful treatment.
HF-associated pathophysiological changes lead to abnormalities in metabolism. Metabolite profile
is dramatically altered during disease progression [7–9]. Metabolic alterations arising from genetic
variants and environmental factors such as diet, lifestyle, and gut microbiome reflect pathological
changes in an individual. Taking advantage of a combination of multiple biomarkers, metabolomics is
regarded as a potential platform to identify metabolic signatures of HF patients. It is possible to identify
the outcome-related metabolic profile of plasma of HF patients, regardless on the heterogeneous
etiologies or medication.

In the past, research into the metabolic changes that occur during HF has primarily focused on
changes in fatty acid and glucose metabolism as discussed. In normal condition, cardiomyocytes
utilize fatty acids as a primary substrate to provide energy. However, with failing conditions,
cardiomyocytes prefer to switch to glucose [10]. However, this hypothesis-driven process has
failed to discover other metabolic pathways in heart failure. As such, untargeted metabolomics
has helped to explain new underlying pathophysiological mechanisms in HF through discovery of
novel metabolic pathways or drug-derived metabolites. Recently, most metabolomics studies have
demonstrated metabolic alterations in blood of HF patients [11–13]. Changes in circulating metabolites
that occur in HF reflect the whole body’s global metabolic state, that providing key insight into
HF. In previous study [14], we have applied targeted metabolomics approach in combination with
multiple molecules (a panel) to evaluate patients with HF. The major benefit of targeted metabolomics
is enhanced sensitivity and selectivity. A variety of biomarkers for heart failure have been identified.
Levels of histidine, phenylalanine, ornithine, spermine, spermidine, phosphatidylcholines significantly
change at different stages of HF. Notably, metabolites including histidine, phenylalanine, spermidine,
and phosphatidylcholine C34:4 significantly contributed to diagnosis of HF [14]. Of the metabolites,
the physiological/endogenous metabolites are predominant, but many metabolites can be derived from
exposures, microbes, and drugs [15]. A large of metabolites can be found in human circulation and
response the environment or additional therapy. Moreover, the crosstalk between immune responses
and different source of metabolites from gut microbiota regulate pathogens and host metabolome [16].
To study metabolite features associated with event and non-event in HF, unbiased metabolic profiling
was used to study a broad perspective on changes that occur in HF and allows the discovery
of previously neglected biological pathways that contribute to pathogenesis. A well-established
untargeted metabolomics approach may be a useful technology for discern endogenous and exogenous
metabolic differences in HF.

In this study, metabolomics profiles of the plasma from HF patients were analyzed by
ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS). The data
were subjected to multivariate analysis to identify metabolite signature distinct to the event and
non-event groups which could be used to predict the outcome of HF.
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2. Results

2.1. Baseline Characteristics and Laboratory Findings

A total of 61 subjects were enrolled in this study, including 30 patients in the non-event group
and 31 in the event group. The definition of event is HF-related death or re-hospitalization within
the first year from the initial discharge from hospital. The baseline characteristics and laboratory
findings are shown in Table 1. Compared to the non-event group, the event group patients had
higher levels of creatinine and B-type Natriuretic Peptide (BNP); lower levels of serum sodium and
hemoglobin; and a higher prevalence of diabetes mellitus; and a higher rate of using allopurinol
(a xanthine oxidase inhibitor). No significant differences between the two groups were noted in age,
sex, LVEF, or other laboratory parameters.

Table 1. Characteristics and laboratory data of 61 heart failure patients in event and non-event group.

Variable Non-Event (n = 30) Event (n = 31) p-Value

Age (years) 60.3 ± 11.7 64.5 ± 11.6 0.173
Male (%) 24 (80.0) 20 (64.5) 0.416

EF (%) 32.2 ± 10.4 34.2 ± 13.7 0.518

Blood pressure (mm Hg)

Systolic 120.2 ± 17.5 121.9 ± 16.5 0.703
Diastolic 75.2 ± 13.2 70.0 ± 10.9 0.094

Heart rate (beats/min) 76.9 ± 10.1 79.5 ± 11.5 0.338

Co-morbidity

Diabetes mellitus (%) 6 (20.0) 15 (48.4) 0.031
Hypertension (%) 20 (66.7) 23 (74.2) 0.582

Atrial fibrillation (%) 4 (13.3) 10 (32.3) 0.127
COPD (%) 2 (6.7) 6 (19.4) 0.255

Ischemic (%) 19 (63.3) 16 (51.6) 0.440
Body mass index (kg/m2) 24.4 ± 4.9 24.8 ± 4.9 0.771

Medication

ACEI or ARB (%) 28 (93.3) 24 (77.4) 0.147
β-Blocker (%) 27 (90.0) 21 (67.7) 0.06
Diuretic (%) 23 (76.7) 23 (74.2) 1.000
Allopurinol 0 (0) 6 (19.4) 0.024

Benzbromarone 0 (0) 2 (6.5) 0.492

Laboratory data

Serum sodium (mEq/L) 140.2 ± 2.3 137.6 ± 4.7 0.008
Hemoglobin (g/dL) 14.3 ± 1.9 13.0 ± 2.4 0.028

Total bilirubin (mg/dL) 1.1 ± 0.6 1.3 ± 0.8 0.259
Albumin (g/dL) 3.7 ± 0.5 3.5 ± 0.6 0.169

eGFR (ml/min/1.73 m2) 74.3 ± 18.6 62.8 ± 37.3 0.134
Creatinine (mg/dL) 1.0 ± 0.3 1.5 ± 1.1 0.024
Cholesterol (mg/dL) 171.7 ± 44.5 173.1 ± 63.1 0.919

TG (mg/dL) 111.6 ± 48.2 125.7 ± 67.3 0.351
LDL-cholesterol (mg/dL) 111.1 ± 41.7 115.3 ± 60.1 0.755
HDL-cholesterol (mg/dL) 36.4 ± 10.6 34.7 ± 15.4 0.615

HbA1c (%) 6.3 ± 1.4 6.8 ± 1.7 0.234
BNP (pg/mL) 518.2 ± 620.9 891.5 ± 882.6 0.063
CRP (mg/L) 19.3 ± 43.4 16.4 ± 25.8 0.758

Uric acid (mg/dL) 7.4 ± 2.1 8.1 ± 2.9 0.262

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; COPD,
chronic obstructive pulmonary disease; Chronic kidney disease, estimated glomerular filtration rate
(eGFR) < 60 mL/min/1.73 m2; LVEF, left ventricular ejection fraction; OHA, oral hypoglycemic agents;
BNP, B-type Natriuretic Peptide. p value was determined by student’s t-test.
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2.2. Discriminative Ability of Potential Metabolite Biomarkers for Events in HF

To examine whether plasma metabolome differs between event and non-event groups of these
patients, plasma specimens from HF patients were analyzed by UPLC-TOFMS to generate an untargeted
metabolome profiles. After peak alignment and removal of missing values, a total of 946 positive
ions were detected in plasma. The orthogonal projection to latent structure discriminant analysis
(OPLS-DA) score plots (Figure 1A) and loading plots (Figure 1B) demonstrated that metabolomics-based
analysis models were able to distinguish the event group from the non-event group in HF patients.
Discriminant metabolites that contributed to differences between these groups were selected according to
their variable importance in the projection (VIP) scores. The OPLS-DA models were used to build up a
training set based on all metabolites (Figure 1C), the Y axis-predicted scatter plots assigned samples to
either event or non-event group using a priori cut-off at 0. The profile has the ability to discriminate
patients with events from those without events. On the basis of the VIP score, 122 metabolites with a VIP
score greater than 1 were considered to be potential biomarkers. The top 50 metabolites with significant
contribution to separation between event group and non-event group are presented in Figure 1D.
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Figure 1. Changes in metabolome of heart failure patients. The OPLS-DA score plot (A) show
considerable separation between 30 non-event patients (blue) and 31 heart failure (HF) event patients
(green). The ellipse shown in the model represents the Hotelling T2 with 95% confidence. Each point
represents one patient, and the cohort to which they belong is color-coded as shown in the legend box.
The loading plot (B) of metabolite profiles, each point in represents one metabolite. (C) Score plots of
orthogonal projection to latent structure discriminant analysis (OPLS-DA) prediction model is used to
determine the success of the models for classifying the event and non-event groups. All of the sample
were applied to construct the model, and the Y axis-predicted scatter plots assigned samples to either
event or non-event group using a priori cut-off at 0. (D) The top 50 metabolites were ranked according
to variable importance in the projection (VIP) score of OPLS-DA model. The heat map shows the ratio
of abundance (log2) between event and non-event group. The un-identified metabolites are showed
with metabolite ID.
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Further analysis revealed up-regulation of caffeine metabolism, amino acids catabolism, and purine
metabolic pathways (Figure 2A), changes in fatty acid beta-oxidation, and down-regulation of phospholipid
biosynthesis pathways in HF patients with poor outcome (Figure 2B). By Student’s t-test analysis,
49 of 122 metabolites were significantly different (p < 0.05) between the event and the non-event
groups (Figure 2C). After searches against online databases (HMDB or METLIN) and in-house
database, there were 19 metabolites with significantly different abundance between event and non-event
groups. Acylcarnitines, including 3-methylglutarylcarnitine, butyrylcarnitine, 3-hydroxyoctanoylcarnitine,
decatrienoylcarnitine, dodecenoylcarnitine, tetradecadiencarnitine, tetradecenoylcarnitine, and those related
caffeine metabolism, like dimethyluric acid, dimethylxanthine, phenylacetylglutamine, were significantly
higher in event group than non-event group. Lysophospholipids, likelysophsophatidylcholine (lysoPC)(14:0),
lysoPC(15:0), lysoPC(16:0), lysoPC(18:2), LysoPC(20:5), lysophosphatidylethanolamine (lysoPE)(18:2),
lysophosphatidylserine (lysoPS)(18:1), and other metabolites, like tryptophan and hypoxanthine,
were significantly lower in event group than non-event group (Table 2). To understand relation between
those metabolites and BNP level, a Pearson’s correlation analysis was performed to analyze the correlation
between the level of BNP and differentially abundant metabolites (Figure 2D). Acylcarnitines and
phenylacetylglutamine positively correlate with BNP, and lysoPCs like lysoPC(14:0), lysoPC(15:0)
negatively correlate with BNP level.
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Figure 2. Identification of metabolites between event and non-event groups. (A) Pathway analysis
reveals that several pathways were changed in HF patients with event group. Metabolic disturbances
are mapped to pathways involved in amino acid metabolism, caffeine metabolism, and purine
metabolism. (B) Scheme of metabolic disturbance associated with poor heart failure-related outcomes.
Red metabolites: those significantly increasing in event group; blue metabolite: those significantly
decreasing in event group; dark metabolites: not measured or no significant difference between event
and non-event groups. (C) Venn diagram shows the number of metabolites with VIP greater than
1 and significantly (p < 0.05) altered between event and non-event groups. (D) Significantly different
metabolites were correlated with level of BNP by Pearson’s correlation coefficient analysis. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Table 2. Statistical analysis of the metabolites differently abundant in event versus non-event groups
(VIP score of >1.0 and p value < 0.05).

Compound Name Retention
Time (min) m/z Non-Event

(n = 30)
Event

(n = 31) p-Value VIP
Score q-Value

Acylcarnitines

3-Methylglutarylcarnitine 0.95 290.1592 0.8 ± 0.9 3.4 ± 5.4 0.013 1.29 0.065
Butyrylcarnitine 1.01 232.1542 9.8 ± 5.7 16.4 ± 12.7 0.011 2.08 0.064

3-Hydroxyoctanoylcarnitine 1.33 304.2118 5.6 ± 4.8 9.1 ± 7.4 0.034 1.38 0.108
Decatrienoylcarnitine 1.54 310.2016 17.0 ± 11.9 30.9 ± 21.7 0.003 3.23 0.048
Dodecenoylcarnitine 1.85 342.2636 3.6 ± 3.3 6.7 ± 6.7 0.026 1.34 0.104

Tetradecadiencarnitine 1.92 368.2797 3.7 ± 3.6 6.3 ± 5.8 0.043 1.16 0.119
Tetradecenoylcarnitine 2.00 370.2951 2.7 ± 1.9 4.9 ± 4.2 0.009 1.23 0.055

Lysophospholipids

LysoPC(14:0) 2.28 468.3087 12.4 ± 6.0 9.1 ± 6.7 0.049 1.29 0.122
LysoPC(15:0) 2.39 482.3248 9.0 ± 4.1 6.9 ± 3.9 0.044 1.05 0.116
LysoPE(18:2) 2.42 478.2926 35.5 ± 14.1 26.9 ± 17.2 0.037 2.15 0.116
LysoPC(18:2) 2.43 520.3401 590 ± 252 413 ± 236 0.006 11.11 0.050
LysoPC(20:5) 2.43 542.3244 7.3 ± 6.6 4.0 ± 4.4 0.027 1.37 0.103
LysoPS(18:1) 2.49 524.2956 31.6 ± 11.2 25.4 ± 11.9 0.040 1.81 0.115
LysoPC(16:0) 2.49 518.3259 33.7 ± 10.2 28.1 ± 10.7 0.040 1.73 0.138

Other metabolites

Hypoxanthine 0.65 137.0459 174 ± 17 93.3 ± 81.4 0.023 6.93 0.102
Dimethyluric acid 0.96 197.0669 0.2 ± 0.7 3.3 ± 6.7 0.014 1.41 0.070
Dimethylxanthine 1.05 181.0717 11.5 ± 24.6 87.7 ± 143.9 0.007 7.30 0.045

Tryptophan 1.06 205.0979 19.4 ± 4.0 16.9 ± 4.9 0.027 1.21 0.100
Phenylacetylglutamine 1.25 265.1184 3.1 ± 2.2 8.2 ± 8.9 0.004 1.93 0.051

Data are expresses as Mean ± SD. LysoPC: lysophosphatidylcholine; LysoPE: lysophosphatidylethanolamine;
Metabolites were identified by ms/ms and m/z values of fragments were compared with those available from online
HMDB (http://www.hmdb.ca/) and in-house database. Q-value is a p-value which were adjusted for the false
discovery rate (FDR).

The identified metabolites were comparable to that of BNP in discrimination between event
and non-event groups. Each of 19 metabolites and their combinations were added to established
risk prediction models of event patients and receiver operating characteristics (ROC) analysis
(supplementary Table S1). Combination of four metabolites (tetradecenoylcarnitine + dimethylxanthine
+ phenylacetylglutamine + hypoxanthine) allows a better prediction for event in HF than BNP
(area under the curve (AUC) were 0.871 and 0.602, respectively) (Figure 3A). The DeLong’s test
showed a significant difference (p < 0.01) between four metabolites and BNP. Comparison of BNP with
four-metabolite panel showed a significantly higher predictive power by the integrated discrimination
improvement (IDI) and the net reclassification improvement (NRI) (Figure 3C). When the 4-metabolite
panel was combined with BNP for ROC curve analysis (AUC = 0.874), the DeLong’s test showed no
significant difference (p = 0.502) as compared to 4-metabolite panel. In addition, we used the same
model to predict the event even death in HF (Figure 3B), 4-metabolite panel (tetradecenoylcarnitine
+ dimethylxanthine + phenylacetylglutamine + hypoxanthine) had good discrimination for death
(AUC = 0.967). The 4-metabolite panel showed a significantly higher ability of prediction by IDI
and NRI (Figure 3D). However, the combination of four metabolites with BNP had achieved the
highest ROC AUC 0.988, but the Delong’s test showed no significant difference between 4-metabolite
and 4-metabolite plus BNP panels. The results of univariate ROC curve analyses indicated that
tetradecenoylcarnitine, dimethylxanthine, phenylacetylglutamine, and hypoxanthine in the plasma
samples can be good predictor for event in heart failure.

http://www.hmdb.ca/
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Figure 3. ROC AUC analysis plots. Comparison between the AUC with (A) ROC curves for
the discrimination of the event patients and non-event patients using BNP, four metabolites
(tetradecenoylcarnitine + dimethylxanthine + phenylacetylglutamine + hypoxanthine (TDPH)). (B) ROC
curves for the discrimination of the event patients (death) and non-event patients using BNP, four
metabolites (tetradecenoylcarnitine + dimethylxanthine + phenylacetylglutamine + hypoxanthine
(TDPH)). The AUC values for respective ROCs in event versus non-event (A,C) and event (death)
versus non-event (B,D) models are shown. Statistically significant differences between two AUCs
with DeLong’s test are indicated *** p < 0.001. Significant increases in ability of prediction as assessed
by integrated discrimination improvement (IDI) and the net reclassification improvement (NDI)
are indicated # and †, respectively. ### or ††† p < 0.001.

3. Discussion

Our study demonstrated that untargeted metabolomics analysis of plasma metabolites is able to
separate HF patients with and without events. Untargeted metabolomics approaches lead to discovery
of biomarkers that may not be observed in targeted biochemical assays. The outcome-associated
disturbances in metabolism are involved in a number of biochemical pathways including fatty acid
beta-oxidation, amino acids, phospholipid biosynthesis, caffeine and purine metabolism (Figure 2B)
which may be affected by cellular endogenous, ingestions, drugs, or derived from gut microbiota.
Identification of metabolites by untargeted metabolomics approach could help us to construct the
overall molecular mechanism in heart failure. In the present study, we found that endogenous
as well as exogenous metabolites, like phenylacetylglutamine and dimethylxanthine, could be as
potential markers to assist prediction in event of heart failure. The liver is the principal location of
lysophophatidylcholines and xenobiotic metabolism after ingestion. Plasma metabolome of heart
failure is indicative of interactions between various organs and heart during the HF progression.

The pathogenic role of plasma lipid abnormalities in cardiovascular disease, diabetes, and kidney
disease is well recognized. In our previous study, phosphatidylcholines levels were significantly lower
in stage C of HF than control group [14]. Consistent with this, the lysophosphatidylcholine levels
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in heart failure patients with events were lowered (Table 2). However, finding from recent clinical
studies of lysoPC have been controversial. Lysophosphatiditylcholine consists of a glycerin frame,
a phosphocholine, and a fatty acid. It is a major component of oxidized LDL and increases lysoPC
content by phospholipase A2 hydrolysis [17]. Lysophoshatidylcholines are increasingly important
as key markers associated with cardiovascular diseases [18]. Herein, the present study showed the
lysoPC levels decreased in HF patients with events, Lee et al. [19] also demonstrated that low lysoPC
was associated with significantly higher risk of cardiovascular disease. But the underlying mechanisms
for this phenomenon is not clear. Previous studies reported that the plasma lysoPC levels are reduced
in patients with impaired glucose tolerance [20], and those with obesity and type 2 diabetes [21].
The mechanisms responsible for the reduction in circulating lysoPC are likely to involve reduction in
lysoPC biosynthesis and/or enhanced breakdown of lysoPC and rapid clearance from the circulation by
metabolically active tissues. For instance, phosphatidylcholine production from liver may decline due
to liver congestion associated with HF [22]. The activity of phospholipase A2 and the serum enzyme
lecithin-cholesterol acyltransferase may be affected in a severe disease status such as HF [22].

Acylcarnitines represent by-products of mitochondrial beta-oxidation. Unlike acyl-CoAs,
which cannot cross the mitochondrial membrane, the acylcarnitines pass efficiently into the cytosol,
and subsequently into the bloodstream. In recent studies, higher levels of short- to medium-chain
dicarboxylacylcarnitines are associated with increased risk of death among patients with coronary artery
disease [23]. In our result, we found the levels of 3-methylglutarylcarnitine, a dicarboxylacylcarnitine,
and 3-hydroxyoctanoylcarnitine significantly are higher in the event of heart failure. Fatty acids
are first converted into hydroxymonocarboxylic acid by cytochrome p450 (CYP) in microsome and
then converted to dicarboxyl acids [23], and are shortened via β-oxidation in peroxisome in the liver.
However, the associations between circulating acylcarnitines with various chain lengths have not
been evaluated. The esterification of carnitine is catalyzed by acyltransferases specific for fatty acids
of various chain lengths [24]. Accumulation of C4- to C12-acylcarnitines in patients with event can
be attributed to defective β-oxidation of medium- and short chain fatty acids and /or to defective
coupling between fatty acid oxidation and electron transport chain [25]. C4- to C12-acylcarnitines
were associated with levels of BNP, a disease severity marker (Figure 2D), which was consistent
with previous studies [14]. The incomplete fatty acid β-oxidation downstream of CPT-I lead to
accumulation of acyl-CoAs in mitochondrial matrix and are converted into acylcarnitines. They are
subsequently transported through mitochondrial membranes to cytosol and then to blood [26].
These findings suggest that HF patients with event have severe mitochondrial dysfunction and an
abnormal acylcarnitine profile.

Thephenylacetylglutaminecanbeapredictor forevent inheart failure (Figure3). Phenylacetylglutamine
is derived from glutamine and phenylacetyl-CoA in phenylalanine transaminase-catalyzed reaction
in phenylalanine metabolic pathway. It is a major nitrogenous metabolite that accumulates in the
patients with congenital phenylketonuria [27] and with disorders related to urea cycle dysfunction [28].
Phenylacetylglutamine formation is considered as a mechanism to reduce whole body ammonia level through
reaction with glutamine, and its accumulation may be associated with increased amino acid degradation.
Its increase in HF patients with event implies that these patients use more amino acids as energy source and
produce more plasma phenylacetylglutamine than those without event. Recently, phenylacetylglutamine
is identified as microbial metabolites from amino acid fermentation [1]. Phenylacetylglutamine is not
significantly bound to plasma proteins, the clearances of phenylacetylglutamine is highly efficient [1].
In individuals with normal renal function, the clean rate of phenylacetylglutamine is approximately
3-fold higher than creatinine clearance. The high level of plasma phenylacetylglutamine is a strong and
independent risk factor for mortality and cardiovascular disease [29], revealing an imbalance between
microbial metabolism and renal tubular secretion [30]. These findings suggest that eGFR was not different
between event and non-event group, and the accumulation of phenylacetylglutamine may due to the
increase in amino acid metabolism.
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Levels of dimethylxanthine and dimethyluric acid significantly increased in event patients than
non-event patients, indicating the disturbance of caffeine metabolism pathway. Dimethylxanthines,
including three isomers of theophylline (1,3-dimethylxanthine), theobromine (3,7-dimethylxanthine),
and paraxanthine (1,7-dimethylxanthine), are metabolized from caffeine. Each isomer has its
characteristic pharmacological effects. In our result, the dimethylxanthines are significantly increased
in event group versus non-event group. To evaluate which isomer is involved, we performed the
UPLC-QTOFMS with charged surface hybrid C18 column (Waters Corp; Milford, MA, USA) to separate
those isomer (supplementary Figure S1A). Theophylline and paraxanthine levels significantly increase
in the event group (supplementary Figure S1B), and theophylline contribute most abundance.
Theophylline, an isomer of dimethylxanthines, is often used in the asthma and chronic obstructive
pulmonary disease (COPD) [31,32]. Several studies have reported the side effects of theophylline,
which include immunomodulation [33] and cardiac arrhythmias at high concentrations [31,34]. The rate
of theophylline metabolism and clearance vary among individuals, resulting in different serum drug
concentrations that affects the drug efficacy and treatment dosage. For instance, disease can induce
epigenetic changes that potentially affect enzyme activity and capacity of metabolizing enzymes,
like cytochrome P450 (CYP) superfamily [35], and the drug efficacy and toxicity. Inter-individual
variability in expression and function of CYP enzymes is a major factor accounting for individual
susceptibility to drug response. The ability of CYP enzyme ability to metabolize arachidonic acid
to epoxyeicosatrienoic acids and hydroxyeicosatetraenoic acids is important in maintenance of the
cardiovascular health [36]. It is well documented that expression and activities of CYP enzymes
are downregulated in heart failure [37], which leads to decline of the efficacy of drug clearance.
The administration of theophylline and caffeine has been reported to increase plasma renin activity [38].
This effect is also observed in patients with congestive HF. Theophylline acts as an antagonist and
reduces the inhibitory effect of adenosine, resulting in a more than two-fold increase in plasma renin
activity in CHF [39]. Moreover, significant differences were observed in creatinine levels in patients in
the event group, but kidney function and caffeine metabolite elimination were not observed.

Changes in xanthine oxidation pathway and uric acid itself play important pathophysiological
roles in HF [40,41]. Clinically, decline in uric acid level through xanthine oxidase inhibition may
improve endothelial reactivity [42], myocardial function [43], and ejection fraction [43,44], and is
associated with better outcomes in HF patients [10,40]. Not only do clinical studies support the
direct involvement of xanthine oxidation pathway in HF progression, but they also suggest xanthine
oxidase as novel therapeutic target and better therapy, which potentially leads to improve myocardial
efficiency [43,44]. Compared to the non-event group, the event group had a significant decrease in
hypoxanthine, and a trend of increase in xanthine. This remains to be clarified whether these changes
are associated with the use of some xanthine oxidase inhibitors and medication such as allopurinol
and benzbromazone to increase uric acid excretion.

BNP level has been used as a routine biomarker for diagnosis congestive HF. BNP is a family of
protein hormones called natriuretic peptides produced by muscle cells. As the heart chambers are
dilated, heart muscle cells are stretched to accommodate extra blood leading to production of BNP.
BNP is excellent for clinical diagnosis. However, BNP does not usually cause immediate changes in
normal heart because its synthesis and secretion increases in response to hemodynamic stimuli over a
long time [17]. The BNP level is closely related to the incidence and severity of HF which plays a crucial
role in the process of therapy [45]. However, for acute decompensated heart failure, the BNP-guided
therapy doesn’t improve post-discharge mortality or readmission rates [6]. Furthermore, some patients
never reached the targeted BNP threshold even careful treatment. In our result, the predictive power of
BNP to incidence of readmission and death is AUC 0.602 and AUC 0.638 (Figure 3). The combination of
four metabolites (tetradecenoylcarnitine + dimethylxanthine + phenylacetylglutamine + hypoxanthine)
the power increase to 0.871 and 0.967. Apparently, the combination of 4 metabolites serves as a better
predictor for prognosis of HF event than BNP. This probably prevents high mortality associated with
relapse of disease.
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The results of metabolite profile in present study has verified the high predictive significance
in event of HF by incorporating tetradecenoylcarnitine, dimethylxanthine, phenylacetylglutamine,
and hypoxanthine. However, there are some limitations in this study. The small sample size may lower
the statistical power. Nevertheless, we have clearly shown differences in metabolic profiles between
event and non-event HF patients. The prognostic power of metabolites in HF needs to be addressed by
increasing the population in future investigations. On the other hand, some unknown interactions of
nutrition and medications may partially contribute to the metabolic differences between groups as
well. As shown in Table 1, there were no significant differences in medications used for HF between
the two groups.

4. Materials and Methods

4.1. Patients and Study Design

The study enrolled patients consecutively hospitalized for acute or decompensated chronic HF in the
HF center of Chang Gung Memorial Hospital, Keelung, Taiwan. Enrollment criteria included patients
(1) with typical signs and symptoms of HF, the severity of which fits New York Heart Association (NYHA)
functional classification III to IV; who were hospitalized due to acute cardiogenic pulmonary congestion
based on chest x-rays and non-cardiogenic cases were excluded; (2) with structural abnormalities
documented by echocardiograms and with LVEF < 50%; and (3) between 39 and 80 years of age.
Exclusion criteria included (1) the presence of systemic diseases such as hypothyroidism, decompensated
liver cirrhosis, and systemic lupus erythematosus; (2) the presence of disorder other than HF that might
compromise survival within 6 months; (3) patients being bed-ridden for >3 months and/or unable to
stand alone; (4) patients with serum creatinine of >3 mg/dl; and (5) patients with severe coronary artery
disease without complete revascularization therapy. Informed consent was obtained from all patients.
The study was designed and carried out in accordance with the principles of the Declaration of Helsinki
and with approval from the Ethics Review Board of Chang Gung Memorial Hospital.

Patients were followed up for one year. Follow-up data were prospectively obtained every
month from hospital records, personal communication with the patients’ physicians, telephone
interviews, and patients’ regular visits to staff physician outpatient clinics. Events of HF-related death
or re-hospitalization were recorded. A committee of three cardiologists, who were blinded to patients’
clinical outcomes, adjudicated all hospitalizations to determine whether the events were related to
worsening HF. Patients were followed for 1 year. In those developing events including HF-related
death or re-hospitalization in the first year, the 31 patients were defined as the “event group”. In those
without HF-related events in the first year, the 30 patients were defined as the “non-event group”.

4.2. Blood Samples Collection

Blood samples were collected in EDTA-containing tubes. Plasma was analyzed by metabolomic
workflow described in the succeeding section. BNP was measured in triplicate with the Triage BNP Test
(Biosite, San Diego, CA, USA), which was a fluorescence immunoassay for quantitative determination
of plasma BNP. Precision, analytical sensitivity, and stability characteristics of the assay were previously
described [46]. Kidney function, hemoglobin, and C-reactive protein were measured in the central core
laboratory of Chang Gung Memorial Hospital.

4.3. Metabolomics Analysis by UPLC-TOFMS

To 50 µL plasma, 200 µL acetonitrile was added. The mixture was vortexed for 30 s; sonicated for
15 min; and centrifuged at 10,000× g for 25 min. The supernatant was collected in a separate glass
tube. The pellet was re-extracted once with 200 µL of 50% methanol. The methanolic and acetonitrile
phases were pooled and dried in a nitrogen evaporator. Residue was suspended in 100 µL of 95:5
water:acetonitrile; and centrifuged at 14,000× g for 30 min. Liquid chromatographic separation was
performed on a 100 mm × 2.1 mm, Acquity 1.7 µm C8 column (Waters Corp., Milford, MA, USA)
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using a ACQUITY TM UPLC system (Waters Corp., Milford, MA, USA). The column was maintained
at 45 ◦C, and at a flow rate of 0.5 mL/min. Analytes were eluted from LC column using with a
linear gradient: 0–2.5 min: 1–48% B; 2.5–3 min: 48–98% B; 3–4.2 min: 98% B; 4.3–6 min: 1% B for
re-equilibration. The mobile phase were 0.1% formic acid in water (Solvent A) and 0.1% formic
acid in acetonitrile (solvent B). The eluent was introduced into the Synapt G1 high-definition mass
spectrometer (Waters Corp., Milford, MA, USA) operated in positive ion mode. The conditions were
as follows: desolvation gas was set to 700 L/h at a temperature of 300 ◦C, the cone gas set to 25 L/h
and the source temperature set at 80 ◦C. The capillary voltage and cone voltage were set to 3000 and
35 V, respectively. The data were collected in centroid mode from 20 to 1000 m/z. The peak finding,
filtering, and alignment from raw mass spectrometric data were performed by MarkerLynx 4.1 software
(Waters Corp., Milford, MA, USA).

Exact molecular mass data for metabolites, which showed significant differences between two
groups, were then submitted for database searching, either using in-house database or online HMDB
(http://www.hmdb.ca/) or METLIN (metlin.scripps.edu/index.php) database. For identification of
specific metabolites, standards were subject to UPLC-TOFMS analyses under the conditions identical
to those of the profiling experiment.

4.4. Statistical Analyses

To maximize the identification of differences in metabolic profiles between groups, the orthogonal
projection to latent structure discriminant analysis (OPLS-DA) model was applied and performed
using the SIMCA-P software (version 13.0, Umetrics AB, Umea, Sweden). The variable importance in
the projection (VIP) value of each variable in the model was calculated to indicate its contribution to the
classification. A higher VIP value represents a stronger contribution to discrimination between groups.
The VIP values of those variables greater than 1 are considered to have high contribution in difference.
Results are expressed as the mean ± SD for continuous variables and as the number (percentage)
for categorical variables. Data were compared by two-sample t-tests. A p value of <0.05 was considered
statistically significant. FDR corrections were performed for comparisons between groups where
appropriate (q-value). The correlation coefficient analysis was performed by MetaboAnalyst 4.0.
The receiver operating characteristic (ROC) curves were assessed to predict the event in heart failure.
The comparison between the area under curve was analyzed using DeLong’s test. Improvement in the
ability of prediction in different models was assessed using the IDI and NRI in the logistic regression
model. All statistical analyses were performed using IBM SPSS 20.0 (Armonk, NY) and R V. 4.0.2
(R Development Core Team).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/11/437/s1,
Figure S1: Levels of dimethylxanthines in event and ono-event groups, Table S1: Receiver operating characteristics
(ROC) curves with area under curve (AUC) of single or combined metabolites to discriminate event and non-event
patients in heart failure. (A) Chromatography of paraxanthine, therobromine, and theophylline. (B) Concentration
of therobromine, paraxanthine, and theophylline in event (n = 20) and non-event (n = 22) groups. Data were
compared by Mann-Whitney U. * p < 0.05.
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