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The proton-coupled di- and tripeptide transporter PepT1 (SLC15a1) is the major route by which
dietary nitrogen is taken up from the small intestine, as well as being the route of entry for important
therapeutic (pro)drugs such as the b-lactam antibiotics, angiotensin-converting enzyme inhibitors
and antiviral and anti-cancer agents. PepT1 is a member of the major facilitator superfamily of 12
transmembrane domain transporter proteins. Expression studies in Xenopus laevis on rabbit PepT1
that had undergone site-directed mutagenesis of a conserved arginine residue (arginine282 in
transmembrane domain 7) to a glutamate revealed that this residue played a role in the coupling of
proton and peptide transport and prevented the movement of non-coupled ions during the
transporter cycle. Mutations of arginine282 to other non-positive residues did not uncouple proton–
peptide cotransport, but did allow additional ion movements when substrate was added. By contrast,
mutations to positive residues appeared to function the same as wild-type. These findings are
discussed in relation to the functional role that arginine282 may play in the way PepT1 operates,
together with structural information from the homology model of PepT1 based on the Escherichia coli
lactose permease crystal structure.
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1. INTRODUCTION
The uptake of di- and tripeptides by the proton-

coupled transporters of the SLC15 family is widely

accepted to be the major route of dietary nitrogen

absorption from the small intestine (via SLC15a1/

PepT1) and nitrogen reabsorption from the glomerular

filtrate in the renal proximal tubule (via PepT1 and

SLC15a2/PepT2) (see Meredith & Boyd 2000 and

Daniel & Kottra 2004 for reviews). Moreover, PepT1

holds considerable interest for pharmacologists in

being a major route of entry for orally bioavailable

compounds, such as the b-lactam antibiotics, angio-

tensin-converting enzyme inhibitors, antiviral and

anti-cancer agents (reviewed in Terada & Inui 2004).

Despite not being di- or tripeptides, these therapeutic

compounds are peptidomimetics and are transported

by virtue of their having a similar three-dimensional

shape to endogenous substrates. The ability of PepT1

to carry so many substrates (most, if not all, naturally

occurring di- and tripeptides, Vig et al. 2006) has

stimulated much interest in the binding site of this

transporter, which has been modelled by several groups

(Bailey et al. 2000, 2006; Biegel et al. 2005). PepT2 is

less well characterized, but is thought to be of higher
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affinity and to have a narrower substrate range than
PepT1, although still accepting a large number of
substrates compared with most transporters (Biegel
et al. 2006).

Most studies on PepT1 have been performed on
either the rabbit isoform (Fei et al. 1994) or the human
isoform (Liang et al. 1995). Both are predicted to have
12 transmembrane spanning domains (TMDs), which
has largely been confirmed experimentally by epitope
mapping (Covitz et al. 1998; although see Meredith &
Price 2006 for discussion about TMD1). The rabbit
PepT1 (707 amino acids) and human PepT1 (708
amino acids) share an overall identity of 81 per cent at
the amino acid level, with the major areas of difference
being in the large extracellular loop between TMDs 9
and 10, and the intracellular C-terminus. In the
absence of a crystal structure, computer (Bolger et al.
1998) and homology modelling (Meredith & Price
2006) have been attempted, but only time and
experimental testing will tell whether these models
are accurate enough to be useful. In the meantime, site-
directed mutagenesis has been a useful technique in
identifying functionally important residues in PepT1,
and one such residue is arginine282.
2. THE INTRIGUING ARGININE282

Arginine282 (R282) is located approximately halfway
down TMD7, and is either an arginine or a lysine in all
This journal is q 2008 The Royal Society
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of the mammalian PepT1 sequences to date. This high
level of conservation of a positively charged residue in a
TMD suggested a functional role and this residue has
been mutated by site-directed mutagenesis to explore
such a role. The first study by Bolger et al. (1998)
reported that mutation of R282 to an alanine in human
PepT1 (R282A-hPepT1) had a modest effect on
PepT1 activity when expressed in HEK293 cells,
namely no change in affinity and a small decrease of
approximately 15 per cent in Vmax when compared with
the wild-type hPepT1. TMD7 cysteine-scanning
experiments by the same group showed that R282C-
and R282E-hPepT1 expressed in HEK293 cells also
had reduced transport activity of approximately 80 and
43% of wild-type activity, respectively (Kulkarni et al.
2003). At the same time, the effect of an R282E mutant
in rabbit PepT1 (R282E-rbPepT1) on the kinetics of
peptide transport was being investigated (Meredith
2004). In agreement with the previous work on
hPepT1, the R282E-rbPepT1 mutant had an appa-
rently lower Vmax when expressed in Xenopus laevis
oocytes. However, investigation of kinetic parameters
other than Vmax revealed that R282E-rbPepT1 was
more subtly affected than would at first appear
(Meredith 2004), a finding that was further confirmed
in a later, more extensive study (Pieri et al. 2008).

In the original study (Meredith 2004), measurement
of dipeptide uptake by R282E-rbPepT1 revealed that
dipeptide uptake was no longer stimulated when the
extracellular pH (pHout) of the medium was dropped
to 5.5 from pHout 7.4, compared with wild-type where
the uptake rate was approximately doubled. There
was no change in R282E-rbPepT1 substrate affinity,
and there was a faster efflux rate in trans-stimulation
experiments. These findings were consistent with the
simplest explanation for the data, i.e. R282E-rbPepT1
was mediating facilitated diffusion of peptides, rather
than the obligatory peptide–proton cotransport of the
wild-type rbPepT1. Further support for this hypothesis
came from the observation that in contrast to wild-type
PepT1, R282E-rbPepT1 could not accumulate the
neutral substrate above the intracellular concentration
that would be predicted at equilibrium. In experiments
that were designed to confirm that R282E-rbPepT1
was indeed behaving as a facilitated diffusion peptide
transporter, the oocyte membrane potential was
measured in the absence and presence of a substrate.
Rather unexpectedly R282E-rbPepT1 gave not only a
depolarization in the presence of substrate, but also the
depolarization was larger than that of the wild-type
transporter. These observations were clearly not
consistent with the mutant R282E-rbPepT1 simply
transporting neutral dipeptide uncoupled to the move-
ment of ions. Two-electrode voltage clamp of oocytes
expressing R282E-rbPepT1 suggested that the current
induced in the presence of substrate was due to the
movement of cations, and it was proposed that there
was a peptide-gated cation pathway (‘channel’) in
R282E-rbPepT1 that was not present in the obligatory
1 : 1 proton : neutral dipeptide rbPepT1.

In the subsequent study (Pieri et al. 2008), the loss
of the proton coupling of R282 mutants was shown to
be true, namely for R282D-, R282A- and R282Q-
rbPepT1. However, if the amino acid residue at
Phil. Trans. R. Soc. B (2009)
position 282 was kept positive (R282K), or had the
potential to be positive (R282H), then proton-coupling
appeared normal. When substrate accumulation was
studied, not only did R282K and R282H-rbPepT1
show concentrative dipeptide uptake, as expected, but
so also did the non-proton stimulated mutants,
R282D-, R282A- and R282Q-rbPepT1. This surpris-
ing result implied that peptide transport by R282D-,
R282A- and R282Q-rbPepT1 was still coupled to the
movement of protons, but that the rate-limiting step of
transport was not influenced by the imposition of an
inwardly directed proton gradient, unlike the wild-type
transporter. This was confirmed by the finding that the
trans-stimulation efflux rates of all mutants except for
R282E-rbPepT1 was not different from wild-type
rbPepT1. If R282E-rbPepT1 did have a peptide-
gated cation conductance in addition to a facilitated
diffusion pathway for peptides, one question was
whether the movement of ions was conditional on
transport. This was addressed using a known non-
translocated substrate for PepT1, 4-aminobenzoic acid
(4-AMBA, Meredith et al. 1998), which despite
binding to PepT1 was not able to induce any
membrane depolarization in R282E-rbPepT1 expres-
sing oocytes. The hypothesis that the reason R282E-
rbPepT1 was not able to cause concentrative uptake of
substrate was because the flow of current was
collapsing the membrane potential (the major driving
force for PepT1-mediated transport, Temple et al.
1995) was tested by measuring the current induced in
other mutants using two electrode voltage clamp.
Despite being able to concentrate substrate intracellu-
larly, R282D- and R282A-rbPepT1 also showed an
increased stoichiometry from the normal one proton to
one neutral dipeptide (Temple et al. 1995), and in fact
the magnitude of the increase was slightly larger than
for R282E-rbPepT1. The currents that had been
measured by two electrode voltage clamp for R282E-
rbPepT1 in the original study were small (in the sub-
microamp range), and the stoichiometry measured
later was of the order of four protons to each peptide at
a pHout of 5.5. That protons could be carrying the
current was supported by a fall in stoichiometry to
approximately two protons per peptide when pHout was
increased to 7.4, again demonstrating that the move-
ment of charge required, but was not coupled to, the
movement of substrate.
3. WHAT ROLE DOES R282 PLAY IN PepT1
FUNCTION?
As can be seen from the data reviewed above, R282 is
playing a complicated role in PepT1 function, and the
effect of mutation on transporter function is dependent
on the substituted residue. There is good evidence that
R282 interacts with a negatively charged aspartate at
position 341, which is in TMD8 and predicted to be at
approximately the same position in the membrane. In a
doubly mutated transporter where the charges have
been swapped, i.e. R282E-D341R- and R282D-
D341R rbPepT1, normal transport characteristics are
seen (Pieri et al. 2004, 2008) and this was also true for
analogous mutations in the human PepT1 (Kulkarni
et al. 2007). Strangely, the single D341R-rbPepT1 also
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Figure 1. Helical wheel plan of the TMDs in PepT1 showing
the putative relative proximity of H57, R282 and D341 in the
TMDs 2, 7 and 8, respectively, in the homology model of
rabbit PepT1 (modified from Meredith & Price 2006).
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behaved as wild-type (Pieri et al. 2004), whereas the
D341R-hPepT1 had significantly reduced transport
(Kulkarni et al. 2007), and the reason for this
discrepancy between species is not clear.

Aside from this potential interaction, what else can
be deduced about the role of R282? As the only mutant
tested that is no longer able to accumulate substrate
above the extracellular concentration, it seems logical
to assume that peptide movement by R282E-rbPepT1
is no longer coupled to the electrochemical proton
gradient. However, the same cannot be true for
R282D-rbPepT1, which despite also having a nega-
tively charged amino acid residue at position 282 is able
to perform concentrative uptake and so must still be
linked to the proton electrochemical gradient despite
the uptake rate not being proton stimulated. One
explanation for the lack of proton stimulation for the
mutant transporters could be that R282E is changing
the protein environment of the crucial histidine in
TMD2 (H57), long implicated as the residue in PepT1
protonated as the first step in the transport cycle so that
it is always protonated (Meredith & Boyd 1995;
Temple et al. 1996). Support from this comes from
the finding that if the rate of transport is normalized to
the amount of protein expressed in the oocyte
membrane using luminometry (Panitsas et al. 2006),
then the rate of transport by R282E-rbPepT1 is in fact
the same as the wild-type at pHout 5.5, but unlike the
wild-type is not slower at pHout 7.4. At pHout 7.4, it has
been proposed that the rate limiting step of the
transporter kinetic cycle is the protonation of the
carrier (Temple et al. 1996), and so if in R282E-
rbPepT1 H57 was always protonated, the rate-limiting
step would be the return of the empty carrier at pHout

7.4 as it is at pHout 5.5 (Temple et al. 1996). Thus,
there would be no change in transport rate between
pHout 5.5 and 7.4, as observed. In the ab initio
computer modelling of PepT1, TMDs 2 and 7 were
not close (Bolger et al. 1998); however, the more recent
homology modelling suggests that they would be
adjacent (Meredith & Price 2006; figure 1). However,
the homology model is predicated on the assumption
that all members of the major facilitator superfamily
(MFS), a large family of over 1000 proteins identified
by signature motifs as transporters (Saier et al. 2006),
will have the same overall three-dimensional structure,
as suggested by Abramson et al. (2004). Continued
advances in membrane protein crystallography will be
necessary to prove whether this assumption is valid.

The second difference between R282E-rbPepT1
and the other mutants is that the former is the only
mutant tested that cannot concentrate peptide sub-
strate intracellularly above its electrochemical gradient.
This suggests that R282E-rbPepT1 is the only mutant
for which peptide transport is not coupled to the
obligatory cotransport of a proton. This is supported
by the stoichiometry data indicating that R282D- and
R282A-rbPepT1 had a stoichiometry one higher then
R282E-rbPepT1 at both pHout 5.5 and 7.4 (Pieri et al.
2008). One possible explanation for this would be that
the proton that is widely believed to bind to H57 is the
one that is translocated with the peptide substrate: it is
not able to dissociate during the transport cycle of
R282E-rbPepT1 due to a change induced in the local
Phil. Trans. R. Soc. B (2009)
protein environment that affects the pKa of H57 and
makes it permanently protonated. The model proposed
by Pieri et al. suggests that the proton from H57 is
transferred to the C-terminal carboxyl group of the
zwitterionic peptide substrate, which is then trans-
located across the membrane. On release this proton
dissociates to give a zwitterionic peptide and a free
proton in the cytoplasm.

One final difference between wild-type PepT1 and
PepT1 mutants lacking a positive charge at position 282
is the movement of additional charge during the
transport cycle, with about three extra charges moved
in the putatively proton-coupled mutants, and four
moved in the non-proton coupled R282E-rbPepT1.
While this ion movement is modest compared with the
flux that might be expected though a channel, it is
nevertheless a significant ‘slippage’ compared with the
obligatory one to one coupling of a proton to a neutral
dipeptide. One explanation for the extra ion movement
could be that the presence of the positively charged
R282 residue in the wild-type protein sets up an
electrostatic repulsion for protons and other cations
that enter the binding site for peptides in the
transporter. That there would be space for ions to
enter with a substrate seems probable given the large size
differences in PepT1 substrates. Thus, during the
translocation step when the protein presumably will
undergo a substantial conformational change, the
positive charge repulsion would prevent ions from
passing through the protein unregulated. The lower
stoichiometry seen when the proton electrochemical
gradient is lower (pHout 7.4 versus 5.5) does suggest that
the ion movement is simply electrodiffusive in nature.
4. EXTRAPOLATION TO OTHER TRANSPORTERS
As mentioned above, it has been hypothesized
that all members of the MFS will have a similar
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three-dimensional architecture (Abramson et al. 2004).
Therefore, it is interesting to look at the mutational
analysis of residues of other transporters with regard to
the induction of ion conductances not seen in the wild-
type. There are examples in the literature of mutations
in transporters that induce ion conductances for
previously excluded ions, for example, cation channel
behaviour in mutants of the chloride–bicarbonate anion
exchanger AE1 (Bruce et al. 2005). Other mutations
may lead to the formation of a channel for (one of ) the
previously transported ion(s), e.g. in trout AE1 (Martial
et al. 2006) or the neuronal glutamate transporter
EAAC1 (Borre & Kanner 2004). There are also
examples of mutations in lactose permease where the
lactose transport is uncoupled from proton movement
(Kaback et al. 2001). However, for both the EAAC1 and
the lactose permease mutations the substrate binding
affinity is affected, and that is not the case for the PepT1
mutants, suggesting that R282 does not play a role in
the peptide substrate binding site.
5. CONCLUSIONS
R282 plays an intriguing role in PepT1 function.
Mutation to anything other than a positively charged
residue abolishes the stimulation of transport by an
inwardly directed proton electrochemical gradient, yet
all mutant PepT1 tested, except R282E-PepT1, can
accumulate substrate. The loss of the charged residue
at position 282 also seems to be linked to the increased
stoichiometry of proton to peptide transport, although
at an extra three charges per peptide at pHout 5.5 it is a
relatively modest effect. This suggests that rather than a
true channel being formed, there is a small slippage of
ions during the conformational change in the protein
that must occur during the translocation of peptide
from one side of the membrane to the other. Further
understanding of the structure–function relationship of
the PepT1 transporter, including of the substrate
binding site, will be invaluable in the future develop-
ment of orally bioavailable therapeutic compounds.

I am very grateful to the Wellcome Trust, Cancer Research
UK and the Royal Society for providing support for
research, and to mentors, co-workers and collaborators,
past and present.
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