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ABSTRACT In microbiome analysis, one main approach is to align metagenomic
sequencing reads against a protein reference database, such as NCBI-nr, and then to
perform taxonomic and functional binning based on the alignments. This approach is
embodied, for example, in the standard DIAMOND1MEGAN analysis pipeline, which
first aligns reads against NCBI-nr using DIAMOND and then performs taxonomic and
functional binning using MEGAN. Here, we propose the use of the AnnoTree protein
database, rather than NCBI-nr, in such alignment-based analyses to determine the pro-
karyotic content of metagenomic samples. We demonstrate a 2-fold speedup over the
usage of the prokaryotic part of NCBI-nr and increased assignment rates, in particular
assigning twice as many reads to KEGG. In addition to binning to the NCBI taxonomy,
MEGAN now also bins to the GTDB taxonomy.

IMPORTANCE The NCBI-nr database is not explicitly designed for the purpose of micro-
biome analysis, and its increasing size makes its unwieldy and computationally expen-
sive for this purpose. The AnnoTree protein database is only one-quarter the size of
the full NCBI-nr database and is explicitly designed for metagenomic analysis, so it
should be supported by alignment-based pipelines.

KEYWORDS microbiome analysis, taxonomy, functional analysis, alignment, protein
sequences, NCBI-nr, AnnoTree, function, software

Next-generation sequencing (NGS) has revolutionized many areas of biological
research (1, 2), providing ever-more data at an ever-decreasing cost. One such

area is microbiome research, the study of microbes in their theater of activity using
metagenomic sequencing (3). Here, deep short-read sequencing, and improving per-
formance of long-read sequencing, are helping to explore the roles and interactions of
microbiomes in different environments.

The two initial tasks for any microbiome sequencing data set are (i) taxonomic anal-
ysis, that is, to determine which organisms are present in a microbiome sample, and (ii)
functional analysis to determine which genes and pathways are present. Task i can be
addressed, to a degree, using amplicon sequencing (targeting 16S rRNA, 18S rRNA, or
internal transcribed sequencing, for example). However, a species- or strain-level taxo-
nomic analysis, and task ii, both are best addressed using whole-genome shotgun
sequencing, that is, metagenomics proper.

Metagenomic shotgun sequencing reads can be analyzed using a number of differ-
ent approaches, such as alignment-free k-mer analysis (4–6), alignment against DNA
references (7, 8), or translated alignment against protein references (9–13).

The DIAMOND1MEGAN approach uses DIAMOND (14) to perform translated align-
ment (short-read sequencing) or “frameshift-aware” translated alignment (long-read
sequencing) of metagenomic reads or contigs against the NCBI-nr database (15). The
resulting alignment files are then “meganized” or analyzed using MEGAN (16) so as to
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perform taxonomic and functional binning. A detailed protocol of this simple two-step
pipeline is presented in reference 17.

During meganization, reads are assigned to taxonomic classes in the NCBI taxon-
omy (18) and to the GTDB taxonomy (19). Reads are also assigned to functional entities
in EC (20), EggNOG (21), InterPro families (22), KEGG (23), and SEED (24, 25).

The DIAMOND1MEGAN pipeline was originally designed for use with the NCBI-nr
database (10). The NCBI-nr database contains nonidentical protein sequences from
GenBank CDS translations, PDB (26), Swiss-Prot (27), PIR, and PRF, covering all domains of
life and viruses. In August 2021, NCBI-nr comprised over 420 million sequences, of which
just over half,�213 million, belong to bacteria or archaea. The NCBI-nr database is not ex-
plicitly designed for use in metagenomic analysis, and its rapidly increasing size is making
it unwieldy for this purpose.

To perform taxonomic binning, MEGAN assigns reads to the NCBI taxonomy, which
contains more than 2.2 million nodes and is designed for “structuring communication
concerning all forms of life on Earth” (18, 28). More recently, the GTDB taxonomy (19) was
developed for the explicit purpose of taxonomic analysis of microbiome sequencing data.
Here, we introduce support for the GTDB taxonomy in MEGAN. The DIAMOND1MEGAN
pipeline now performs taxonomic binning of metagenomic reads according to both the
NCBI taxonomy and the GTDB taxonomy.

AnnoTree (29) provides functional annotations from over 27,000 bacterial and 1,500
archaeal genomes obtained from the GTDB database (19). The total number of protein
sequences contained in the AnnoTree database is 106,052,079. The AnnoTree database
is approximately one-quarter the size of NCBI-nr and only half the size of the prokary-
otic part of NCBI-nr. However, AnnoTree contains protein sequences from more meta-
genome assembled genomes (MAGs) than NCBI-nr, and these are more likely to be
found in microbiome samples.

In this paper, we describe and provide the necessary files for performing
DIAMOND1MEGAN analysis using the AnnoTree protein reference database, as an
alternative to NCBI-nr, to analyze the prokaryotic content of metagenomic sequenc-
ing samples. To illustrate the utility of this approach, first we compare the perform-
ance of DIAMOND1MEGAN using NCBI-nr and AnnoTree protein reference sequen-
ces on a published mock community of 23 bacterial and 3 archaeal strains (30).
Using 10 published data sets from a range of different environments and obtained
using both short- and long-read sequencing techniques, we then demonstrate that
AnnoTree-based analysis is twice as fast and has a higher assignment rate than
NCBI-nr-based analysis when using the DIAMOND1MEGAN pipeline. We also com-
pare examples of both the NCBI and GTDB taxonomic binning.

RESULTS

Using the standard DIAMOND1MEGAN analysis pipeline (16), metagenomic sequenc-
ing reads are first aligned against the NCBI-nr database using DIAMOND, and then the
resulting alignments are processed by MEGAN (or the command-line tool daa-meganizer)
so as to perform taxonomic and functional binning. We will refer to this as an NCBI-nr run
of the pipeline.

In this paper, we describe a new application of the DIAMOND1MEGAN pipeline in
which DIAMOND alignment is performed against the AnnoTree protein database, and
we refer to this as an AnnoTree run. To enable the pipeline to be run in this way, we
provide (i) a FastA file containing all �106 million AnnoTree protein sequences and (ii)
an SQLite database (https://www.sqlite.org) that contains mappings of AnnoTree pro-
tein accessions to taxonomic and functional classes in all supported classifications. In
addition, we provide a set of Python scripts that can be used to update both the FastA
file and the mapping database.

To allow a fair comparison between the two runs, when aligning against the NCBI-
nr database, throughout this study, we only aligned against the prokaryotic entries of
the NCBI-nr database.
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Performance on a mock community. For an initial comparison of the two ways of
running the DIAMOND1MEGAN pipeline, we ran both on a set of 53,654 PacBio shot-
gun reads from the MBARC-26 mock community of 23 bacterial and 3 archaeal strains
(30). In Fig. 1, we compare the two taxonomic profiles obtained from the NCBI-nr and
AnnoTree runs with the published profile. Both computed profiles follow the published
one quite closely, with some low-abundance false-negative assignments, namely, to
Salmonella bongori and Escherichia coli for the former and latter run, respectively, and
to Nocardiopsis dassonvillei for both. The NCBI-nr run gives rise to five false-positive
bacterial assignments, namely, to Paenibacillaceae bacterium, Pseudomonas aeruginosa,
Sediminispirochaeta bajacaliforniensis, Meiothermus hypogaeus, and Thermobacillus spe-
cies. The latter has a large count that bleeds over from the high-abundance true-posi-
tive Thermobacillus composti. The AnnoTree run gives rise to two false-positive bacte-
ria, Sediminispirochaeta bajacaliforniensis and Meiothermus sp. strain Pnk-1. There are
no false positives or negatives in the archaea.

These results indicate that the use of the AnnoTree protein database, in place of
the NCBI-nr protein database, is worth pursuing when the goal is to determine the pro-
karyotic content of a sample.

Performance on 10 different data sets. For a more detailed comparison of NCBI-nr
and AnnoTree runs of the DIAMOND1MEGAN pipeline, we applied the two variants to a
set of 10 different published samples that cover a range of different environments. Nine
of the 10 data sets consist of short reads, and one consists of long reads. There are �580
million reads in total. The number of reads per data set is listed in Table 1. For each data
set, we also report the number and percentage of reads that obtained a DIAMOND align-
ment against AnnoTree and NCBI-nr, respectively (Spearman’s correlation r = 1, P = 2.2e –
16). In most cases, the ratio of the former number to the latter is �1, except in the case of
the soil sample, where�50% more reads have an alignment against AnnoTree.

Out of the total of �580 million reads, DIAMOND aligns �307 million (�52.9%)
reads against the AnnoTree database and �302 million (�52%) reads against the
NCBI-nr database, that is, nearly 1% more reads against the former database, although
the latter database contains more than twice as many entries.

FIG 1 For prokaryotic species detected during analysis, we report the approximate relative abundance
of organisms in the mock community (green) and the number of bases aligned and assigned by
DIAMOND1MEGAN in an NCBI-nr run (blue) and in an AnnoTree run (orange).
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Taxonomic binning. The DIAMOND1MEGAN pipeline assigns aligned reads both
to the NCBI taxonomy (18) and, now, the GTDB taxonomy (19).

In the case of the NCBI taxonomy, performing AnnoTree runs on all data sets
assigns 99.5% of all aligned reads to a taxonomic node, whereas the assignment rate
when performing NCBI-nr runs is only 98.7% (Table 2). In total, using AnnoTree rather
than NCBI-nr leads to the taxonomic assignment of �7.6 million additional reads
(�1.3% of all reads). However, in more detail, the number of assigned reads is a few
percentage points higher for the NCBI-nr runs on the two human-associated samples,
skin and stool, and a few percentage points lower for the seagrass and soil samples.

For each of the 10 data sets, in Fig. 2 we present a more detailed comparison of the
assignment of reads to the NCBI taxonomy for the AnnoTree and NCBI-nr runs. The
results for both runs agree for 30 to 60% of all reads. For most data sets, the percent-
age of assigned reads that are assigned by only one of the two runs is similar, with the
biggest exception being the soil sample, where approximately 40% of all assigned
reads are assigned by AnnoTree only. For most data sets, the percentage of reads that
are assigned incompatibly to different lineages is below or around 10%, with the
exception of a bioreactor sample, where this value is around 30%.

In the case of the GTDB taxonomy, performing AnnoTree runs on all data sets
assigns �99% of all aligned reads to a taxonomic node, whereas the assignment rate
when performing NCBI-nr runs is only 93.6% (Table 2). In total, using AnnoTree rather
than NCBI-nr leads to an assignment of �21.5 million additional reads (�3.7% of all
reads). On the stool sample, the assignment rate for the NCBI-nr run is 1% higher than
that for the AnnoTree run, but in all other cases, the assignment rate for the AnnoTree
runs is a couple of percentage points higher than that for the NCBI-nr runs.

TABLE 1 Accession numbers and total number of reads for each data seta

Data set Accession no.
Total no.
of reads

Reads with DIAMOND alignments

RatioAnnoTree (no.) % NCBI-nr (no.) %
River1 ERR466320 646,178 410,118 63.5 406,913 63.0 1.0
River2 SRR8859111 129,753,222 90,535,941 69.8 88,403,713 68.1 1.0
Seagrass SRR6350025 98,260,754 36,053,215 36.7 33,717,202 34.3 1.1
Skin ERR2538467 22,827,626 13,403,495 58.7 14,122,490 61.9 0.9
Stool ERR2641811 33,214,614 29,132,562 87.7 30,101,313 90.6 1.0
Soil SRR7521491 97,595,185 10,992,188 11.3 7,264,223 7.4 1.5
Thermal Pools SRR6344961 52,908,626 15,751,382 29.8 16,625,446 31.4 0.9
Bioreactor1 SRR9831403 99,998,110 73,151,916 73.1 72,806,515 72.8 1.0
Bioreactor2 SRR8313048 44,258,996 36,608,649 82.7 37,477,641 84.7 1.0
Bioreactor3b SRR8305972 694,827 613,958 88.4 616,536 88.7 1.0
Total 580,158,138 306,653,424 52.86 301,541,992 51.98 1.02
aFor both the AnnoTree and NCBI-nr protein databases, we report the number and percentage of reads that
obtained an alignment using DIAMOND. We also report the ratio between the two numbers.

bLong-read data set.

TABLE 2 Assigned readsa

Classification

AnnoTree run NCBI-nr run

RatioAssigned % of R % of Al Assigned % of R % of Al
NCBI taxonomy 305,150,157 52.6 99.5 297,539,333 51.3 98.7 1.0
GTDB taxonomy 303,770,449 52.4 99.1 282,269,816 48.6 93.6 1.1
EC 78,874,545 13.6 25.7 76,552,285 13.2 25.4 1.0
eggNOG 95,932,149 16.5 31.3 87,131,284 15.0 28.9 1.1
InterPro 142,250,858 24.5 46.4 143,885,580 24.8 47.7 1.0
KEGG 209,371,499 36.1 68.3 123,130,673 21.2 40.8 1.7
SEED 102,452,692 17.7 33.4 100,615,086 17.3 33.4 1.0
aFor each of the classifications provided by MEGAN and summarized over all AnnoTree runs and NCBI-nr runs of
the DIAMOND1MEGAN pipeline on the 10 data sets listed in Table 1, we report the number of assigned reads
(assigned), the percentage of all reads (% of R), and the percentage of all aligned reads (% of Al). In the last
column, we report the ratio of the reads assigned using AnnoTree and NCBI-nr, respectively.
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In Fig. 3, we present more details on the assignment of reads to the GTDB taxon-
omy. The results are similar to those for the assignment to the NCBI taxonomy but
with a somewhat decreased level of conflicting assignments for most data sets.

Functional binning. The DIAMOND1MEGAN pipeline assigns aligned reads to a
number of different functional classifications, currently EC numbers (20), eggNOG
(21), InterPro families (22), KEGG (23), and SEED (24). For most functional classifica-
tions, the assignment rates for the AnnoTree runs are slightly higher than those for
the NCBI-nr runs.

In the case of KEGG, performing AnnoTree runs on all data sets assigns �68.3% of
all aligned reads to a KEGG node, whereas the assignment rate when performing NCBI-
nr runs is only �40.8% (Table 2). AnnoTree runs make �70% more assignments of
reads to KEGG nodes than the NCBI-nr runs do.

The number of read assignments to KEGG is particularly low for the soil sample, with
AnnoTree-based assignment of only �8% and NCBI-based assignment of only �1.6% of
all reads (Fig. 4).

Running time. As the AnnoTree protein database is less than one-quarter the size
of the full NCBI-nr protein database, using the former during the alignment step of the
DIAMOND1MEGAN pipeline will speed up the analysis. This will be offset, very slightly,
by the fact that the number of aligned reads will be slightly higher. In the analysis per-
formed here, we only aligned against the prokaryotic content of NCBI-nr, which con-
tains approximately twice as many sequences as the AnnoTree protein database.

In Table 3, summarizing all 10 data sets, we report the CPU time used by DIAMOND,
Meganizer, and both combined during both an NCBI-nr run and an AnnoTree run of
the DIAMOND1MEGAN pipeline. On all data sets, DIAMOND alignment against the

FIG 2 Details of the assignment of reads to the NCBI taxonomy. For each of the 10 data sets, for the total set of reads assigned by either an AnnoTree run
or NCBI run of the DIAMOND1MEGAN pipeline, we show the proportion of reads only assigned by the AnnoTree run (green), assigned by both runs to the
same taxon (yellow), or only assigned by the NCBI run (gray). For reads with differing assignments, we show the proportion assigned to incompatible
lineages (dotted) or two compatible lineages with either the AnnoTree assignment being more specific (vertical stripes) or the NCBI-nr assignment being more
specific (horizontal stripes). On the right, we indicate the total number of reads and the number of reads assigned by either the AnnoTree or NCBI-nr run.
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prokaryotic proteins in NCBI-nr takes about twice as long as alignment against the
AnnoTree database, while meganization usually takes slightly longer in AnnoTree runs.
In total, an AnnoTree run of the DIAMOND1MEGAN pipeline is twice as fast as an
NCBI-nr run.

Performing an NCBI run using the full NCBI-nr database, not just the prokaryotic
part, on each of the 10 data sets takes �3 times as long as an AnnoTree run, with
an �4% increase of assignments to the NCBI taxonomy, on average.

DISCUSSION

When first published in 2007 (10), MEGAN was run together with BLASTX (9) on data
sets containing hundreds of thousands of short reads against the NCBI-nr protein data-
base, which then contained around 3 million sequences. The DIAMOND alignment pro-
gram (14) was later designed to allow the alignment of much larger data sets against a
much larger NCBI-nr database. As the NCBI-nr database continues to grow, alignment
against the full database presents an increasingly severe computational bottleneck.

As an alternative, projects focusing on the prokaryotic content of microbiome sam-
ples can make use of the GTDB taxonomy and the AnnoTree protein database, which
are both explicitly designed for this. As the AnnoTree protein database is only 1/4 the
size of the NCBI-nr database, DIAMOND alignment of reads against the AnnoTree pro-
tein database takes at most only half as much time while providing a superior assign-
ment rate.

In this study, we illustrated the performance of AnnoTree runs using 10 example
data sets from different environments. The results on these examples confirm that
using AnnoTree is a useful alternative to using NCBI-nr.

The soil sample stands out. Its DIAMOND alignment rates against AnnoTree and NCBI-
nr are very low at only 11.3% and 7.4%, respectively, in contrast to the alignment rates for

FIG 3 Details of the assignment of reads to the GTDB taxonomy, using the same colors as those in Fig. 2.
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the sool sample, which are very high at 87.7% and 90.6%, respectively. This illustrates that
the diversity of the soil environment is only poorly represented in current databases (31,
32), while human stool samples and human-associated microbes have been studied in
detail (33). The fact that the AnnoTree run has a higher assignment rate than the NCBI-nr
run on the soil sample may be because the AnnoTree database recruits more sequences
from metagenomic assembled genomes than NCBI-nr does.

To extend the AnnoTree-based approach to the detection and analysis of viral
sequences, one could extend the AnnoTree protein database using either the virus
subdivision of NCBI-nr or another dedicated resource (34, 35).

MATERIALS ANDMETHODS
Data sets. We downloaded 53,654 PacBio shotgun reads (Sequence Read Archive [SRA] accession

no. SRR3656744) from the MBARC-26 (Mock Bacteria ARchaea Community) data set (30), with a length of
11 to 16,403 and mean of 1,643.5. The true community profile reported in Fig. 1 was estimated from Fig.
2a of reference 36.

The 10 example data sets, listed in Table 4, were downloaded in FASTA format from the NCBI SRA using
the NCBI SRA toolkit’s fastq-dump program: fastq-dump --split-spot --fasta 80 -I accession. Data sets with
paired-end reads were concatenated into a single file. No additional preprocessing was performed.

In more detail, we used two data sets from rivers, River1 (https://www.ncbi.nlm.nih.gov/sra/?term=
ERR466320) and River2 (37), one from the seagrass rhizosphere (38), one from the skin (39), one from

FIG 4 Details of the assignment of reads to KEGG. For each of the 10 data sets, for the total set of reads assigned by either an AnnoTree run or NCBI run
of the DIAMOND1MEGAN pipeline, we show the proportion of reads only assigned by the AnnoTree run (green), assigned by both runs to the same class
(yellow) or different classes (olive), or only assigned by the NCBI run (gray).

TABLE 3 CPU time used for running DIAMOND, Meganizer, and both combineda

DIAMOND Meganizer DIAMOND+MEGAN

NCBI-nr AnnoTree Ratio NCBI-nr AnnoTree Ratio NCBI-nr AnnoTree Ratio
125,288 min 61,443 min 2.0 2,241 min 2,404 min 0.9 127,529 min 63,847 min 2.0
aSummarizing all 10 data sets, we show the CPU time used for running DIAMOND, Meganizer, and both
combined during either an NCBI-nr run (restricted to prokaryotic sequences) or an AnnoTree run of the
DIAMOND1MEGAN pipeline.
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the stool (40), one from the soil (41), one from thermal pools (42), and three from bioreactors
(Bioreactor1 [43], Bioreactor2 [44], and Bioreactor3 [44]). Nine of the 10 data sets consist of short reads,
whereas the last data set consists of ONT MinION long reads.

Protein reference databases. The NCBI-nr protein database was downloaded in January 2021 from
the NCBI FTP site using the link ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz. We also downloaded
the two files prot.accession2taxid.gz (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/prot
.accession2taxid.gz) and nodes.dmp (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdmp.zip).

A DIAMOND index was then generated using the following command (requiring 150 CPU minutes):
diamond makedb --in nr.gz -d nr --taxonmap prot.accession2taxid.gz --taxonnodes nodes.dmp.

For both the AnnoTree Bacteria database and the AnnoTree Archaea database, we downloaded MySQL
dump files (version of 25 August 2020) from the AnnoTree Bitbucket repository (https://bitbucket.org/
doxeylabcrew/annotree-database/src/master/). These files were then imported into a MySQL server (version
5.7.35). The databases each have 21 tables, which hold information on the AnnoTree hierarchy, the GTDB
taxonomy, the NCBI taxonomy, protein sequences, and additional mappings to Pfam, TIGRFAMs, and KEGG.

For each sequence in the “protein_sequences” table, we constructed a unique two-part accession string
by concatenating its “gene_id” and “gtdb_id” values. For example, the protein sequence with gene identi-
fier (ID) AE009439_1_1 and GTDB genome ID GB_GCA_000007185_1 was given the two-part accession
AE009439_1_1__GB_GCA_000007185_1.

These accessions and the corresponding protein sequences (from both databases) were written to a
FastA file, annotree.fasta, which we make available at https://software-ab.informatik.uni-tuebingen.de/
download/megan-annotree.

A DIAMOND index was then generated using the following command (requiring 33 CPU minutes):
diamond makedb --in annotree.fasta.gz -d annotree.

MEGAN mapping databases. We use the term “meganization” to refer to the process of analyzing
the alignments of a set of sequences so as to perform taxonomic binning (for example, using the naive
LCA algorithm for short reads or the interval-union LCA for long reads) and functional binning (usually
using a best-hit approach). Meganization of DIAMOND alignments is performed either interactively
using MEGAN or in a command-line fashion using the daa-meganizer program, which is bundled with
MEGAN.

To perform meganization, MEGAN requires a so-called mapping database. This is an SQLite database
file that contains a mapping of protein sequence accessions to all used taxonomical and functional classifi-
cations, namely, the NCBI taxonomy, the GTDB taxonomy, EC, EGGNOG, INTERPRO families, KEGG (MEGAN
Ultimate Edition), and SEED. For NCBI-nr runs, we used the mapping database megan-map-Jul2020-2-
ue.db, which we downloaded from https://software-ab.informatik.uni-tuebingen.de/download/megan6.

For AnnoTree runs, we created a new mapping database, called megan-mapping-annotree-June-
2021.db, in SQLite format. This file is available at https://software-ab.informatik.uni-tuebingen.de/
download/megan-annotree.

We used the above-described two-part accessions as the primary key for the mapping table. We
determined the other entries of the mapping table as follows. The value for the GTDB and NCBI taxono-
mies were obtained from the “node_tax” tables of the two MySQL databases described above, using the
gtdb_id part of the two-part accession.

The value for the KEGG classification was obtained from the “kegg_top_hits” tables of the two
MySQL databases, using the gene_id part of the two-part accession. In the case that there is more than
one possible KEGG assignment for a given protein, we randomly selected one. This was necessary
because MEGAN allows at most one assignment per reference sequence. Both GTDB and KEGG IDs were
additionally formatted to match the format required by MEGAN.

We calculated entries for the other classifications supported by MEGAN (EC, EGGNOG, INTERPRO, and
SEED) by performing a join on the MD5 hash values of the protein sequences in the NCBI-nr and AnnoTree
protein databases, in other words, by copying the classifications of an NCBI-nr accession over to an
AnnoTree two-part accession whenever the two accessions correspond to the same protein sequence. We
list the number of accessions that have assignments in the different classifications in Table 5.

For most functional classifications, the number of AnnoTree proteins with assignments is smaller
than that for NCBI-nr proteins, which is because the AnnoTree assignments are copied from NCBI-nr

TABLE 4 SRA run ID, sequencing platform, read layout, and total number of reads

Data set SRA run ID Platform Layout Total no. of reads
River1 ERR466320 LS454 Single 646,178
River2 SRR8859111 Illumina Paired 129,753,222
Seagrass SRR6350025 Illumina Paired 98,260,754
Skin ERR2538467 Illumina Single 22,827,626
Stool ERR2641811 Illumina Paired 33,214,614
Soil SRR7521491 Illumina Paired 97,595,185
Thermal pools SRR6344961 Illumina Paired 52,908,626
Bioreactor1 SRR9831403 Illumina Paired 99,998,110
Bioreactor2 SRR8313048 Illumina Paired 44,258,996
Bioreactor3 SRR8305972 ONT Single 694,827
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assignments. In the case of KEGG, the assignments are obtained from the AnnoTree database, which
appears to maintain a much richer mapping than previously provided by MEGAN.

Data set processing. We ran DIAMOND (v2.0.4.142) on each short-read data set as diamond blastx
-d hindexi -q hinputi -o houtputi -f 100 -b24 -c1. Here, hindexi is the index file, either annotree or nr,
computed as described above. The input file, in (compressed) FastA or FastQ format, is specified by
hinputi, and the output file is specified by houtputi. We used -f 100 to specify output in DAA format. The
two remaining options, -b24 -c1, were used in an attempt to tune performance.

In addition, for purposes of comparison against the AnnoTree database, when running DIAMOND on
NCBI-nr, we used the option -taxonlist 2,2157 to restrict alignment to bacteria (taxon ID 2) and archaea
(taxon ID 2157).

When processing long reads, we also specified the -long-reads option.
The resulting DAA files were meganized using the daa-meganizer program MEGAN (version 6.21.5,

ultimate edition, built 5 May 2021) as tools/daa-meganizer -i hinputi -mdb hmappingi. Here, the input
file hinputi is a DAA file produced by DIAMOND, and the mapping file hmappingi was either megan-
map-Jul2020-2-ue.db or megan-mapping-annotree-June-2021.db, depending on whether the DIAMOND
run was against the NCBI-nr or AnnTree protein database, respectively. When processing long reads, we
also specified the -lg option.

Data comparison.We used the MEGAN tool daa2info to extract the mapping of reads to taxonomic
and functional classes obtained in both the NCBI-nr and AnnoTree runs of the DIAMOND1MEGAN
pipeline.

The following command was used to extract the mapping of reads to classes for all classifications:
tools/daa2info -i hinputi -o houtputi -l -m -r2c Taxonomy GTDB KEGG EC EGGNOG INTERPRO2GO SEED.
Here, the input file hinputi is a meganized DAA file and the output file houtputi is a text file. The output
was used to determine the assignment rates for different classifications.

Similarly, the following command was used to extract the mapping of reads to taxonomic paths in
the NCBI taxonomy: tools/daa2info -i hinputi -o houtputi -l -m -r2c Taxonomy -p true -r true. The output
was used to generate Fig. 2.

The following command was used to extract the mapping of reads to taxonomic paths in the GTDB
taxonomy: tools/daa2info -i hinputi -o houtputi -l -m -r2c GTDB -p true -r true. The output was used to
generate Fig. 3.

Computational resources. The DIAMOND1MEGAN pipeline was run on a Linux virtual machine
(provided to us by de.NBI Cloud, highmem xlarge) with Ubuntu 18.04.4 LTS operating system, Intel Xeon
Gold 6140 CPU, 2.30 GHz (processor model name), 28 sockets, 1 core per socket, 1 thread per core, 28
CPUs (on-line CPU list: 0 to 27), 504 GB of RAM, and 6 TB of hard disk space. Reported run times are
“user time” as calculated using the Linux “time” command. Furthermore, for MEGAN, the RAM size was
set to 500 GB. All other calculations were undertaken on a MacBookPro laptop with a 2.6-GHz 6-core (12
threads) Intel Core i7 processor and 16 GB 2400-MHz DDR4 RAM.

Statistical analysis. Spearman’s correlations were computed using ggplot2 (45).
Data availability. All data sets analyzed here are publicly available from NCBI SRA, using the acces-

sion numbers listed in Table 4. The AnnoTree protein FastA file and mapping database both can be
downloaded from https://software-ab.informatik.uni-tuebingen.de/download/megan-annotree.
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