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The psychic disintegration characteristic of schizophrenia is thought to result from a
defective connectivity, of neurodevelopmental origin, between several integrative brain
regions. The parahippocampal region and the prefrontal cortex are described as the main
regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be
reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction
is also generally well accepted in this disorder. In the present review, we have integrated
behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected
to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or
the prefrontal cortex. The data discussed suggest a subtle and transient functional
blockade during early development of the aforementioned brain regions is sufficient to
induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood.
In summary, these results support the view that our conceptual and methodological
approach, based on functional disconnections, is valid for modeling some aspects of the
pathophysiology of schizophrenia from a neurodevelopmental perspective.

Keywords: schizophrenia, animal modeling, neonatal functional inactivation, entorhinal cortex, ventral subiculum,
prefrontal cortex, latent inhibition

INTRODUCTION
SCHIZOPHRENIA
Schizophrenia is a complex neuropsychiatric disorder of
unknown etiology, and its pathophysiology remains poorly
understood. It affects about 1% of the population worldwide
(Insel, 2010) and is a heavy burden not only for the families of
the patients but also for society (Knapp et al., 2004; McEvoy,
2007). It was recently proposed that the characteristic psychic
disintegration observed in schizophrenia would result from
abnormal connectivity, i.e., disconnections, at least partly
of neurodevelopmental origin (Weinberger and Lipska,
1995; Andreasen, 1999; Lewis and Levitt, 2002; Sawa and
Snyder, 2002; Insel, 2010; Rapoport et al., 2012) between
different integrative brain regions, especially the prefrontal
cortex, the medial temporal lobe and striatal regions (Lawrie
et al., 2002; Stephan et al., 2009; Meyer-Lindenberg, 2010;
Fornito et al., 2011; Schmitt et al., 2011). This “disconnection
hypothesis” in schizophrenia is backed up by a great many
of neurophysiological and neuroimaging studies, but the
cause of the dysconnectivity is still the subject of discussion.
The current debate centers on two possible explanations,
namely that the dysconnectivity may result from either (1)

abnormal synaptic plasticity; or (2) abnormal white matter
connections between two integrative brain regions (Friston,
1998, 1999; Stephan et al., 2006, 2009; for review see Shi
et al., 2012). Both abnormal dendritic spine density (Glantz
and Lewis, 2000; Black et al., 2004; Kolluri et al., 2005), and
also myelination abnormalities (Du et al., 2013; Palaniyappan
et al., 2013) have been reported in patients with schizophrenia.
Early developmental abnormalities could lead to dopamine
dysregulation (Murray et al., 2008; O’Donnell, 2011; Eyles
et al., 2012) which ultimately results in the well-acknowledged
dopaminergic imbalance observed in patients with schizophrenia
(Meltzer and Stahl, 1976; Carlsson et al., 2001; Kuepper
et al., 2012). Importantly, the prefrontal cortex and medial
temporal lobe (i.e., entorhinal cortex, ventral subiculum) stand
out as the main regions affected in schizophrenia. In this
respect several cytoarchitectural and neuronal morphometric
abnormalities have been described at the level of the prefrontal
cortex (Garey, 2010; Yang et al., 2011; Nesvåg et al., 2012;
Palaniyappan and Liddle, 2012), the entorhinal cortex (Arnold,
2000; Falkai et al., 2000; Prasad et al., 2004) and the ventral
subiculum (Arnold, 2000; Rosoklija et al., 2000; Law et al.,
2004).
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NEURODEVELOPMENTAL ANIMAL MODELS FOR SCHIZOPHRENIA:
FOCUS ON NEONATAL DISCONNECTION ANIMAL MODELS
An accumulation of evidence over the past 20 years in favor of the
neurodevelopmental hypothesis for schizophrenia has resulted
in a number of animal models based on early impairment of
brain development (for reviews see Weinberger, 1996; Rehn and
Rees, 2005; Powell, 2010). It is not possible to present them all
in this article, but, basically, these neurodevelopmental animal
models for schizophrenia can be divided up into (i) epidemi-
ological models; (ii) genetic models; and (iii) heuristic models.
Epidemiological animal models are derived from studies which
point to an increased risk of developing schizophrenia follow-
ing perinatal exposure to environmental insults (e.g., isolation
rearing, maternal deprivation, or postnatal exposure to stress,
e.g., Ellenbroek et al., 2004; Lee et al., 2007; Amitai et al., 2013),
infection or immune activation (Fruntes and Limosin, 2008;
Meyer, 2014), nutritional deficiencies (Palmer et al., 2004; Harms
et al., 2008), as well as obstetric complications (Boksa, 2004;
Juarez et al., 2008). Recently developed genetic models are based
on findings that implicate developmental candidate genes (e.g.,
Reelin, STOP, DISC1, NRG1) or human copy number variations
(CNVs; e.g., 22q11.2 deletion; Chen et al., 2006; Powell et al.,
2009; Fénelon et al., 2013), whereas heuristic models take account
of a wider array of clinical and biological findings relevant to the
pathophysiology of schizophrenia. Some of these heuristic mod-
els aim to reproduce cytoarchitectural abnormalities observed
in schizophrenia and thus involve impaired neurogenesis based
on the use of antimitotic agents such as methylazoxymethanol
acetate (MAM; see Lodge and Grace, 2009) or cytosine arabi-
noside (Ara-C; Elmer et al., 2004) administered at the end of
the gestational period, and more specifically at gestational day
(GD) 17 or GD 19.5–20.5 respectively, a period correspond-
ing to the end of the first trimester in humans (Clancy et al.,
2001). One of the best-characterized neurodevelopmental animal
models for schizophrenia is the neonatal ventral hippocampal
lesion model (NVHL), which was initially developed to take
account of anatomopathological data observed in the hippocam-
pus of patients with schizophrenia (Lipska et al., 1993; Lipska
and Weinberger, 1994; Lipska, 2004; Tseng et al., 2009). In this
model, an excitotoxic lesion of the ventral hippocampus was
performed at postnatal day 7 (PND7), which corresponds to the
middle of the second trimester of gestation in humans (Clancy
et al., 2001), considered to be a period of high vulnerability for
developing schizophrenia (Weinberger and Lipska, 1995; Lewis
and Levitt, 2002; Tseng et al., 2009). However, although the
heuristic validity of this animal model is undeniable, it relies
on massive and irreversible damage of the ventral hippocampus
(Lipska et al., 1993; Fatemi and Folsom, 2009), whereas post-
mortem brain analyzes performed on schizophrenia patients have
revealed only subtle anatomical alterations in the hippocam-
pus, but no lesions or tracks of lesions (Harrison, 1999, 2004).
Other neurodevelopmental models have been devised involv-
ing a neonatal excitotoxic lesion of another temporal region,
the entorhinal cortex (Harich et al., 2008) or medial prefrontal
cortex (Bennay et al., 2004; Schwabe et al., 2004, 2006; Enkel
and Koch, 2009). However, as with the ventral hippocampus no
lesions or tracks of lesions have been observed in these regions

in patients with schizophrenia (Harrison, 1999). To overcome the
construct validity weakness of lesion-based approaches (Lipska
and Weinberger, 2000; Tseng et al., 2009), postnatal transient
functional inactivation models have been designed as alternative
models based on reversible neonatal functional blockade induced
by local intracerebral infusion of tetrodotoxin (TTX), a well-
known blocker of voltage-sensitive sodium channels (Stevens
et al., 2011). Electrical activity appears to be essential during
neonatal brain development (Spitzer, 2006), and an interruption
of impulse activity by TTX has been reported to have inhibitory
effects on myelination (Demerens et al., 1996) and to disrupt the
refinement of synaptic connections in target structures (Stryker
and Harris, 1986; Katz and Shatz, 1996), as well as the normal
maturing of dendritic spines (Drakew et al., 1999; Frotscher
et al., 2000). Thus, the consequences of neonatal TTX inacti-
vation appear to be adequate for modeling disconnections as
proposed for schizophrenia (see above). Moreover, it has been
shown that neonatal transient inactivation of the ventral hip-
pocampus leads to schizophrenia-relevant features in adulthood,
such as motor hyperactivity following a pharmacological (D-
amphetamine, MK-801) or environmental challenge (exposure to
a novel environment; Lipska et al., 2002). Interestingly, in adult
rats that underwent neonatal TTX inactivation of the ventral
hippocampus, Brooks and co-workers reported deficient acetyl-
choline release from the prefrontal cortex following mesolimbic
stimulation (Brooks et al., 2011), as well as deficits in a set-
shifting task (Brooks et al., 2012). In addition, results obtained
in our laboratory, which are discussed in detail below, showed
that neonatal transient TTX inactivation of the entorhinal cor-
tex, ventral subiculum or prefrontal cortex induced disturbed
dopaminergic and behavioral responses related to latent inhibi-
tion (LI) in adulthood (Peterschmitt et al., 2007; Meyer et al.,
2009; Meyer and Louilot, 2011, 2012). It is important to note that
no lesions or macroscopic anatomical changes have been observed
in the aforementioned studies following neonatal TTX inactiva-
tion (Lipska et al., 2002; Peterschmitt et al., 2007; Meyer et al.,
2009; Brooks et al., 2011; Meyer and Louilot, 2011, 2012; Brooks
et al., 2012; Usun et al., 2013). Taken together, functional dis-
connection models appear to be a relevant conceptual approach
to animal modeling for some aspects of the pathophysiology
of schizophrenia and without inducing any major anatomical
lesion.

LATENT INHIBITION
Some data point towards disturbed information processing in
patients with schizophrenia. In this respect, the behavioral
paradigms most widely used in schizophrenia research are LI and
prepulse-inhibition of the startle reflex (PPI). Although both LI
and PPI have been reported to be disrupted in acute schizophrenia
patients (Baruch et al., 1988; Gray et al., 1995; Braff et al., 1999,
2001; Rascle et al., 2001; Kumari and Ettinger, 2010), whereas a
contradictory view exists (Swerdlow, 2010), PPI is also impaired
in a variety of other disorders such as Huntington’s disease,
Tourette’s syndrome, temporal lobe epilepsy with psychosis, and
post-traumatic stress disorder (Braff et al., 2001). By contrast, LI
disruption appears more specific to schizophrenia (see Lubow and
Weiner, 2010) and is a cognitive marker of choice for the animal
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modeling of schizophrenia. As first described by Lubow and
Moore (Lubow and Moore, 1959), LI is a behavioral phenomenon
observed in several animal species including humans (Lubow,
1989). It was originally defined as retarded acquisition of the
conditioned response (CR) when the conditional stimulus (CS)
is first pre-exposed on its own. It is generally accepted that LI
allows for adaptations to be made to a changing environment.
Despite the relative simplicity of the LI phenomenon, theoretical
explanations have proved difficult. Since its discovery, different
theories (see Lubow and Weiner, 2010) have been proposed,
explaining it as (1) a defect in the acquisition of conditioning
(attention/associability theories); (2) a switching mechanism—
controlled by the hippocampal formation—between the CS-
reinforcement associations acquired during conditioning and the
CS-no event associations acquired during pre-exposure (Switch-
ing model); or (3) a defect in the expression of conditioning
(retrieval theories). As for the neurobiological substrates of LI,
lesion studies and in vivo neurochemical approaches (i.e., in
vivo microdialysis, in vivo voltammetry) revealed the involve-
ment of the mesencephalic dopaminergic systems (for review
see Louilot et al., 2010) and in particular the dopaminergic
neurons innervating the core and dorsomedian shell part of the
nucleus accumbens—with the ventromedial shell involved in the
affective perception of the stimulus (Jeanblanc et al., 2002)—as
well as the anterior part of the dorsal striatum (Jeanblanc et al.,
2003).

DISRUPTED LATENT INHIBITION: A RECOGNITION
MEMORY DEFICIT?
The present review includes behavioral and neurochemical data
recently obtained in a LI protocol involving adult rats subjected
to early neonatal (postnatal day 8) functional TTX inactivation
of the entorhinal cortex, ventral subiculum or prefrontal cortex
(Peterschmitt et al., 2007; Meyer et al., 2009; Meyer and Louilot,
2011, 2012). We were able to show that subtle and transient
functional inactivation of the aforementioned cerebral regions
during early development is sufficient to induce schizophrenia-
related behavioral abnormalities: disrupted LI accompanied by
dopaminergic changes recorded during adulthood in the dorsal
striatum and the core part of the nucleus accumbens (see summa-
rizing Table 1). In the context of these studies, LI was measured in
a three-stage paradigm involving a conditioned olfactory aversive

procedure with banana odor as the conditional stimulus (CS)
and lithium chloride (LiCl), a nausea-induced toxic substance,
as the unconditional stimulus (US; Jeanblanc et al., 2002; see
Figure 1). This paradigm clearly allows for the observation of
LI, as evidenced by the disappearance of the aversively condi-
tioned behavioral response (i.e., aversion towards the CS) in
the pre-exposed conditioned animals (see Jeanblanc et al., 2002;
Peterschmitt et al., 2007; Louilot et al., 2010; Meyer and Louilot,
2011, 2012).

Interestingly, as regards the entorhinal cortex and ventral
subiculum, the behavioral responses obtained following TTX
inactivation of the two temporal regions performed at postnatal
day 8 were similar or even stronger than those obtained following
TTX inactivation of the same brain regions in adulthood prior to
the pre-exposure session. Previous data obtained in adult animals
suggested that both temporal regions are part of a system involved
in the recognition memory of the stimulus (Jeanblanc et al., 2004;
Peterschmitt et al., 2005, 2008). In this context, it is important
to recall that in the past different theoretical constructs have
been proposed as explanations for LI (see Lubow and Weiner,
2010). In short, it was initially suggested that LI reflects a delay
in acquiring the conditioning relating to a learned inattention
to the CS (see Lubow, 1989) or a decrease in CS associability
(Mackintosh, 1975, 1983; Wagner, 1976) due to presentation
of the CS alone during the pre-exposure session. Contrary to
that, however, it has also been suggested that LI corresponds to
a defect in the behavioral expression of conditioning which is
normally acquired during the conditioning session (Miller and
Matzel, 1988; Weiner, 1990, 2003; Kraemer et al., 1991; Bouton,
1993). Hypothesizing a failure in the expression of conditioning
is an easier interpretation of the results obtained with our three-
stage LI paradigm (see Figure 1) than hypothesizing a defect
in the acquisition of conditioning. First of all, these results,
which show that in the retention session pre-exposed conditioned
animals display a similar approach to the CS (banana odor)
as pre-exposed control and non-pre-exposed control animals
(Jeanblanc et al., 2002), suggest a similar interest in the CS, for
the three groups and therefore do not support the hypothesis of
a learned inattention to the stimulus in the pre-exposed condi-
tioned group. Secondly, results obtained previously in the differ-
ent subregions of the nucleus accumbens (Jeanblanc et al., 2002)
showed that dopaminergic responses in the core and dorsomedial

Table 1 | Summary of the main results obtained at the behavioral and neurochemical level following neonatal TTX inactivation of the
entorhinal cortex, the ventral subiculum or the prefrontal cortex.

Brain regions inactivated
at PND8

Reversal of behavioral
LI expression

Reversal of LI-related
dopaminergic responses

References

Core Dorsal striatum

Entorhinal cortex
√ √

Partial Peterschmitt et al. (2007);
Meyer et al. (2009)

Ventral subiculum
√

Partial
√

Meyer et al. (2009);
Meyer and Louilot (2011)

Prefrontal cortex
√ √

Partial Meyer and Louilot (2012);
Meyer and Louilot,
unpublished data
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FIGURE 1 | Schematic representation of the paradigm used to obtain
latent inhibition. (A) Three-stage latent inhibition paradigm. During the
pre-exposure (first) session, the animals were placed in the experimental cage
(Exp. Cage) for 1 h without any olfactory stimulus (Olf. St.), before being
exposed to the to-be-conditioned olfactory stimulus (banana odor) for 2 h. 72 h
later, the animals were subjected to the conditioning (second) session. After a
1-h period that allowed the rats to become accustomed to the experimental
cage, they were then exposed to the banana odor (CS) for 1 h. After that, they
were given an intraperitoneal (i.p.) injection of either a saline (NaCl 0.9%) or

an isotonic solution of LiCl (0.15 M). They then remained in the cage with the
olfactory stimulus for a further hour. 72 h later, they were returned to the
experimental cage for the test (third) session. After a 1-h familiarization period,
they were exposed to the CS for a further hour. Their attraction or aversion
towards the olfactory stimulus (banana odor) was then assessed in terms of
how much time they spent near the olfactive source. The olfactory aversive
conditioning protocol (B) was exactly the same except that non-pre-exposed
animals were subjected only to the conditioning (second) session and the test
(third) session (Adapted from Jeanblanc et al., 2002).

shell parts of the nucleus accumbens are related to LI, whereas
dopaminergic responses in the ventromedial shell part of the
nucleus accumbens appear to be related only to conditioning,
not LI, insofar as similar small dopaminergic increases were
observed in this subregion in pre-exposed conditioned and non-
pre-exposed conditioned groups whereas marked dopaminergic
increases were observed in the two control groups. These latter
results suggest aversive conditioning was normally acquired in
pre-exposed conditionned animals but not behaviorally expressed
during the retention (test) stage. This proposal is consistent
with theoretical constructs which suggest differently that the
expression of LI reflects interference or competition between the
memories of the CS-alone or the CS-no event acquired during
pre-exposure and the memory of the aversive valence related to
the CS acquired during conditioning (Miller and Matzel, 1988;
Bouton, 1993; see also Weiner, 2003; Louilot et al., 2010). In
keeping with these explanations, in a heuristic perspective, one
interpretation of the fact that conditioning is normally acquired
but not expressed during the retention session would be that
LI responses, at least in our LI paradigm, reflect the inhibitory
influence a neuronal system involved in some kind of recognition
memory of the CS alone or the CS-no event encoded during
the pre-exposure session has upon a second neuronal system
involved in the expression of aversive conditioning towards the
CS (Jeanblanc et al., 2002). Past data suggest the basolateral
nucleus of amygdala may be part of the second system (Louilot

and Besson, 2000). To shore up our heuristic hypothesis regard-
ing the system involved in recognition memory, we investigated
in adult animals the consequences of functional inactivation
of the entorhinal cortex and ventral subiculum, two structures
described as being involved in both LI (Gray et al., 1995; Weiner
and Feldon, 1997; Weiner, 2003) and recognition memory of
olfactory stimuli (Suzuki and Eichenbaum, 2000; Petrulis et al.,
2005; Eichenbaum et al., 2007). In so doing, we considered that
if a structure is involved in encoding information during pre-
exposure, it may also be involved in retrieving this informa-
tion during the retention session. Thus, TTX inactivation of the
entorhinal cortex and ventral subiculum was performed during
the pre-exposure session, and the behavioral and dopaminergic
responses were measured during the retention (third) session
(Jeanblanc et al., 2004; Peterschmitt et al., 2005, 2008). A rever-
sal of LI responses towards conditioned aversive responses was
observed during this last session, lending support to the proposal
that a neural system involved in recognition memory played a
role in our LI paradigm. It is a proposal backed up by data
obtained in a three-stage cued fear conditioning LI paradigm
in adult mice following functional inactivation of the entorhi-
nal/subicular region by muscimol (Lewis and Gould, 2007). More
specifically, these authors showed that inactivation during the
pre-exposure or retention session, but not conditioning session,
causes the behavioral expression of LI to be lost during test-
ing (see Peterschmitt et al., 2008, for an extensive discussion).
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Others have also suggested some kind of recognition memory is
involved in LI, based on their findings in an inhibitory avoidance
paradigm after cholinergic manipulation of the insular cortex at
pre-exposure (Miranda and Bermúdez-Rattoni, 2007). In other
words, there is support for the view that defective information
retrieval related to the CS is involved in the disruption of LI. It
is important to note here that (1) recognition memory defects
have been reported in patients with schizophrenia (Danion et al.,
1999; Huron and Danion, 2002; Pelletier et al., 2005; Drakeford
et al., 2006; Danion et al., 2007; van Erp et al., 2008; Libby
et al., 2013); and (2) numerous animals models for schizophre-
nia have shown deficits in novel object recognition tasks (e.g.,
Schneider and Koch, 2003; Brosda et al., 2011; McIntosh et al.,
2013).

Regarding early neonatal TTX inactivation of temporal or
prefrontal regions, a number of different mechanisms could
account for the loss of behavioral LI expression observed in
adulthood. It is well accepted that electrical activity plays an
essential role in the early development of the nervous system
(Spitzer, 2006) and is involved in a number of cellular processes,
such as axons’ myelination (Demerens et al., 1996), rearrange-
ment of synaptic connections in target structures (Stryker and
Harris, 1986; Katz and Shatz, 1996; Hutchins and Kalil, 2008),
and maturation of dendritic spines (Drakew et al., 1999). Impor-
tantly, the first 2 postnatal weeks are known to be critical for
the development of the parahippocampal regions and prefrontal
cortex in rodents (Clancy et al., 2001). Indeed, several authors
have reported that the connectivity of the parahippocampal
region (i.e., entorhinal cortex and the ventral subiculum), but
also of the prefrontal cortex, is still maturing during the sec-
ond postnatal week (Schlessinger et al., 1975; Singh, 1977a,b;
Fricke and Cowan, 1978; van Eden et al., 1990). Thus, follow-
ing TTX neonatal inactivation, failure of one or more of the
abovementioned mechanisms could result in abnormalities in
the intrinsic and/or extrinsic connectivity of these brain struc-
tures. Through a combination of the aforementioned cellular
mechanisms, early TTX inactivation could very well induce
a functional disturbance of the entorhinal cortex and ventral
subiculum, resulting in encoding defects of the CS but also a
loss of recovery of information related to the CS which would
manifest itself in adulthood in a malfunctioning recognition
memory system, preventing proper learning and memorization
of the characteristics related to the CS (banana odor) during pre-
exposure to the stimulus (see discussion above; Louilot et al.,
2010). Indeed, at adulthood, during the retention session, only
the association between the CS and the negative reinforcement
(malaise induced by LiCl) that occurred during the condition-
ing phase would be retrieved. This would explain the expres-
sion of an aversive reaction to the stimulus—instead of an
approach reaction typical of LI expression—in animals neonatally
microinjected with TTX (Peterschmitt et al., 2007; Meyer et al.,
2009).

Regarding the prefrontal cortex, the data we have obtained
thus far after neonatal inactivation do not allow us to conclude
whether or not this structure is involved in encoding the informa-
tion related to the CS during pre-exposure and/or retrieval during
the test phase (Meyer and Louilot, 2012). However, because of

close anatomical connections between the prefrontal cortex and
the entorhinal cortex and ventral subiculum (Jay et al., 1989; Jay
and Witter, 1991; Carr and Sesack, 1996; Insausti et al., 1997;
Heidbreder and Groenewegen, 2003; Hoover and Vertes, 2007),
the prefrontal cortex may very well be part of the recognition
memory system thought to be involved in the LI phenomenon
and may thus be malfunctioning after early neonatal inactivation.
The disappearance of LI behavior observed in animals subjected
to neonatal TTX inactivation may also be related to neurodevel-
opmental disturbances in target regions of the prefrontal cortex
that are secondary to the neonatal inactivation (e.g., myelination
defects in projection structures, particularly the hippocampal
regions), rather than to a functional impairment of the prefrontal
cortex per se. Myelination defects have been observed after neona-
tal ibotenic lesion of the prefrontal cortex (Schneider and Koch,
2005; Klein et al., 2008) but have yet to be demonstrated following
TTX postnatal blockade.

Taken together, the data obtained in our early life discon-
nection model show that neonatal transient blockade of the
entorhinal cortex, ventral subiculum, or prefrontal cortex, all
structures described as targets of neurodevelopmental distur-
bances in schizophrenia, disrupt the behavioral expression of LI
in adulthood. Based on the experimental and clinical data set
out above, it is tempting to propose that these early functional
disconnections may induce neurodevelopmental abnormalities in
the parahippocampal region and prefrontal cortex which lead
in adulthood to a disruption of mnemonic processing abilities
resulting in turn in an impaired recognition memory reflected in
our animal model by a disruption of the behavioral expression
of LI.

DYSREGULATION OF THE STRIATAL LI-RELATED
DOPAMINERGIC RESPONSES
INVOLVEMENT OF THE PARAHIPPOCAMPAL REGION: ENTORHINAL
CORTEX AND VENTRAL SUBICULUM (SEE SUMMARIZING FIGURE 2)
We showed very interestingly that the reversal of the behavioral
expression of LI following early inactivation of the entorhinal
cortex, ventral subiculum or prefrontal cortex had different con-
sequences for LI-related dopaminergic responses depending on
the striatal region considered: ventral striatum or dorsal striatum
(see summarizing Table 1). As a result of reciprocal connections
between the entorhinal cortex and ventral subiculum (Van Groen
and Lopes da Silva, 1986; Naber et al., 2000; van Groen et al.,
2003; O’Mara, 2005) one would expect the entorhinal cortex
and ventral subiculum to exert similar controls on dopaminergic
responses at the level of the nucleus accumbens. However, our
results showed that a neonatal functional blockade of the entorhi-
nal cortex induced a complete loss of dopaminergic responses
characteristic of LI recorded in the core part of the nucleus
accumbens, but only a partial reversal of these responses in the
dorsal striatum (Peterschmitt et al., 2007; Meyer et al., 2009).
Neonatal inactivation of the ventral subiculum, on the other
hand, caused partial loss of dopaminergic responses character-
istic of LI in the core part and a total disappearance of these
responses in the dorsal striatum (Meyer et al., 2009; Meyer and
Louilot, 2011). It is clear from these results that the two medial
temporal structures exercise a different control over dopaminergic
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FIGURE 2 | Schematic representation of the connections affected
following early-life (PND8) TTX inactivation. After TTX blockade of the
entorhinal cortex, ventral subiculum or prefrontal cortex performed at
PND8 a number of interconnected brain regions are affected (see solid
arrows). Our data showed that the ventral subiculum exerts strong control
over the dopaminergic responses recorded in the dorsal striatum (thick
orange arrows) and only slightly affects the dopaminergic variations in the
core part of the nucleus accumbens (thin blue arrow). By contrast, strong
control over the dopaminergic responses recorded in the core (thick blue

arrows) is exerted by the entorhinal cortex and the medial prefrontal
cortex, whereas both these regions have little influence over the
dopaminergic responses recorded in the dorsal striatum (thin orange
arrows). The broken green arrows denote dopaminergic projections from
the ventral mesencephalon. We propose that the behavioral responses
observed in latent inhibition are the result of functional complementarity
at the level of the ventral pallidum (dorsolateral part), of dopamine-
regulated efferents from the dorsal striatum and the core part of the
nucleus accumbens

LI-related responses in the ventral and dorsal striatum. Connec-
tivity differences may very well account for the stronger effect of
a neonatal functional blockade of the entorhinal cortex on LI-
related dopaminergic responses recorded in the core part of the
nucleus accumbens. Indeed, there is clear evidence for regulation
of the dopaminergic transmission at the level of the nucleus
accumbens by the entorhinal cortex, on the one hand (Louilot
and Le Moal, 1994; Louilot and Choulli, 1997), and the ventral
subiculum, on the other hand (Louilot and Le Moal, 1994; Blaha
et al., 1997; Legault et al., 2000; Floresco et al., 2001; Peleg-
Raibstein and Feldon, 2006). Secondly, the two parahippocam-
pal regions project on the nucleus accumbens (McGeorge and
Faull, 1989), although such projections are distributed unevenly,
with a much denser innervation of the core part of the nucleus
accumbens from the entorhinal cortex than from the ventral
subiculum (Groenewegen et al., 1987; Brog et al., 1993; Totterdell
and Meredith, 1997).

As for the dorsal striatum, it seems that, similar to the core part
of the nucleus accumbens, the two temporal structures exert a dis-
tinct control over the LI-related dopaminergic responses recorded
in the anterior part of the dorsal striatum, with a stronger effect
induced by inactivation of the ventral subiculum. Although the

interactions between the entorhinal cortex and ventral subiculum,
with dopaminergic neurons innervating the anterior part of the
dorsal striatum, have yet to be specified, known connections
mainly originating in the entorhinal cortex and ventral subiculum
have been described in the median part of the anterior dorsal
striatum, which is where dopamine was measured in our own
studies (Groenewegen et al., 1987; McGeorge and Faull, 1989;
Finch et al., 1995; Finch, 1996; Totterdell and Meredith, 1997).

As regards the core part of the nucleus accumbens, a relation-
ship was found in our behavioral paradigm between dopamin-
ergic variations and the direction of behavioral responses
(attraction or aversion) in animals not subjected to any neonatal
functional blockade (Jeanblanc et al., 2002, 2004; Peterschmitt
et al., 2008). Thus, it has been shown that the approach of the
stimulus is accompanied by a marked increase in dopamine in
the core part of the nucleus accumbens, while a rapid transient
signal decrease and return to baseline values accompanies the
response of avoidance. Results that support this view have been
obtained during self-administration of cocaine (Phillips et al.,
2003) in studies where the authors revealed gradual increases
in extracellular dopamine levels in rats who were approaching
the lever used to deliver cocaine and thus signaling reward, the

Frontiers in Behavioral Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 118 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Meyer and Louilot Disconnection animal models for schizophrenia

suggestion being that dopaminergic variations recorded in the
core part of the nucleus accumbens may precede the expression
of behavioral responses. This interpretation is also consistent
with the proposal that the core part of the nucleus accumbens
is involved in the permutation or switching between different
behavioral sequences so that there is an appropriate response is
to the context, and in particular the LI phenomenon (Weiner
and Feldon, 1997; Weiner, 2003). Concerning the dorsal striatum,
it has also been shown that dopaminergic responses recorded
in this region are in the same direction and similar to those
found in the core part of the nucleus accumbens (Jeanblanc et al.,
2003, 2004; Peterschmitt et al., 2005). However, the dopamin-
ergic responses obtained after neonatal TTX inactivation of the
entorhinal cortex and ventral subiculum suggest the relation-
ship between dopaminergic changes in the core and the dor-
sal striatum and behavioral responses may be more complex
than initially suggested. Indeed, pre-exposed conditioned ani-
mals that underwent neonatal inactivation of the ventral subicu-
lum surprisingly displayed a small increase in dopamine in the
core while displaying an aversion response (Peterschmitt et al.,
2007; Meyer and Louilot, 2011). They were also characterized
by no increase in dopamine in the anterior part of the dorsal
striatum (Meyer et al., 2009). As previously discussed, in pre-
exposed conditioned animals subjected to neonatal blockade of
the entorhinal cortex an almost opposite dopaminergic profile
is obtained in the two striatal regions while a similar behav-
ioral expression is obtained. This important and very interest-
ing finding prompts us to suggest that the lack of dopamine
increase in one of the two striatal subregions—core or dorsal
striatum—appears to be enough to disrupt the normal behav-
ioral expression of LI. This proposal presupposes a functional
similarity and complementarity between the core part of the
nucleus accumbens and the adjacent part of the anterior dor-
sal striatum targeted in our studies. Several reports back the
plausibility of this hypothesis. Based on anatomo-functional con-
siderations, Voorn et al. (2004) have proposed that the stria-
tum can be organized in parallel vertical columns encompassing
the well-acknowledged ventral and dorsal striatal subdivisions.
According to this scheme, the core part of the nucleus accum-
bens and anterior part of the dorsal striatum situated above
the core are part of the same column (Voorn et al., 2004).
Moreover, converging efferents from the core part of the nucleus
accumbens and adjacent regions of the dorsal striatum close to
the dorsolateral part of ventral pallidum have been described
(Mogenson et al., 1983; Groenewegen et al., 1993), suggesting
the coordinated involvement of the two striatal subregions in
output responses, and namely motor responses. It is important
to note here that the dorsolateral part of the ventral pallidum
has been shown to send direct projections to the substantia
nigra, pars reticulata (Groenewegen et al., 1993; see also Zahm,
2000). Our proposal, therefore, is that in LI-related responses
there is a functional complementarity between the core and
anterior dorsal striatum influences, at the level of the ventral
pallidum (see summarizing Figure 2). In this context, it is
interesting to note that Menon and colleagues (Menon et al.,
2001) used functional magnetic resonance imaging (fMRI) to
show a dysfunction of the basal ganglia and more specifically

a lack of activation of the putamen and globus pallidus, the
suggestion being that these structures are involved in behavioral
disturbances in goal-directed actions observed in schizophrenia
patients.

INVOLVEMENT OF THE PREFRONTAL CORTEX (SEE SUMMARIZING
FIGURE 2)
Concerning the neonatal inactivation of the medial prefrontal
cortex (infralimbic/prelimbic region), we showed that early and
reversible functional inactivation of this region is sufficient to
induce a complete loss of behavioral expression of LI as well
as a complete disruption of LI-related dopaminergic responses
in the core part of the nucleus accumbens (Meyer and Louilot,
2012) and partial loss of these responses in the anterior part of
dorsal striatum (unpublished results; see summarizing Table 1).
Therefore, these data argue in favor of involvement of the pre-
frontal cortex in the LI phenomenon, despite its involvement
having been controversial for many years (Broersen et al., 1996;
Ellenbroek et al., 1996; Joel et al., 1997; Lacroix et al., 1998;
Broersen et al., 1999; Lacroix et al., 2000a,b). As mentioned
above, the absence of LI in adult animals after postnatal TTX
inactivation of the prefrontal cortex could be explained by dif-
ferent cellular mechanisms. Similar to previous studies, no gross
anatomical changes were observed in either the prefrontal cortex,
nucleus accumbens (Meyer and Louilot, 2012), or dorsal striatum
(unpublished results). It is therefore possible to suggest that
a transient blockade of the electrical activity in the prefrontal
cortex during a critical period involves one or more mechanisms,
permanently affecting communication between the prefrontal
cortex and structures receiving direct projections such as the
nucleus accumbens (Gorelova and Yang, 1997; Heidbreder and
Groenewegen, 2003), structures that innervate the prefrontal cor-
tex, such as the subiculum (Jay et al., 1989; Jay and Witter, 1991),
or those sharing reciprocal connections with the prefrontal cortex,
such as the entorhinal cortex (Insausti et al., 1997; Heidbreder
and Groenewegen, 2003; Hoover and Vertes, 2007). As already
discussed above, different cellular mechanisms may result in neu-
roanatomical changes responsible for poor integration of infor-
mation in the prefrontal cortex resulting in changes in dopamine
release in the core part of the nucleus accumbens or the dorsal
striatum in pre-exposed conditioned animals subjected to TTX
inactivation.

As regards the core part of the nucleus accumbens, it has been
shown that dopaminergic transmission depends on the functional
activity of the prefrontal cortex (Louilot et al., 1989). More-
over, the prefrontal cortex may control dopaminergic responses
directly in the nucleus accumbens. Indeed, several authors have
described projections from the infralimbic/prelimbic region of
the prefrontal cortex to the core part of the nucleus accum-
bens (Berendse et al., 1992; Wright and Groenewegen, 1995;
Gorelova and Yang, 1997). In addition, a close apposition has been
described between efferents of the prefrontal cortex and dopamin-
ergic endings in the nucleus accumbens (Sesack and Pickel, 1992).
The prefrontal cortex may also indirectly regulate the activity
of dopaminergic neurons reaching the nucleus accumbens via
prefrontal efferences in the ventral tegmental area (Carr and
Sesack, 2000). Concerning the dorsal striatum, several authors
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have also reported that striatal dopaminergic transmission is
regulated by the prefrontal cortex (Jaskiw et al., 1990; Taber
and Fibiger, 1993). It has been shown that there are projections
from the infralimbic/prelimbic prefrontal region to the dorsal
striatum (Montaron et al., 1996; Heidbreder and Groenewegen,
2003). A close proximity of prefronto-striatal projections and
striatal dopaminergic terminals has also been described (Wang
and Pickel, 2002). In addition, striatal dopaminergic transmis-
sion may be regulated indirectly by prefrontal projections in the
substantia nigra (Heidbreder and Groenewegen, 2003). Given
the similarities between the prefrontal and ventral and dorsal
parts of the striatum in terms of anatomofunctional relation-
ships, it is tempting tentatively to propose that differences in
LI-related dopaminergic responses observed in the core part
of the nucleus accumbens (complete reversal) and the anterior
dorsal striatum (partial reversal) could be related to different
functional relationships with another forebrain structure, namely
the basolateral nucleus of the amygdala, which plays a crucial
role in the control of dopaminergic response characteristics of
conditioned aversion in the core part of the nucleus accum-
bens but does not appear to be involved in these dopaminergic
responses in the dorsal striatum (Louilot and Besson, 2000).
Importantly, convergence of afferents from the prefrontal cortex
and the basolateral nucleus of the amygdala has been described
in the nucleus accumbens (Wright and Groenewegen, 1995).
Furthermore, amygdala regulation of dopaminergic transmission
in the nucleus accumbens appears to be under the influence
of the prefrontal cortex (Jackson and Moghaddam, 2001). To
the best of our knowledge, such anatomomical and functional
relationships have not been reported for the dorsal striatum.
Ultimately, it is possible to propose that the disruption of
LI-related dopaminergic responses observed following neonatal
reversible TTX blockade of the prefrontal cortex could result,
in adulthood, from an impairment of the control, mainly gluta-
matergic, exerted by the prefrontal cortex (Morari et al., 1998;
David et al., 2005) over dopamine in the nucleus accumbens, by
releasing the amygdalar regulation. However, the precise mech-
anisms of such disrupted control by the prefrontal cortex in
LI following neonatal TTX inactivation are still unclear, given
that the prefrontal cortex also seems to regulate the activity of
dopaminergic neurons innervating the nucleus accumbens via
cortical projections reaching the ventral tegmental area (Carr
and Sesack, 2000). Finally, it cannot be excluded that LI-related
dopaminergic variations in animals microinjected with TTX in
the prefrontal cortex reflect also functional interactions with other
forebrain regions, namely the entorhinal cortex and the ventral
subiculum.

SUMMARY AND CONCLUSIONS
Taken together, functional disconnection neurodevelopmental
models based on transient neonatal TTX inactivation are an
attractive alternative to the NVHL model, since they result in
schizophrenia-relevant features without anatomical lesions. Peri-
natal TTX inactivation consequences on myelination (Demerens
et al., 1996), refinement of synaptic connections (Stryker and
Harris, 1986; Katz and Shatz, 1996) and normal maturing of
dendrites (Drakew et al., 1999; Frotscher et al., 2000) appear

to be adequate for modeling disconnections as proposed for
schizophrenia (see Section Introduction). Therefore, as regards
the heuristic animal models for schizophrenia, postnatal TTX
inactivation is an approach that presents a better construct
validity. The data collected by our group showed that early
functional blockade of the entorhinal cortex, ventral subiculum
and prefrontal cortex structures reported in the literature as
targets for neurodevelopmental disorders (see Akbarian et al.,
1993a,b; Jakob and Beckmann, 1994; Weinberger et al., 1994;
Goldman-Rakic and Selemon, 1997; Arnold, 2000; Falkai et al.,
2000; Garey, 2010) results in the complete disappearance in
adult animals of the LI phenomenon which in several stud-
ies has been found to be disrupted in acute patients with
schizophrenia (Baruch et al., 1988; Gray et al., 1992, 1995;
Lubow et al., 2000; Rascle et al., 2001; Young et al., 2005).
Our findings suggest that the functional integrity of each of
the three integrative structures is needed for normal expres-
sion of LI. We propose that the disappearance of LI behavioral
and dopaminergic responses in our paradigm may be due to
an impaired treatment of memories concerning the olfactory
stimulus occurring at the time of pre-exposure and ultimately
causing stimulus recognition in the retention phase and hence
proper behavioral expression to be disrupted. Both parahip-
pocampal regions, the entorhinal cortex and subiculum, as well
as the medial prefrontal cortex could be part of a distributed
system consisting of brain regions that are part of a system
involved in stimulus recognition memory which interacts with
another system involved in assigning an aversive valence to the
stimulus. It is important to note here that a defect of recog-
nition memory with recollection has been reported in patients
with schizophrenia (Danion et al., 1999; Huron and Danion,
2002; Pelletier et al., 2005; Drakeford et al., 2006; Danion et al.,
2007; van Erp et al., 2008; Libby et al., 2013). It is tempt-
ing to propose that neurodevelopmental defects of the same
structures (temporal and prefrontal) result in a disruption of
mnemonic processing capabilities and loss of LI expression in
schizophrenia patients. One question still in abeyance is whether
the abnormalities observed at the level of the entorhinal cortex,
ventral subiculum or medial prefrontal cortex of patients with
schizophrenia correspond to a group of patients or whether
these defects can be observed in one and the same patient
insofar as it would appear that there are no brain regions that
have been found to be consistently affected in patients with
schizophrenia (Goldman-Rakic and Selemon, 1997; Gur et al.,
2007). Rather, the abnormalities are found in cortical or sub-
cortical regions sharing connections with the prefrontal cortex.
It would therefore be tempting to suggest that the expression
of schizophrenia is the result of neurodevelopmental defects
which occur in one of the cerebral regions that are part of
the abovementioned recognition memory system but which
engender specific dopamine changes depending on which brain
region is affected. This could explain why schizophrenia man-
ifests itself in some many different ways in patients with the
disease.

Finally, recently obtained data showed that animals that
underwent early-life inactivation of the prefrontal cortex also
displayed greater behavioral and neurochemical reactivity to
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D-amphetamine (Meyer and Louilot, 2012) and ketamine, at
subanesthetic doses (Usun et al., 2013). This is of particular
interest given that both these drugs are known to induce psychotic
symptoms in healthy individuals and to worsen such symptoms
in patients with schizophrenia. Taken together, our findings
give cause to consider that our conceptual and methodological
approach, which integrates the hypothesis of functional discon-
nections stemming from neurodeveloppemental failures, is valid
for modeling the pathophysiology of schizophrenia in animals
and, more specifically, an interesting tool for modeling some of
the cognitive deficits observed in the disease.
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