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AbstrAct
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent 

desmoplastic reaction. Pancreatic stellate cells (PSCs) are the principal effector cells 
responsible for stroma production. Aberrant up-regulation of periostin expression has 
been reported in activated PSCs. In this study, we investigated the role of periostin 
and the mechanisms underlying its aberrant upregulation in PDAC. We used lentiviral 
shRNA and human recombinant periostin protein to down and up regulate periostin 
expression in vitro. Specific oncogenic signaling pathways such as EGFR-Akt and EGFR-
Erk-c-Myc were assessed in vitro and in vivo. Tissue microarray immunohistochemical 
assays including 80 pancreatic cancer tissues and paired normal tissues were used 
to understand the function relationship between periostin expression and PDAC 
pathologic stage and overall survival. We found that periostin was strongly expressed 
in PSCs and the stroma of PDAC tumors. We also observed a significant decrease in 
proliferation, metastasis, and clonality of pancreatic cancer cells when co-cultured with 
supernatant of periostin shRNA-transfected PSCs. Specifically, the biological behavior 
of periostin correlated with EGFR-Akt and EGER-Erk-c-Myc signaling pathways. 
Moreover, increased periostin expression significantly associated with advanced 
disease stage and decreased survival rate in PDAC patients. Together, our findings 
provide novel insights into the role of microenvironmental periostin in pancreatic 
cancer progression, and periostin may serve as a prognostic biomarker for PDAC.

INtrODUctION

Pancreatic ductal adenocarcinoma (PDAC) is a 
highly aggressive malignancy, with an overall 5-year 
survival rate of less than 5% and median survival 
period of less than 6 months [1–3]. Recently, the tumor 
microenvironment in PDAC has received increased 
attention, and is now recognized to be more than merely a 
passive bystander or host barrier against tumor progression 

[4, 5]. Rather, the cancer microenvironment of PDAC 
is characterized by a prominent desmoplastic reaction 
with a stromal content that is greater than the epithelial 
component, and is known to not only initiate and promote 
tumorigenesis but also mediate chemotherapy resistance 
[6, 7]. Moreover, pancreatic cancer cells (PCCs) exploit 
the tumor-supportive microenvironment [8]. The stroma 
is a dynamic cellular milieu that is mainly composed of 
pancreatic stellate cells (PSCs), fibroblasts, inflammatory 
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cells, stem cells, and extracellular matrix as well as 
multitudinous cytokines and growth factors that can 
directly or indirectly interact with PCCs and change their 
biological behavior, thus playing a critical role in this 
rapidly progressive disease [9–11]. 

PSCs account for approximately 4% of the normal 
pancreas resident cells and are considered to be critical 
for the development of the pancreatic cancer desmoplastic 
response [8, 12]. When the pancreas is injured or becomes 
cancerous, a variety of factors induce PSC activation. 
The typical feature of the PDAC desmoplastic reaction is 
transformation of quiescent PSCs into activated PSCs [8].  
Once stimulated by tumor cells, PSCs will perpetually 
be activated and produce excessive extracellular matrix 
to infiltrate and envelop the normal parenchyma via an 
autocrine periostin loop, creating a tumor-supportive 
microenvironment even under conditions of serum 
deprivation and hypoxia [6].

Periostin is a 90-kilodalton secretory protein 
originally identified as an osteoblast-specific factor 
that is preferentially expressed in the periosteum and 
functions as a cell adhesion molecule [6, 13]. Recently, 
periostin expression has been implicated in various types 
of cancer, including PDAC [14–17]. Periostin expression 
is 42-fold higher in PDAC compared with the normal 
pancreas at the mRNA level [1]. Tumor metastasis is 
the final phase of tumor progression. Periostin has been 
reported to promote the metastatic growth of colon cancer 
[18, 19] and the question of whether periostin can induce 
PCCs to the state of metastatic growth has attracted 
great attention [20]. Periostin was also identified as a 
potentially promising candidate for PDAC pathogenesis 
and is associated with a variety of signaling pathways that 
regulate cell activity [21]. 

Epidermal growth factor receptor (EGFR) is 
overexpressed in pancreatic cancer [22, 23]. We speculated 
that phosphorylation of EGFR mediated by periostin 
may initiate a downstream signaling cascade involving 
pathways such as Akt and Erk-c-Myc, which are implicated 
in carcinogenesis through their effects on cell proliferation, 
survival, metastasis, and gene expression. Current clinical 
efforts are directed toward studies involving inhibitors of 
EGFR-Erk signaling such as Erlotinib and SCH772984 
[24–26]. However, the pathogenic mechanisms that 
regulate the biological behavior of PDAC remain elusive 
and should be reassessed in an unbiased manner [27, 28]. 
Moreover, the biological and clinical roles of periostin 
in PDAC are poorly described and the recent literature 
reports conflicting data [9, 14, 20]. Therefore, clarification 
of the periostin function and its related signaling pathways 
may help the development of new therapeutic strategies 
for PDAC.

Our findings not only identify periostin as a 
previously unrecognized PDAC microenvironment 
factor, but also clarify the potential role of periostin in 
PSC–PCC interactions and related signaling pathways 

downstream of EGFR in PDAC development and 
progression. We also demonstrate a correlation between 
periostin expression and patient survival. Collectively, 
the results of these studies verify that periostin has 
a pivotal role in PDAC progression and implicate it 
as a potential biomarker in this cancer. Furthermore, 
early therapy targeting EGFR pathways might exert an 
inhibitory effect on PDAC.

rEsULts

Periostin is produced exclusively by activated 
Pscs and is upregulated in human pancreatic 
cancer

To determine the significance of periostin in 
pancreatic cancer, we first analyzed the expression level of 
periostin in PCCs and PSCs by real-time RT-PCR, western 
blot analysis, and ELISA (Figure 1A, 1B, 1C and 1D).  
These results verified that periostin was exclusively 
expressed by activated PSCs. Moreover, PCCs could 
stimulate secretion of periostin by PSCs by co-culture 
(Figure 1D). We further performed western blot and 
real-time RT-PCR analyses on human pancreatic cancer 
samples and their respective paired normal tissues. All 
the tumor samples showed increased protein and mRNA 
levels of periostin compared with matched normal tissues 
(Figure 1E and 1F).

Elevated periostin expression is associated with 
advanced pathologic stage and is a prognostic 
factor of poor overall survival

To further investigate the correlation between 
periostin expression and pancreatic cancer progression, 
we used TMAs to study periostin expression levels in 
pancreatic cancer and corresponding paired normal 
tissues. We performed immunohistochemical staining for 
periostin on a large cohort of primary pancreatic cancer 
patients (n = 100). Among the 100 patients, both cancer 
tissues and matched normal tissues were available for 80 
patients, whereas only cancer tissues were available for 
the remaining 20. The clinicopathologic characteristics 
of 80 PDAC patients and their relationship with periostin 
expression level are listed in Table 1.

Semiquantitative analysis showed an increased 
intensity of periostin staining in pancreatic cancer 
compared with normal tissues (Figure 2A and 2B). 
Periostin expression was positively correlated with the 
clinical stage of pancreatic cancer (Figure 2C and 2D). 
Moreover, increased periostin expression was significantly 
associated with shortened patient survival (P = 0.008); 
the median survival rates for patients with high and low 
periostin expression were 11% and 35%, respectively 
(Figure 2E). Since periostin expression was positively 
linked to pathologic features, we postulated that periostin 
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Figure 1: Periostin is exclusively expressed in Pscs and PDAc stroma. (A) Quantitative analysis of periostin expression by 
real-time PCR in pancreatic stroma cell (PSCs), normal human pancreatic duct epithelial cells (HPDEs), and nine pancreatic cancer cell 
lines (PCCs). (b) Periostin transcript levels were examined by RT-PCR. The negative control indicates no template in the reaction. (c) 
Expression of periostin protein in these cell lines was determined by western blotting. (D) The level of secreted periostin was quantified by 
ELISA in PSCs and PCCs with or without co-culture. (E) Western blot analysis showed higher protein levels of periostin in  tumor samples 
compared with the respective matched normal tissues (N, normal tissue; T, tumor). (F) Periostin mRNA expression level in 10 paired tumor 
samples and normal tissues.
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deregulation might have a positive effect on PDAC 
progression and function as a prognostic predictor.

Periostin promoted proliferation, migration, 
invasion and clonogenicity of Pccs in vitro

To examine the role of periostin in PCC 
proliferation, we measured SW1990 and BxPC-3 cell 
growth by CCK-8 assay after co-culture with shRNA-
transfected PSC supernatant or 1 μg/mL rPeriostin. We 
observed a significant decrease in proliferation of SW1990 
and BxPC-3 cells when co-cultured with supernatant 
of periostin shRNA-transfected PSCs. Moreover, 
proliferation was markedly increased by co-culture with  
1 μg/mL rPeriostin (Figure 3A and 3B). Likewise, 
rPeriostin led to a significant enhancement of cell 
migration (Figure 3C), invasion (Figure 3D), and 
colony formation (Figure 3E), whereas opposite effects 
were observed after co-culture with periostin shRNA-
transfected PSC supernatant. We further analyzed the cell 
migration ability by a wound-healing assay. As shown 
in Figure 3F, the rate of wound repair by SW1990 and 
BxPC-3 cells was significantly suppressed when cells 
were co-cultured with periostin shRNA-transfected PSC 
supernatant. In contrast, cell mobility was increased by co-
culture with rPeriostin. These data were consistent with the 
notion that periostin expression is significantly associated 

with a high degree of pancreatic cancer metastasis. 

Induction of subcutaneous tumors by co-injection 
of carcinoma cells and pancreatic stellate cells 
into nude mice

To verify the role of periostin in pancreatic cancer 
progression in vivo, we performed xenograft tumor assays 
by subcutaneous co-injection of SW1990 cells and PSC 
cells that were stably transfected with periostin-shRNA 1  
lentivirus. We found that knockdown of periostin in 
PSCs significantly inhibited tumor growth and reduced 
tumor volumes and weights of xenografts in nude mice  
(Figure 4A and 4B). Immunohistochemical staining of 
periostin showed that periostin was exclusively expressed 
in the stroma of xenografts, and H&E staining showed that 
the xenografts exhibited a prominent desmoplastic reaction 
(Figure 4C). Immunohistochemical staining of Ki-67 
showed significantly fewer proliferative cells in periostin-
shRNA 1 xenograft tumors (Figure 4C and 4D). Next, 
we performed TUNEL assays to investigate the effects 
of periostin on cell apoptosis and observed no significant 
effect (Figure 4C and 4D). Moreover, periostin promoted 
abdominal cavity metastasis of pancreatic cancer cells in 
nude mice (Figure 4E). These data collectively indicate 
that periostin acts as a novel tumor-promoting gene and 
positively regulates pancreatic cancer progression.

table 1: clinicopathologic correlations of periostin expression in 80 pancreatic cancer patients
Parameters High expression (n = 64) Low expression (n = 16) P

Gender 
Male 37 11 0.424
Female 27 5
Age 0.502
< 60 30 9
≥ 60 34 7
pt stage 0.019
T1 6 6
T2 39 8
T3 19 2
pN stage 0.001
N0 11 12
N1 28 2
N2 21 1
N3 4 1
Distant metastases 0.035
No 38 14
Yes 26 2
Perineural invasion 0.003
No 25 13
Yes 39 3
tumor volume (cm3) 34.6 (2.3, 312.7) 18.5 (1.2, 230) 0.005
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Figure 2: Increased periostin expression correlates with pancreatic cancer progression and poor patient survival. (A) 
Immunohistochemical staining of pancreatic cancer and matched normal tissues with anti-periostin antibody. A total of 100 patient samples 
were stained and representative patient samples of clinical stages T1, T2, and T3 are shown. (b) Quantitative analysis of periostin staining 
in 80 normal tissues and 100 cancer samples showed notably higher staining intensity in pancreatic cancer samples compared with matched 
normal tissues (IOD, integral optical density). (c) Periostin staining intensity according to the clinical stage of pancreatic cancer samples  
(n = 100). (D) Upregulated periostin expression positively correlated with the clinical stage of pancreatic cancer (n = 16 in the low-
expression group, n = 64 in the high-expression group). (E) High intensity of periostin immunostaining was significantly associated with 
poor survival. Data are shown as means ± SD. *P < 0 .05.
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Figure 3: Periostin promotes pancreatic cancer cell proliferation, migration, invasion, and clone formation. (A and b) 
Periostin knockdown decreased the proliferation rate of SW1990 and BxPC-3 cells. In contrast, increased periostin expression accelerated 
the proliferation of SW1990 and BxPC-3 cells. OD at 450 nm was measured by CCK-8 assay at 0, 24, 48, 72, and 96 h and is shown as the 
mean ± SD. (c and D) Periostin knockdown inhibited migration and invasion of SW1990 and BxPC-3 cells, whereas increased periostin 
expression exerted the opposite effect. Cells were stained with crystal violet and observed by microscopy (×50 magnification; Zeiss). The 
number of migration or invasion cells in five random fields was counted by ImageJ software (×100 magnification; Zeiss) and is shown as 
the mean ± SD. (E) periostin knockdown inhibited the ability of SW1990 and BxPC-3 cells to form clonogenic colonies. Cells were stained 
with crystal violet and photographed without magnification and under light microscopy (×50 magnification; Zeiss). Bar charts show the 
number of colonies. (F) Periostin promoted wound healing in SW1990 and BxPC-3 cells. Cells were scraped with a p10 tip (time 0) and 
images were captured at the same time every day thereafter (×50 magnification; Zeiss). Migration distance was measured from five fields 
captured at each indicated time point. The percentage of wound repair for each cell line is shown using bar charts. *P < 0.05, **P < 0.01 and 
***P < 0.01 vs. control shRNA.
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regulation of pancreatic cancer cell activity by 
periostin is significantly associated with EGFR-
Akt and EGFr-Erk-c-Myc signaling pathways

To better understand the molecular mechanism by 
which periostin promotes pancreatic cancer progression, 
we examined several signaling transduction pathways 
that might be critical in tumorigenesis and regulated 
by periostin. Previous reports indicated that EGFR 
phosphorylation is one of the most common events in 
pancreatic cancer progression, and we discovered that 
EGFR phosphorylation was downregulated in periostin-
shRNA lentivirus-transfected SW1990 and BxPC-3 cells, 
whereas the total amount of EGFR was unchanged. We 
further examined several downstream molecules of 
p-EGFR and found that p-Akt, p-Erk, c-Myc and were 
suppressed upon periostin knockdown while the total 

amounts of AKT and Erk remained unchanged. Moreover, 
treatment of cells with rPeriostin led to a significant 
increase in p-EGFR, p-Akt, p-Erk and c-Myc expression 
levels (Figure 5A). Results from western blot analysis of 
xenografts of nude mice were consistent with those of the 
in vitro cell experiments (Figure 5B).

To further confirm the receptor for periostin and 
identify the cell signaling pathways that are activated 
by periostin, we examined the effect of pharmacologic 
inhibitors of EGFR and Erk phosphorylation on 
periostin. As shown in Figure 5C and 5D, the effect 
of periostin on EGFR and Erk phosphorylation was 
completely abrogated when cells were treated with 
rPeriostin and the EGFR inhibitor Erlotinib or the Erk 
inhibitor SCH772984, respectively. Treatment of cells 
with SCH772984 did not affect EGFR phosphorylation. 
Moreover, the phosphorylation of downstream molecules 

Figure 4: Periostin enhances the tumorigenicity of pancreatic cancer cells in vivo and promotes metastasis. (A) SW1990 
cells were co-injected with control shRNA-transfected PSC cells or periostin shRNA1-transfected PSC cells into the right side of nude 
mice. (b) After 4 weeks the mice were sacrificed. SW1990 cells injected with periostin shRNA1-transfected PSCs exhibited slower growth 
and reduced tumor volumes and weights of xenografts. (c and D) Immunohistochemical staining showed periostin deposits in the stroma 
of xenografts, and HE staining revealed that the xenografts had prominent desmoplastic reaction. Xenograft tumors from the periostin-
shRNA group contained significantly fewer Ki-67-positive proliferative cells than those from the control group (n = 15, five random fields). 
Periostin expression was not associated with apoptosis in xenograft tumors of SW1990 and PSCs cells as assessed by TUNEL assay.  
(E) Periostin promoted peritoneal metastasis of pancreatic cancer cells in nude mice. SW1990 cells were co-injected with control shRNA-
transfected PSCs or with periostin shRNA1-transfected PSCs into the lower-left quadrant of nude mice. Representative pictures are shown; 
metastatic nodules are marked by white arrowheads. Each group contained 20 mice; analysis was by two-sided unpaired t-test.
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Figure 5: Periostin activates EGFr-Akt and EGFr-Erk-c-Myc signaling to regulate the activity of pancreatic cancer 
cells. (A) SW1990 and BxPC-3 cells were treated with the supernatant of control shRNA-transfected PSCs (Control sh), periostin shRNA1-
transfected PSCs (Periostin sh1), periostin shRNA2-transfected PSCs (Periostin sh2), DMSO (Mock), or human recombinant protein 
(rPeriostin). After 12 h, cells were harvested and the basal expression of EGFR, Erk, and their downstream molecules was determined 
by western blotting. (b) Xenograft tumors of nude mice from the control-shRNA group and periostin-shRNA group were also subjected 
to western blotting using the indicated antibodies. (c) SW1990 and BxPC-3 cells were treated with DMSO, rPeriostin, EGFR inhibitor 
(Erlotinib, 20 μM), or rPeriostin plus Erlotinib. Cells were harvested at 0, 1, 3, and 6 h, and the basal expression of EGFR, Erk, and their 
downstream molecules was determined by western blotting. (D) SW1990 and BxPC-3 cells were treated with DMSO, rPeriostin, Erk 
inhibitor (SCH772984, 20 μM), or rPeriostin plus SCH772984. Cells were harvested after 0, 1, 3, and 6 h, and the basal expression of 
EGFR, Erk, and their downstream molecules was determined by western blotting.
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was correspondingly inhibited. Next, we examined the 
effects of these inhibitors on cell function and found 
that proliferation and clone formation of SW1990 cells 
were completely inhibited by Erlotinib combined with 
rPeriostin and partially inhibited by SCH772984 combined 
with rPeriostin (Figure 6A and 6C). The migration of 
SW1990 cells was significantly reduced by treatment with 
Erlotinib combined with rPeriostin, but was reduced less 
by SCH772984 combined with rPeriostin (Figure 6B).  
A model for the mechanism of periostin is shown in  
Figure 6D. Together, our results suggest that periostin 
regulates the activity of pancreatic cancer cells through 
EGFR-Akt and EGFR-Erk-c-Myc signaling pathways. 
Furthermore, the data collectively suggest that EGFR is 
the receptor for periostin in PDAC.

DIscUssION

In recent years, considerable evidence has emerged 
supporting the notion that the stroma is a critical factor in 
pancreatic cancer progression [29–31]. The tumor–stroma 
interaction may be much more complex than previously 

anticipated and should be reassessed in an unbiased 
manner [4, 32]. It has now been unequivocally shown that 
PSCs are the principal effector cells responsible for stroma 
production [9, 33, 34]. Periostin is abundantly secreted by 
PSCs and plays a pivotal role in the desmoplastic reaction 
[4, 20]. Previous studies have shown that periostin is 
highly expressed in various types of malignant tumor 
including non-small cell lung cancer [35], breast cancer 
[36], colon cancer [37], and epithelial ovarian cancer [38].  
These studies also demonstrated that periostin is involved 
in tumor development [20]. To date, there are few studies 
on the relationship between periostin and pancreatic 
cancer, and the biological role of periostin has yet to be 
determined [6, 14, 16]. Therefore, in this study we focused 
on the expression, biological functions, and potential 
mechanism of periostin in PDAC tumorigenesis.

Our microarray analysis revealed that periostin 
was upregulated in the stroma of human PDAC tissues 
compared with matched adjacent tissues, suggesting 
that periostin might be a useful diagnostic biomarker for 
PDAC. In addition, our results showed that periostin was 
a predictor for advanced clinic stage and shortened overall 

Figure 6: the effects of EGFr and Erk inhibitors on pancreatic cancer cells. (A) The effect of rPeriostin on promoting growth 
was completely inhibited by Erlotinib and partially inhibited by SCH772984. (b) Migration of SW1990 cells was significantly reduced 
by treatment with Erlotinib + rPeriostin, but partially reduced by treatment with SCH772984 + rPeriostin. (c) Clone formation ability of 
SW1990 cells was completely inhibited by Erlotinib + rPeriostin and partially inhibited by SCH772984 + rPeriostin. (D) Proposed model 
for the mechanism of action of periostin. Periostin activates EGFR-Akt and EGFR-Erk-c-Myc signaling to regulate survival, metastasis, 
and gene expression of pancreatic cancer cells.
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survival in PDAC patients. We also provide experimental 
evidence that periostin is exclusively expressed in PSCs. 
Using CCK-8 assays, transwell assays, scratch tests, and 
clonality assays, we demonstrated that periostin promoted 
PCC proliferation, metastasis, invasion, and clonality 
in vitro. Moreover, knockdown of periostin inhibited 
tumor formation and growth in subcutaneous xenografts, 
supporting a role for periostin in tumorigenesis in vivo. 
Together, our data prove that periostin activation in 
PDAC is common and plays an important role in PDAC 
development. However, the role of periostin in metastasis 
of various tumors remains conflicted: it appears to play a 
positive role in metastasis of colon and ovarian cancers 
but suppresses metastasis in lung and bladder cancers [6]. 
These differences may be caused by differences in the 
degree of sensitivity of different cancer cells to periostin 
or in the concentration of periostin in various tissues.

Several in vitro and in vivo experiments have been 
conducted to elucidate the intimate interaction between 
PSCs and PCCs. The tumor-supportive microenvironment 
of PDAC is created by activation of PSCs by PCCs, and 
the most potent stimulants for PSCs are platelet-derived 
growth factor (PDGF), fibroblast growth factor (FGF), and 
transforming growth factor-β1 (TGF-β1) [8, 34]. Periostin, 
collagen, fibronectin, and laminin enhance the growth 
and chemotherapy resistance of PCCs [34]. Moreover, 
evidence also suggests that periostin creates an autocrine 
positive-feedback loop on PSCs [6].

A series of recent studies provide insight into the 
mechanisms by which PSCs influence the activity of PCCs 
[39, 40]. To better understand the underlying molecular 
mechanisms by which these processes might be regulated 
by periostin, we have identified several correlative key 
signal transduction pathways. In the microenvironment of 
PDAC, secreted periostin can bind to EGFR to activate 
various downstream signaling transduction pathways, 
such as Akt and Erk-c-Myc signaling. Activation of 
these signaling cascades can promote PCC survival, 
metastasis and growth. In previous studies, researchers 
mainly focused on PI3K-Akt and MAPK signaling 
pathways, which are critical for the growth and motility 
of PCCs [6]. In addition, activation of the Akt pathway 
is central to the growth, motility, and energy regulation 
of PCCs, which increases metastasis and survival even 
in a nutrient-deprived microenvironment. We found that 
inhibition of the EGFR pathway by blocking Erk and Akt 
signaling completely abrogated periostin-mediated EGFR 
phosphorylation and significantly reduced the expression 
of c-Myc. Accordingly, the proliferation, metastasis, and 
colony formation of PCCs decreased greatly. Together, 
these findings indicate that periostin potentiates metastasis 
induced by the Akt pathway. In addition, proliferation and 
clone formation of PCCs were partially inhibited when the 
Erk pathway was blocked. Erk-c-Myc and Akt pathways 
are both associated with PCC growth. 

In conclusion, our results have shown the 
biological and clinical significance of periostin in PDAC 
progression and provide a more comprehensive picture 
of the underlying molecular mechanisms of periostin. We 
believe that EGFR and its downstream signals are at least 
partially responsible for the role of periostin in PDAC 
progression. Future research into targeted therapies against 
the tumor microenvironment is necessary. Pharmaceutical 
intervention to block the interaction of PSCs and PCCs 
or inhibitory oligonucleotides directed against periostin 
might have therapeutic potential to suppress PDAC 
development.

MAtErIALs AND MEtHODs 

Ethical statement 

Informed consent was obtained from all participants 
and this research was approved by the ethics committee of 
Shanghai General Hospital affiliated of Shanghai Jiaotong 
University and performed in accordance with ethical 
principles. All mouse experiments were manipulated and 
housed according to the protocols approved by Shanghai 
Medical Experimental Animal Care Commission.

Patient samples

Thirty fresh samples of human pancreatic cancer 
and paired normal tissues were collected during surgery 
at Shanghai First People’s Hospital with the patients’ 
informed consent. A total of 180-spot, paraffin-embedded 
tissue array chips (HPan-Ade180Sur-02) including 80 
pancreatic cancer tissues and paired normal tissues and 20 
cases of tumor tissues only, with 3 to 7 years of follow-
up information, were purchased from Shanghai Outdo 
Biotech, Ltd (Shanghai, China).

cell lines and reagents

The human pancreatic cancer cell lines AsPC-1, 
BxPC3, Capan-1, Capan-2, CFPAC-1, HS766T, Panc-1,  
and SW1990 were purchased from American Type Culture 
Collection (Manassas, VA) and normal human pancreatic 
duct epithelial (HPDE) cells were isolated from normal 
pancreatic tissues as described [41]. HPDE, Capan-1, 
Capan-2, HS766T, and Panc-1 were maintained in 
Dulbecco’s modified Eagle medium (DMEM) with 10% 
FBS (Gibco, Carlsbad, CA). AsPC-1, BxPC-3, HPAF, 
SW1990 and HUVEC cell lines were maintained in RPMI 
1640 with 10% FBS. CFPAC-1 was maintained in IMDM 
(Iscove’s modified Dulbecco’s medium) with 10% FBS. 
Human pancreatic stellate cells (PSCs) were purchased 
from ScienCell research laboratory (Carlsbad, CA) and 
maintained in stellate cell medium (ScienCell). The 
authenticity of the cells was determined by short tandem 
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repeat analysis technology (Cell ID™ System, Promega, 
Madison, WI). All cells were cultured at 37°C in an 
atmosphere of 5% CO2 in air. Human recombinant periostin 
protein (rPeriostin) was purchased from Biovendor 
(Heidelberg, Germany) and dissolved in 0.1 M acetate 
buffer (pH 4) at a concentration of 1 µg/mL. The EGFR 
inhibitor Erlotinib HCl (OSI-744) and the Erk inhibitor 
SCH772984 were purchased from Selleck Chemicals 
(CA, USA), dissolved in 100% DMSO at 10 mM,  
and stored at −20°C. The final DMSO concentration in the 
medium was < 0.1% for all experiments.

Lentivirus transduction for gene silencing

The lentivirus suspension used for shRNA silencing 
of the periostin gene was purchased from Ebioeasy Ltd 
(Shanghai, China). The target sequences for periostin 
were 5′-CGGTGACAGTATAACAGTAAA-3′ named 
periostin sh1, 5′-CACTTGTAAGAACTGGTATAA-3′ 
named periostin sh2, respectively. The sequence 
for scrambled negative control shRNA was 
5′-CCTAAGGTTAAGTCGCCCTCG-3′ named control sh. 
Stable lentivirus transduction was achieved by infection 
for 48 h and positive cells carrying the GFP fusion protein 
were selected with puromycin (1 µg/mL) and termed 
periostin sh or control sh cells. Expression of periostin 
was measured by western blot analysis (data not shown).

rNA isolation and quantitative real-time Pcr 
(qrt-Pcr) 

Total RNA isolation and quantitative real-time 
PCR were performed according to the manufacturer’s 
instructions. The primers for Periostin were 
5′-TGTTGCCCTGGTTATATGAG-3′ (forward) and 
5′-ACTCGGTGCAAAGTAAGTGA-3′ (reverse) and those 
for GAPDH were 5′-GGACCTGACCTGCCGTCTAG-3′ 
(forward) and 5′-GTAGCCCAGGATGCCCT TGA-3′ 
(reverse), based on the human periostin and GAPDH 
cDNA sequences in GenBank. The GAPDH mRNA level 
was used for normalization. Amplification of each sample 
was conducted in triplicate. PCR conditions were as 
follows: 94°C for 15 s, 58°C for 45 s, and 72°C for 20 s, 
repeated for 35 cycles. Amplified products were separated 
by 1.0% agarose gel electrophoresis.

Western blot analysis

Western blot analysis was performed using standard 
procedures. The primary antibodies used were anti-
periostin (1:1,000; ab14041, Abcam, Cambridge, UK),  
anti-EGFR (1:1,000; sc-71034; Santa Cruz 
Biotechnology), anti-P-EGFRTyr1068 (1:1,000; #3777; 
Cell Signaling Technology), anti-Erk (1:1,000; #4695; 
Cell Signaling Technology), anti-P-ErkThr202/Tyr204 
(1:1,000; #9101; Cell Signaling Technology), anti-Akt 
(1:1,000; #4691; Cell Signaling Technology), anti-P-

AktSer473 (1:1,000; #4060; Cell Signaling Technology), 
anti-c-Myc (1:500; Santa Cruz Biotechnology), and 
anti-β-actin (1:5,000; Abcam). The membranes were 
washed three times in TBST for 10 min each wash and 
then incubated with goat anti-rabbit IgG horseradish 
peroxidase-conjugated secondary antibody (Cat. #7074) 
(1:2,000; Cell Signaling Technology) or horse anti-mouse 
IgG horseradish peroxidase-linked secondary antibody 
(Cat. #7074; 1:2,000; Cell Signaling Technology) for 
1 h at room temperature. Signals were detected by 
an enhanced chemiluminescence detection system 
(Amersham Bioscience, Piscataway, NJ) according to the 
manufacturer’s protocol.

ELIsA

Periostin expression in PSCs and PCCs was 
measured after 48 h with or without co-culture. The culture 
supernatants were collected and secreted periostin was 
quantified by ELISA (Cusabio, Wuhan, China) according 
to the manufacturer’s protocol.

cell proliferation assay

Cell proliferation was measured according to the 
manufacturer’s instructions. Briefly, SW1990 and BxPC-3 
cells (3 × 103 cells /well) were co-cultured with supernatant 
from shRNA-transfected PSCs or with 1 µg/mL rPeriostin 
in 96-well plates. Cell proliferation was examined 
at 0, 24, 48, 72, and 96 h. After incubation for 2 h  
at 37°C, the absorbance was measured at 450 nm. 

Migration and invasion assay

Cell migration and invasion were examined 
according to the manufacturer’s instructions. For the 
migration assay, SW1990 and BxPC-3 cells were 
incubated in serum-free medium for 24 h and then 3 × 104  
cells in 200 μL serum-free medium were added to the 
upper chamber. For the invasion assay, matrigel (BD 
Biosciences) was used to simulate the in vivo extracellular 
matrix according to the manufacturer’s instructions. 
Briefly, 6 × 104 SW1990 or BxPC-3 cells in 200 μl serum-
free medium were added to the upper chamber, which 
was precoated with matrigel gel. For both assays, 500 μl  
of supernatant from shRNA-transfected PSCs or 1 μg/mL  
rPeriostin was added to the lower chamber as a 
chemoattractant. Cells were incubated for another 48 h at 
37°C and then non-migrating and non-invading cells on 
the upper surface of the membrane were gently scraped off 
with cotton swabs. Migrated cells and invasive cells were 
imaged and counted under a microscope.

colony formation assay 

A total of 200 SW1990 and BxPC-3 cells were 
co-cultured with shRNA-transfected PSCs supernatant 
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or 1 μg/mL rPeriostin in six-well plates for 2 weeks. 
Cell colonies were fixed with 4% methanal for 20 min 
and stained with 0.04% crystal violet for 20 min. After 
washing with tap water for 10 min and air drying, colonies 
were photographed in five random fields and counted 
using ImageJ software.

tumor xenograft model and tumorigenicity 
assay

A total volume of 100 μl SW1990 cells and periostin 
sh1 or control sh stably transfected PSCs (3 × 106 cells/
mouse) were subcutaneously co-injected into 4-week-old 
male nude mice (Institute of Zoology, Chinese Academy 
of Sciences, Shanghai, China). Mice were examined 
weekly, and tumor nodules were measured with a caliper 
every week. Tumor volume was evaluated using the 
following formula: volume = π/6 × (L × W × W), where  
L = the largest tumor diameter and W = the smallest tumor 
diameter. Tumor growth curves were calculated. Nude mice 
were also co-implanted with SW1990 cells (1 × 106 cells) and 
periostin sh1 or control sh stably transfected PSCs (1 × 106 
cells/mouse) into the lower-left quadrant of the abdomen. 
Dissemination in the abdominal cavity was evaluated 
by counting the number of nodules larger than 1 mm in 
diameter. The two experimental groups were sacrificed after 
4 weeks. Finally, all tumor grafts were excised, weighed, 
harvested, fixed, and embedded in paraffin.

Immunohistochemistry 

To visualize the xenograft tumor, the tumors were 
dissected and fixed in 4% paraformaldehyde before 
embedding in paraffin. The tissue was sliced into 4-μm 
sections and incubated with rabbit anti-human periostin 
polyclonal antibody and stained with H&E (artificial 
hematoxylin and eosin stain). Images were captured at 
×40 magnification.

A mouse anti-human Ki-67 antigen monoclonal 
antibody (Dako, dilution 1:50) was used to determine 
nuclear expression. The Ki-67 index was determined as 
the mean percentage of cells with Ki-67-positive staining 
among 1,000 cells. TUNEL staining (Roche, Mannheim, 
Germany) was used to observe DNA fragmentation 
of apoptosis by immunohistochemical procedures. All 
samples were observed using a Nikon microscope (Nikon, 
Japan). At least five viewing fields containing at least 20 
cells were used to obtain one data point.

tissue microarray construction 

Commercially available tissue microarrays (TMAs) 
containing a total of 80 pancreatic cancer samples and paired 
adjacent non-tumor tissues were used in this study (Outdo 
Biotech, Shanghai, China). All immunohistochemically 
stained sections were assessed and scored by in-house 

pathologists. Patients with complete clinicopathologic data 
were included in the survival analysis.

statistical analysis

Statistical comparisons were conducted using 
Student’s test and presented as the mean ± SD, and the 
log-rank test was used for the patient survival analysis. 
The association between expression levels of periostin 
and its related genes in patient samples was analyzed by 
the Pearson correlation. A P value of 0.05 or smaller was 
considered statistically significant.
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