organic compounds

8644 measured reflections

 $R_{\rm int} = 0.037$

1952 independent reflections

1539 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Biphenyl-4-yl)acetic acid (felbinac)

Bernard Van Eerdenbrugh,^{a,b} Phillip E. Fanwick^c and Lynne S. Taylor^a*

^aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, ^bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium, and ^cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA

Correspondence e-mail: lstaylor@purdue.edu

Received 12 August 2010; accepted 6 September 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.107; data-to-parameter ratio = 13.0.

The structure of the title compound, $C_{14}H_{12}O_2$, displays the expected intermolecular hydrogen bonding of the carboxylic acid groups, forming dimers. The dihedral angle between the two aromatic rings is 27.01 (7)°.

Related literature

The title compound is a potent non-steroidal anti-inflammatory agent, used to treat muscle inflammation and arthritis. For single-crystal structures of inclusion complexes between felbinac and both heptakis-(2,3,6-tri-O-methyl)- β -cyclodextrin and β -cyclodextrin, see: Harata *et al.* (1992) and Wang *et al.* (2009), respectively. For single crystal structures of different complexes of felbinac with tryptamine and 1,2diphenylethylenediamine (different solvates), see: Koshima *et al.* (1998) and Imai *et al.* (2007), respectively.

Experimental

Crystal data $C_{14}H_{12}O_2$ $M_r = 212.25$ Orthorhombic, *Pbcn* a = 46.248 (19) Å b = 6.465 (3) Å c = 7.470 (3) Å

 $V = 2233.4 (16) Å^{3}$ Z = 8Cu K\alpha radiation $\mu = 0.64 \text{ mm}^{-1}$ T = 150 K $0.20 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Rigaku RAPID II diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2001) $T_{min} = 0.803, T_{max} = 0.881$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F^2) = 0.107	H atoms treated by a mixture of independent and constrained
S = 1.08	refinement
1952 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.98 (2)	1.69 (2)	2.6663 (16)	178 (2)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and local programs.

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS; EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research for financial support (NSF MPS-DMR; DMR-0804609). BVE is a Postdoctoral Researcher of the 'Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2040).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Harata, K., Hirayama, F., Arima, H., Uekama, H. & Miyaji, T. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 1159–1166.
- Imai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsuraba, Y. (2007). CrystEngComm, 9, 467–470.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851–1854.

Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, E., Chen, G. & Liu, H. (2009). Chin. J. Chem. 27, 2097-2101.

Acta Cryst. (2010). E66, o2609 [doi:10.1107/S1600536810035828]

2-(Biphenyl-4-yl)acetic acid (felbinac)

B. Van Eerdenbrugh, P. E. Fanwick and L. S. Taylor

Comment

The title compound is a potent non-steroidal anti-inflammatory agent, used to treat muscle inflammation and arthritis. Although the single-crystal structures of inclusion complexes between felbinac and both heptakis-(2,3,6-tri-*O*-methyl)- β -cyclodextrin and β -cyclodextrin have been published (Harata *et al.*, 1992; Wang *et al.*, 2009), that of the pure compound has not been reported. The molecular structure is shown in Figure 1. The expected H-bonded carboxylic acid dimers are formed, with O1···O2 distances of 2.6663 (13) Å. The dihedral angle between the two benzene rings is 27.01 (7)°. Hydrogen bonds between carboxylic acid groups of felbinac are disrupted in the published felbinac-cyclodextrin structures (Harata *et al.*, 1992; Wang *et al.*, 2009). In the inclusion complex between felbinac and heptakis-(2,3,6-tri-*O*-methyl)- β -cyclodextrin (Harata *et al.*, 1992), no dimers are formed; in that between felbinac and β -cyclodextrin (Wang *et al.*, 2009), face-to-face π - π stackings form the basis for dimer formation. Hydrogen bonds between carboxylic acid groups of felbinac are disrupted in the complexes with tryptamine (Koshima *et al.*, 1998) and 1,2-diphenylethylenediamine (Imai *et al.*, 2007) due to ionic interactions with the amine functions.

Experimental

A solution of 2-(biphenyl-4-yl)acetic acid (15 mg ml⁻¹) was prepared in diethylether. Subsequently, 15 ml of the solution was transferred into a clean crystallization dish (diameter 50 mm; height 35 mm). The vessel was partially covered with a plastic sheet and the solution was allowed to slowly evaporate overnight.

Refinement

The H atom bound to oxygen O2 was located in a difference Fourier map and refined freely with isotropic displacement parameters. Other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 0.99 Å (aliphatic) and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius

2-(Biphenyl-4-yl)acetic acid

Crystal data	
$C_{14}H_{12}O_2$	<i>F</i> (000) = 896
$M_r = 212.25$	$D_{\rm x} = 1.262 \ {\rm Mg \ m^{-3}}$

Orthorhombic, Pbcn Hall symbol: -P 2n 2ab a = 46.248 (19) Å b = 6.465 (3) Åc = 7.470(3) Å $V = 2233.4 (16) \text{ Å}^3$ Z = 8

Data collection

Rigaku RAPID II diffractometer	1539 reflections with $I > 2c$
confocal optics	$R_{\rm int} = 0.037$
ω scans	$\theta_{\text{max}} = 66.5^\circ, \ \theta_{\text{min}} = 6.6^\circ$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2001)	$h = -53 \rightarrow 54$
$T_{\min} = 0.803, \ T_{\max} = 0.881$	$k = -7 \rightarrow 7$
8644 measured reflections	$l = -8 \rightarrow 8$
1952 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0586P)^2 + 0.0731P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.038$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.107$	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.08	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
1952 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008)
150 parameters	Extinction coefficient: 0.92E-02
0 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson.

Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating R factor obs *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Cu - $K\alpha$ radiation, $\lambda = 1.54184$ Å Cell parameters from 8644 reflections $\theta = 6-66^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 150 KChunk, colourless $0.20\times0.20\times0.20~mm$

5(I)

	x	у	Ζ	$U_{iso}*/U_{eq}$
01	0.465961 (19)	0.26139 (14)	0.29970 (13)	0.0659 (3)
O2	0.50183 (2)	0.25189 (14)	0.49623 (15)	0.0673 (3)
C11	0.36381 (3)	0.24813 (16)	0.46896 (16)	0.0459 (3)
C12	0.38092 (3)	0.07334 (19)	0.44073 (17)	0.0537 (3)
C13	0.40981 (3)	0.0723 (2)	0.48829 (18)	0.0580 (4)
C14	0.42282 (3)	0.24426 (18)	0.56461 (17)	0.0519 (4)
C15	0.40583 (3)	0.4174 (2)	0.59492 (18)	0.0571 (4)
C16	0.37693 (3)	0.41946 (19)	0.54734 (17)	0.0549 (4)
C17	0.45452 (3)	0.24152 (19)	0.61233 (19)	0.0606 (4)
C18	0.47426 (3)	0.25310 (17)	0.45355 (19)	0.0513 (4)
C21	0.33265 (3)	0.25021 (16)	0.41626 (16)	0.0462 (3)
C22	0.31270 (2)	0.37583 (18)	0.50399 (17)	0.0543 (4)
C23	0.28391 (3)	0.3774 (2)	0.45408 (18)	0.0591 (4)
C24	0.27427 (3)	0.25357 (19)	0.3176 (2)	0.0594 (4)
C25	0.29358 (3)	0.1274 (2)	0.2301 (2)	0.0628 (4)
C26	0.32239 (3)	0.1263 (2)	0.27863 (18)	0.0566 (4)
H2	0.5133 (4)	0.258 (2)	0.386 (3)	0.105 (7)*
H12	0.3726	-0.0465	0.3881	0.064*
H13	0.4210	-0.0489	0.4683	0.070*
H15	0.4141	0.5363	0.6491	0.069*
H16	0.3658	0.5404	0.5686	0.066*
H22	0.3190	0.4617	0.5996	0.065*
H23	0.2707	0.4652	0.5149	0.071*
H24	0.2545	0.2549	0.2839	0.071*
H25	0.2871	0.0405	0.1357	0.075*
H26	0.3355	0.0388	0.2164	0.068*
H17A	0.4587	0.3598	0.6925	0.073*
H17B	0.4588	0.1130	0.6794	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0465 (6)	0.0959 (8)	0.0552 (6)	-0.0007 (4)	-0.0058 (4)	0.0046 (5)
O2	0.0459 (6)	0.0945 (9)	0.0617 (6)	0.0005 (4)	-0.0098 (5)	-0.0014 (5)
C11	0.0472 (7)	0.0521 (8)	0.0384 (7)	-0.0008 (5)	0.0040 (5)	-0.0001 (5)
C12	0.0536 (8)	0.0521 (7)	0.0555 (8)	-0.0006 (6)	0.0023 (6)	-0.0078 (6)
C13	0.0545 (8)	0.0584 (8)	0.0611 (9)	0.0074 (6)	0.0030 (6)	-0.0049 (7)
C14	0.0499 (8)	0.0642 (9)	0.0416 (7)	-0.0003 (5)	0.0006 (5)	0.0029 (6)
C15	0.0571 (8)	0.0584 (8)	0.0559 (8)	-0.0041 (6)	-0.0027 (6)	-0.0090(7)
C16	0.0529 (8)	0.0530 (7)	0.0587 (8)	0.0032 (6)	-0.0010 (6)	-0.0090 (6)
C17	0.0550 (9)	0.0761 (10)	0.0508 (8)	0.0019 (6)	-0.0054 (6)	-0.0001 (7)
C18	0.0469 (7)	0.0527 (8)	0.0543 (8)	0.0006 (5)	-0.0104 (6)	-0.0015 (6)
C21	0.0485 (8)	0.0490 (7)	0.0411 (7)	-0.0024 (5)	0.0041 (5)	0.0017 (5)
C22	0.0539 (8)	0.0611 (9)	0.0479 (7)	0.0028 (6)	0.0003 (6)	-0.0072 (6)

C23	0.0518 (8)	0.0678 (9)	0.0576 (9)	0.0068 (6)	0.0047 (6)	-0.0003 (7)
C24	0.0487 (8)	0.0666 (9)	0.0628 (9)	-0.0047 (6)	-0.0040 (6)	0.0066 (7)
C25	0.0585 (9)	0.0688 (10)	0.0612 (9)	-0.0073 (6)	-0.0072 (6)	-0.0109 (7)
C26	0.0551 (8)	0.0603 (9)	0.0544 (8)	-0.0010 (6)	0.0025 (6)	-0.0103 (6)
Geometric paran	neters (Å, °)					
01		1 2128 (17)	C17—C	18	1 490	(2)
01 - C18 02 - C18		1.2128(17) 1.3144(15)	С17—Н	174	0.990	0
02 E16 02_H2		0.98(2)	C17—H	17 R	0.990	
C11-C16		1 3921 (16)	C21_C	26	1 386	59 (17)
C_{11} C_{12}		1.3957 (16)	C21 C	20	1.300	(16)
C11-C21		1.4937 (18)	C21 C	22	1.393	27 (16)
C12-C13		1.4937 (16)	С22—С	23	0.950	0
C12—H12		0.9500	C22 II	22	1 371	0(18)
C12 - C12		1.3870(17)	С23—Н	23	0.950	0
C13—H13		0.9500	C24-C	25	1 374	l9 (18)
C14-C15		1 3865 (16)	С24 С	23	0.950	10
C14—C17		1.5088 (18)	C25-C	26	1 381	1(16)
C15-C16		1.3830 (16)	С25—Н	20	0.950	0
C15—H15		0.9500	С26—Н	26	0.950	0
C16—H16		0.9500	020 11	20	0.900	
С18—02—Н2		108.7(11)	C14—C	17—H17B	108.8	80
C16-C11-C12		117.42(12)	H17A	-C17-H17B	107.7	70
C16—C11—C21		121 62 (10)	01	8-02	107.7	8 (13)
C12 - C11 - C21		120.97 (11)	01	8—C17	122.	(12)
C12 - C11 - C11		120.89 (12)	02	8—C17	113 5	50(13)
C13—C12—H12		119.60	C26—C	21—C22	117.3	(12)
C11—C12—H12		119.60	C26—C	21—C11	121.3	5 (10)
C12—C13—C14		121.41 (11)	C22-C	21—C11	121.3	54 (11)
C12—C13—H13		119.30	C23—C	22—C21	121.0	(12)
C14—C13—H13		119.30	C23—C	22—H22	119.5	0
C15—C14—C13		117.92 (12)	C21—C	22—H22	119.5	0
C15—C14—C17		121.45 (11)	C24—C	23—C22	120.6	52 (12)
C13—C14—C17		120.63 (11)	C24—C	23—H23	119.7	0
C16—C15—C14		120.90 (12)	C22—C	23—H23	119.7	0
C16—C15—H15		119.50	C23—C	24—C25	119.2	27 (13)
C14—C15—H15		119.50	C23—C	24—H24	120.4	0
C15—C16—C11		121.46 (11)	C25—C	24—H24	120.4	0
C15-C16-H16		119.30	C24—C	25—C26	120.3	51 (13)
C11-C16-H16		119.30	C24—C	25—H25	119.8	0
C18—C17—C14		113.85 (12)	C26—C	25—H25	119.8	0
С18—С17—Н174	A	108.80	C25—C	26—C21	121.4	7 (12)
С14—С17—Н174	A	108.80	C25—C	26—H26	119.3	0
C18—C17—H17H	В	108.80	C21—C	26—H26	119.3	0
C16—C11—C12-	C13	-0.35 (19)	C14—C	17—C18—O2	179.6	61 (9)
C21—C11—C12-	C13	179.48 (11)	C16—C	11—C21—C26	152.9	94 (12)
C11—C12—C13-	C14	-0.3 (2)	C12—C	11—C21—C26	-26.8	39 (17)
C12—C13—C14-	—C15	1.1 (2)	C16—C	11—C21—C22	-27.4	41 (17)

C12—C13—C14—C17	-178.81 (12)	C12—C11—C21—C22	152.77 (12)
C13—C14—C15—C16	-1.2 (2)	C26—C21—C22—C23	-0.55 (17)
C17—C14—C15—C16	178.71 (12)	C11—C21—C22—C23	179.79 (11)
C14—C15—C16—C11	0.5 (2)	C21—C22—C23—C24	0.58 (19)
C12—C11—C16—C15	0.25 (19)	C22—C23—C24—C25	-0.14 (19)
C21—C11—C16—C15	-179.59 (11)	C23—C24—C25—C26	-0.3 (2)
C15—C14—C17—C18	-106.63 (14)	C24—C25—C26—C21	0.3 (2)
C13—C14—C17—C18	73.25 (15)	C22-C21-C26-C25	0.09 (18)
C14—C17—C18—O1	-0.88 (18)	C11-C21-C26-C25	179.76 (12)
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O1 ⁱ	0.98 (2)	1.69 (2)	2.6663 (16)	178 (2)
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.				

Fig. 1

