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Abstract: Lysine-specific demethylase 1 (LSD1) mainly removes methyl groups of mono- or
di-methylated lysine residues at the fourth position of histone H3 to epigenetically regulate the
expression of genes associated with several diseases, such as cancer. Therefore, LSD1 inactivators are
expected to be used as therapeutic agents. In this study, to identify novel peptide-based LSD1
inactivators, we focused on the X-ray structure of LSD1 complexed with a H3 peptide-based
suicide substrate. It has been proposed that a methylated histone substrate forms three consecutive
γ-turn structures in the active pocket of LSD1. Based on this, we designed and synthesized
novel histone H3 peptide-based LSD1 inactivators 2a–c by incorporating various α,α-disubstituted
amino acids with γ-turn-inducing structures. Among synthetic peptides 2a–c, peptide 2b
incorporating two 1-aminocyclohexanecarboxylic acids at both sides of a lysine residue bearing
a trans-2-phenylcyclopropylamine (PCPA) moiety, which is a pharmacophore for LSD1 inactivation,
was the most potent and selective LSD1 inactivator. These findings are useful for the further
development of histone H3 peptide-based LSD1 inactivators.
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1. Introduction

The methylation of lysine residues on histones is involved in the epigenetic control of
gene expression associated with not only many cellular events but also several diseases [1].
Histone methylation and demethylation reactions are catalyzed by a series of histone lysine
methyltransferases (HKMTs) and histone lysine demethylases (KDMs), respectively [1]. Thus,
the methylation is reversibly regulated by both HKMTs and KDMs.

Lysine-specific demethylase 1 (LSD1), which is one of the KDMs and a flavin adenine dinucleotide
(FAD)-dependent oxidase, catalytically removes the methyl groups of mono- or di-methylated lysine
residues at the fourth position of histone H3 (H3K4me1/me2) [2]. In prostate cancer cells, LSD1 acquires
H3K9me1/me2 demethylation activity by interacting with an androgen receptor [3]. In addition,
LSD1 demethylates methyl groups of mono- or di-methylated lysine residues of non-histone proteins
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(e.g., p53, DNMT, and E2F1) to regulate their activities and functions [4–6]. LSD1 forms a co-repression
complex with CoREST, recruiting other transcription factors, such as HDAC1, Gfi-1b, TLX, KHMTs,
and other KDMs [7–11], to epigenetically regulate the expression of the genes associated with several
diseases, such as cancer, globin disorders, and viral infections [12–14]. Therefore, LSD1 is interesting
as a molecular target for the therapy of diseases. To date, a number of LSD1 inactivators have been
developed [15–17] and some of them are being evaluated in clinical trials for cancer [18,19].

We have reported several peptide- or small molecule-based LSD1 inactivators so far [20–29].
For instance, PCPA-Lys-4 H3-21, a peptide-based LSD1 inactivator [22] (Figure 1), drops off
trans-2-phenylcyclopropylamine (PCPA), a pharmacophore for LSD1 inactivation [30,31], in the active
pocket of LSD1 to inactivate LSD1 potently and selectively. Further, we identified NCD38, a potent
and selective small molecule LSD1 inhibitor [22] (Figure 1) that showed sufficient bioactivity in in vivo
studies [32,33]. Following these findings, we considered that it is possible to improve the LSD1
inhibitory activities of peptide- or small molecule-based LSD1 inactivators. In particular, a novel
design of peptide-based LSD1 inactivators could lead to high specificity toward LSD1 and their
off-target effects could be limited as compared with small molecule inhibitors. Thus, peptide-based
LSD1 inactivators could exhibit high therapeutic potential toward LSD1-associated diseases [12–14].
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Figure 1. Structures of trans-2-phenylcyclopropylamine (PCPA) and its analogs as LSD1 inactivators.

In 2007, Cole, Yu, and co-workers reported a co-crystal structure of LSD1 with a histone H3-based
suicide substrate incorporating N-methylpropargylamine, and revealed that the substrate reacted with
FAD to form three consecutive γ-turn structures in the active pocket of LSD1 (Figure 2) [34]. The unique
secondary structures could contribute to the substrate specificity toward LSD1 [34]. Based on that report,
we envisioned that the LSD1 inhibitory activities of peptide-based inactivators would be improved by
regulating their secondary structures. Thus, peptides that easily form three consecutive γ-turn structures
should exhibit strong LSD1 inhibitory activity and high selectivity. Herein we report novel histone H3
peptide-based LSD1 inactivators incorporating α,α-disubstituted amino acids that work as γ-turn inducers.
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Figure 2. Secondary structure of a histone H3-based suicide substrate in the active pocket of LSD1
(PDB: 2UXN). (A) View of the secondary structure of the histone H3-based suicide substrate in the
active pocket of LSD1. Intramolecular hydrogen bonds are indicated by the white dotted line and their
lengths are shown in italics. (B) Schematic diagram of the secondary structure of the histone H3-based
suicide substrate in the active pocket of LSD1. Intramolecular hydrogen bonds are indicated by the red
line and their lengths are shown in italics.
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2. Results

2.1. Design

Previously, it was reported that α,α-disubstituted amino acids predominantly induced the
formation of γ-turn structures [35]. Thus, we hypothesized that the introduction of α,α-disubstituted
amino acids into the sequence of a histone H3-based peptide would stabilize the formation
of three consecutive γ-turn structures in the active pocket of LSD1. To verify the hypothesis,
we selected LSD1 inactivator 1 as the model and reference peptide (Figure 3), because peptide 1
has both a concise sequence and appropriate LSD1 inhibitory activity [28]. We designed histone
H3 peptide-based LSD1 inactivators 2a–c by incorporating two of the following α,α-disubstituted
amino acids: 2-aminoisobutyric acid (Aib) (2a), 1-aminocyclohexanecarboxylic acid (Acc) (2b),
and 2-aminoadamantane-2-carboxylic acid (Aadc) (2c), one on each side of the lysine residue bearing a
PCPA moiety (Figure 3).
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2.2. Synthesis

The synthesis of H3-11 peptide analogs 2 is shown in Scheme 1. Peptides 2 were synthesized
by Fmoc-based solid-phase peptide synthesis (SPPS) according to modified previous procedures
for histone H3-based peptides [22,25,28]. Initially, we prepared peptides 3 incorporating the
α,α-disubstituted amino acids by Fmoc-based SPPS. Next, peptides 3 were converted into mesylates
4 with mesyl chloride (MsCl), and then the mesyl groups of 4 were substituted with PCPA to obtain
desired precursors 5. Precursors 5 were cleaved from the resin and purified by high-performance
liquid chromatography (HPLC) followed by lyophilization and identification by matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to obtain the desired
peptides 2 as a white powder.

2.3. In Vitro Evaluation of LSD1 Inhibitory Activity

We assayed for the LSD1 inhibitory activities of novel peptides 2a–c. The assay was
performed with an LSD1 Fluorometric Drug Discovery Kit (Enzo Life Sciences, New York, NY, USA,
BML-AK544-0001). The results are summarized in Table 1. Control peptide 1 inactivated LSD1
potently compared to PCPA. As expected, the LSD1 inhibitory activities of novel peptides 2a–c were
higher than that of 1. In particular, peptide 2b was the most potent LSD1 inactivator among the
peptides tested in this study. Next, we examined the time-dependency of LSD1 inhibition by peptides
2a–c. As shown in Supplementary Figure S1, peptide 2a–c inhibited LSD1 enzyme activities in a
time-dependent manner, which indicates that peptides 2a–c inactivate LSD1 irreversibly. We also
assayed for the inhibitory activities of monoamine oxidases (MAOs), which are FAD-dependent
oxidases associated with neurotransmitter metabolism [36], to investigate the selectivity toward LSD1.
For this investigation, we used a MAO-GloTM Assay System (Promega, Madison, WI, USA, V1401).



Molecules 2018, 23, 1099 4 of 9

As shown in Table 1, all peptides did not inactivate MAO-A or MAO-B at the concentration of 10 µM,
whereas PCPA, the positive control, inactivated both MAO-A and MAO-B. Furthermore, we tested
the inhibitory activities of peptides 2a–c for KDM4C, an isoform of α-ketoglutarate/Fe(II)-dependent
KDMs [37]. As a result, peptides 2a–c hardly inhibited KDM4C activities at a concentration of
10 µM (Supplementary Figure S2). Thus, the novel peptides 2a–c were found to be irreversible
LSD1-selective inactivators.Molecules 2018, 23, x 4 of 9 
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Scheme 1. Preparation of novel histone H3 peptide-based LSD1 inactivators 2a–c with γ-turn
inducers by Fmoc-based SPPS (Boc-Ala-OH was used as the N-terminal amino acid). Reagents and
conditions: (a) MsCl, Et3N in THF; (b) PCPA, Et3N in H2O:CH3CN solution; (c) TFA, thioanisole, H2O;
and (d) preparative HPLC. Peptide chains shown in italics are protected.

Table 1. LSD1 and MAO inhibitory activities of peptides 2a–c.

Compound
IC50 (µM) 1

LSD1 MAO-A MAO-B

PCPA 16.5 ± 1.9 6.00 ± 1.38 6.54 ± 0.51
1 0.126 ± 0.002 >10 >10
2a 0.0891 ± 0.0053 >10 >10
2b 0.0584 ± 0.0025 >10 >10
2c 0.0724 ± 0.0040 >10 >10

1 Values are means ± S.D. of at least three experiments.

3. Discussion

In this work, we designed and synthesized γ-turn-inducing novel peptides 2a–c incorporating
α,α-disubstituted amino acids and evaluated them in an in vitro LSD1 inhibitory assay. We revealed
that peptides 2a–c were potent and selective LSD1 inactivators compared to reference peptide 1.
In particular, peptide 2b incorporating one Acc each on both sides of the lysine residue bearing the
PCPA moiety showed the most potent LSD1 inhibitory activity and the highest LSD1 selectivity
(>170-fold).

Based on these results and our previous findings [22,25,28], we consider that peptides 2a–c
incorporating α,α-disubstituted amino acids as γ-turn inducers, particularly 2b, form three consecutive
γ-turn structures in the active pocket of LSD1 to be highly recognized by LSD1 and thereby strongly
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inactivating LSD1 (Figure 4). Indeed, our docking study using a short model peptide based on 2b
suggested that it forms three consecutive γ-turn structures and binds to the active pocket of LSD1
(Supplementary Figure S3). Although we have not obtained any experimental results regarding the
secondary structures of the peptides incorporating α,α-disubstituted amino acids in the active pocket
of LSD1, structural investigation using various approaches, such as NMR analysis and computational
chemistry, is underway.

The structures of peptides are often a source of problems, such as low membrane permeability
or low tolerance to proteases, but those problems could be solved by introducing drug delivery
systems [38]. Meanwhile, it was reported that more hydrophobic histone H3-based cyclic peptides
penetrate the cell membrane to exert an antiproliferative effect on cancer cells by inhibiting LSD1 in
the cells, but less hydrophobic non-cyclic ones do not [39,40]. Recently, it was also reported that a more
hydrophobic H3-based cyclic peptide stabilized by a disulfide bridge penetrates the cell membrane
and inhibits LSD1, thereby inducing histone methylation, whereas a less hydrophobic non-cyclic
one does not [41]. Thus, we speculate that our peptides incorporating α,α-disubstituted amino acids
might passively penetrate the cell membrane to regulate LSD1 cellular function, because the peptides
have hydrophobic properties and secondary structures stabilized by γ-turn inducers. In addition,
it was reported that the introduction of unnatural amino acids into the original peptide sequence
could improve the tolerance to protease [39,42]. Thus, we also expect that our peptides would exhibit
protease tolerance. In the future, we are going to test the cellular activities of our peptides.
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Figure 4. A proposed secondary structure of histone H3 peptide-based LSD1 inactivator 2b in the
active pocket of LSD1 is shown in a schematic diagram. Intramolecular hydrogen bonds are indicated
in red.

4. Materials and Methods

4.1. General Methods

All reagents were purchased and used as received. Fmoc-Aib-OH and Fmoc-Acc-OH were
purchased from Watanabe Chemical Industries (Hiroshima, Japan). Fmoc-Aadc-OH was prepared
from H-Aadc-OH (Ark Pharm, Arlington Heights, IL, USA) via a standard method for Fmoc
introduction [43]. Obtained peptides were purified by preparative HPLC and the purity was estimated
by analytical HPLC. Preparative HPLC was performed with a pump system of JASCO PU-2028 Plus
(JASCO , Tokyo, Japan) and a Cosmosil 5C18-AR-II column (20 × 250 mm, Nacalai Tesque, Kyoto,
Japan) using a linear gradient of 0.1% trifluoroacetic acid (TFA) in CH3CN and 0.1% aqueous TFA
at the flow rate of 5.0 mL min−1, and detection was at 220 nm. Analytical HPLC was carried out
with a pump system of JASCO PU-2028 Plus and a Cosmosil 5C18-AR-II column (4.6 × 250 mm,
Nacalai Tesque) using a linear gradient of 0.1% TFA in CH3CN and 0.1% TFA in H2O (1.0 mL min−1,
220 nm). All peptides were characterized by MALDI-TOF MS using a Bruker Autoflex (Bruker, Billerica,
MA, USA) with α-cyano-4-hydroxycinnamic acid (CHCA) as the matrix.
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4.2. Synthesis of Peptides with γ-Turn Inducers

PCPA-Lys-4 peptides were synthesized using a modified strategy based on the published method
for PCPA-Lys-4 H3-21 [22,25,28]. The synthesis of the protected mesyl-Lys-4 peptide sequence was
accomplished on the resin based on standard Fmoc-based SPPS according to literature [44–46] and
Boc-Ala-OH was used as the N-terminal amino acid. The resin was treated with 5 equivalents
of trans-2-phenylcyclopropylamine hydrochloride and 10 equivalents of Et3N in 1:1 solution of
H2O/CH3CN for 3 days at room temperature. Deprotection and cleavage from the resin were
performed with TFA/thioanisole/H2O (85:10:5) solution. The desired peptide was collected by
preparative RP-HPLC and lyophilized to give a white powder. MALDI-TOF MS (m/z): Calcd.
for PCPA-Lys-4 H3-11 (1) ([M + H]+): 1364.529. Found: 1364.322. Calcd. for Aib peptide (2a)
([M + H]+): 1305.572. Found: 1305.155. Calcd. for Acc peptide (2b) ([M + H]+): 1385.702. Found:
1385.293. Calcd. for Aadc peptide (2c) ([M + H]+): 1489.854. Found: 1489.370.

4.3. Assay for LSD1 Inhibitory Activity

Assays for LSD1 inhibitory activity were performed using an LSD1 Fluorometric Drug Discovery
Kit (Enzo Life Sciences, BML-AK544-0001). Inhibitors were pre-incubated with LSD1 (0.5 µg/well;
room temperature; 15 min) before reactions were initiated by the addition of H3K4me2 peptide
(2.3 µg/well, 20 µM) into all wells except the blank. After incubation (room temperature; 30 min),
CeLLestialTM Red and HRP in the assay buffer were added and the incubation was prolonged
(room temperature; 5 min). The fluorescence of the wells was measured on a 2030 ARVOTM X3
Multilabel Reader (PerkinElmer, Waltham, MA, USA, excitation: 540 nm; detection: 590 nm) and %
inhibition was calculated from the fluorescence readings of inhibited wells relative to those of control
wells. The concentration of test compounds that resulted in 50% inhibition was determined by plotting
log [Inh] against the logit function of the % inhibition. IC50 values were determined by regression
analysis of the concentration/inhibition data.

4.4. Assay for MAO Inhibitory Activity

Assays for MAO inhibitory activity were carried out according to the supplier’s protocol using
a MAO-GloTM Assay System (Promega, V1401). MAO-A (18 units/mL) or MAO-B (6 units/mL)
(Sigma-Aldrich, Saint Louis, MO, USA, 25 µL/well), 160 µM (for MAO-A) or 16 µM (for MAO-B)
(4S)-4,5-dihydro-2-(6-hydroxybenzothiazolyl)-4-thiazolecarboxylic acid (12.5 µL/well), a MAO
substrate, and various concentrations of inhibitors (12.5 µL/well) were incubated at room temperature.
Reactions were stopped after 60 min by adding reconstituted Luciferin Detection Reagent (50 µL/well).
Then, 20 min after the addition of this reagent, the chemiluminescence of the wells was measured with
a 2030 ARVOTM X3 Multilabel Reader (PerkinElmer). For data processing, the same procedure as that
for LSD1 inhibitory activity was used.

5. Conclusions

In summary, we described the design, synthesis, and in vitro evaluation of the LSD1 inhibitory
activities of novel histone H3 peptide-based LSD1 inactivators 2a–c incorporating α,α-disubstituted
amino acids as γ-turn inducers. We revealed that the peptides 2a–c were potent and selective LSD1
inactivators compared to reference peptide 1. In particular, peptide 2b incorporating one Acc on each
side of lysine residue bearing a PCPA moiety was the most potent and selective LSD1 inactivator.
These findings are useful for the further development of histone H3 peptide-based LSD1 inactivators.
Detailed studies of peptides incorporating γ-turn inducers are underway in our laboratory.

Supplementary Materials: Figure S1: Tine-dependent inhibition of LSD1 by 2a, 2b and 2c, Figure S2: KDM4C
inhibitory activities of 2a, 2b and 2b, Figure S3: View of the binding pose of a model peptide based on 2b in the
active pocket of LSD1.
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