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Abstract: Spotting radioactive material in waste is of paramount importance for environment protec-
tion. This is particularly challenging when orphan sources are hidden in scrap metal that shields their
activity from the traditional detectors in the portals scanning incoming trucks. In order to address
this issue, we present a wireless and compact SiPM-based gamma spectrometer compatible with
strong magnetic fields (0.1 T) to be installed in the bore of the lifting electromagnets to scan reduced
volumes of metal and thus achieve higher sensitivity. The microcontroller-based instrument provides
11% energy resolution (at 662 keV), an energy range from 60 keV to 1.5 MeV, a max. count rate of
30 kcps, a weight <1 kg, and a power consumption <1 W. The results of its extensive characterization
in the laboratory and its validation in the field, including operation in a scrap yard as well as on a
drone, are reported.

Keywords: electromagnet; metal recycling; SiPM; radioactivity monitoring; wireless sensor

1. Introduction

Silicon photomultiplers (SiPM) are solid-state photodetectors endowed with internal
gain, composed of arrays of single-photon avalanche photodiode cells connected in parallel.
They combine single-photon sensitivity with a wide dynamic range of the analog output
signal [1]. Their application has been quickly expanding in several areas from LiDAR and
time-of-flight sensing to nuclear spectroscopy and medical imaging, where they are coupled
to scintillators, and many other low-light applications such as dark matter physics. Despite
a slightly lower quantum efficiency and higher dark counts, they have been replacing
photon-multiplying tubes (PMT), traditionally employed in gamma-ray sensing [2], thanks
to various advantages such as: (1) miniaturization and robustness (mm-sized silicon chips
as opposed to glass tubes of ~10 cm diameter and length), (2) lower operating voltages (tens
of volts as opposed to several hundreds), (3) higher gain and (4) extremely low sensitivity
to magnetic fields.

The compatibility of SiPMs with strong magnetic fields (up to a few Teslas) has been a
key factor enabling the growth of multimodal medical imaging, in particular allowing the
realization of gamma cameras for PET [3] and SPECT [4] scanners compatible with MRI,
i.e., that can be operated inside the bore of a MRI scanner during imaging sequences.

Motivated by the success of MRI-compatible gamma imagers, we have conceived an
industrial spin-off application of this technology in the area of waste and recyclable material
monitoring. In particular, a very critical case concerns the presence of radioactive sources
in scrap metal. Radioactive sources are largely used in industrial and medical applications,
and they can be accidentally or intentionally disposed in waste. The fusion of a radioactive
material among recyclable metal in a steel mill would create a severe environmental
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accident by contaminating the whole plant and semifinished products [5]. For this reason,
metal-processing plants are mandatorily required by national environmental regulations to
scan the incoming material. Portals equipped with large plastic scintillators are installed at
the entrance gates for both trucks and train wagons accessing the scrap yard [6]. However,
due to the large amount of metal present in these containers of large volumes (50–100 m3),
radioactive source can be heavily shielded. Thus, it is possible that fixed monitors miss
the presence of dangerous items. In order to address this issue, we propose to install a
radioactivity detector in the electromagnet used to lift and manipulate the scrap metal in
the yard, for instance, during the loading in the hopper for fusion. This would allow for
increasing the sensitivity in the detection of orphan sources, thanks to the smaller volume
of metal (max. ~1 m3) lifted in the cluster under the magnet.

In this paper we present the design and experimental characterization of a wireless,
compact and robust gamma-ray spectrometer compatible with large magnetic fields and,
thus, designed to be installed inside lifting electromagnets for scanning scrap metal in scrap
yards prior to fusion in steel mills (Figure 1). In the case of detection of a radionuclide, an
alarm is immediately transmitted to the magnet operator to prevent contamination of the
plant. This unit can be both installed in new magnets as well as retrofitted into already
existing magnets, by drilling a hole (<25 cm) in the middle of the bore.
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Figure 1. Schematic representation of the gamma-ray spectrometer here presented. Its main appli-
cation is safe identification of radioactive material hidden in scrap metal with enhanced sensitivity
thanks to the installation of the detector in the bore of the lifting electromagnet operated in the scrap
yard prior to fusion.

The paper is organized as follows: Section 2 illustrates the design of the instrument,
including the scintillator choice, the optimization of SiPM arrangement and the electronic
and mechanical design. Section 3 reports the results of the experimental characterization,
both in the laboratory and in the field, while conclusions are drawn in Section 4.

2. Instrument Design
2.1. Design Specifications

The increase in sensitivity expected from embedding the detector inside the lifting
electromagnet is achieved at the cost of extremely challenging operating conditions for
the spectrometer, namely: (1) large magnetic fields (up to a tenth of a Tesla), (2) high
temperature (up to ~70 ◦C in the bore of the magnet), (3) intense vibrations and mechanical
shocks (since the magnet is also used as a hammer to dig and compact scrap metal in the
yard) and (4) short measurement time (a few seconds during the maneuver of the lifted
metal cluster).
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The sensor should nevertheless offer proper sensitivity and energy resolution
(~10% Full-Width Half-Maximum (FWHM) at 662 keV) to identify the different radionu-
clides [7]. Another challenge is the variability of the background, since the instrument will
be quickly moving to different areas in the scrap yard. Finally, it should be also affordable
in order to be installed in several stations and machines. The energy range to be covered is
from 60 keV up to 1.5 MeV to address most artificial sources and be in line with commercial
instruments. The most common isotopes, with long decay times, that are searched for
in scrap metal are 137Cs (662 keV) [8] and 60Co (1.17 and 1.33 MeV) [9], since they are
extensively used in the form of sealed gamma-ray sources in industrial applications, such
as sterilization of food and, along with 192Ir and 75Se, tomography, in particular of high
density materials, as in metallurgy and welding verification. Another relevant isotope
is 131I (364 keV), which is used in nuclear medicine and is also monitored in air samples
collected in the atmosphere (typically by flowing large volumes of air on filters). In fact,
when released from reactors, for instance, due to nuclear accidents, it partially binds to
aerosol, similarly to 137Cs, and its concentration in air is routinely monitored by networks
of ground stations managed by environmental protection agencies of several countries [10].
A maximum count rate of at least 10 kcps should be granted by the instrument.

2.2. Scintillator and SiPM

Given the wide energy range to be covered, an indirect conversion architecture was
selected, thanks to its versatility. A scintillator converts the incoming gamma photon into a
handful of optical photons collected by SiPMs coupled to one face of the crystal. The best
compromise between detection properties and cost is represented by the thallium-doped
sodium iodide NaI(Tl) scintillator, characterized by a material density of 3.6 g/cm3, a light
yield of 38 photons/keV, leading to an excellent intrinsic energy resolution of ~6% [11], an
emission wavelength at 415 nm (matching PMT and SiPM responsivity) and a decay time
τ below 250 ns, thus being potentially suitable for large count rates (though not common
in environmental monitoring applications). Furthermore, this scintillator is suitable for
low-background applications, including environmental ones [12]. The only weak aspects
of this scintillator are related to its long-term aging: in fact, it is hygroscopic (and thus is
typically sealed in thin metal cases with a quartz window for optical coupling with the
photodetectors), and it is sensitive to temperature gradients (max. ~10 ◦C/hour).

For a gamma photon of 1 MeV energy, the linear attenuation coefficient in NaI is
~0.2 cm−1, requiring a thickness of ~1 cm for a complete absorption. At the same time, the
volume of the scintillator cannot be too small in order to collect enough events for statistical
relevance. In fact, the standard size of NaI scintillators for portable gamma spectrometers
for environmental monitoring is 2” [13]. The final choice related to the scintillator concerns
its shape and the number and arrangement of SiPMs attached to its face. Since individual
SiPMs are currently still relatively expensive (~$100 per piece for small batches), an array
of a few SiPMs easily matches the cost of the scintillator, the most expensive component of
the spectrometer. The identification of the optimal trade-off between the number of SiPMs
(i.e., cost) and the system spectroscopic performance is crucial for the commercial success
of this development.

The starting point for the analysis was a paper by Saint Gobain [14] suggesting that
acceptable spectroscopic performance could be achieved by placing only 4 SiPM at the
corners of a cubic scintillator, whose surface is covered by a reflective layer. The reason is
that the corners act as light guides, concentrating most the scintillation light along them. We
have performed simulations to validate this concept with the ANTS2 software package [15],
considering square SiPMs of 6 mm side and a cubic NaI scintillator of 5 cm side. As
reported in Figure 2, simulations confirmed this promising approach: the four-corner
layout (green) achieved an energy resolution at 662 keV of 12% FWHM as compared to
the best case of 8% achieved by a full coverage of the bottom face (blue). Thus, we built
a first prototype of detector with a cubic scintillator and 4 SiPMs [16] and measured its
energy resolution, which turned out to be significantly worse (16.4%). Since electronic
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noise is negligible at these energies [17], the reason for this discrepancy is ascribed to the
lateral loss of light in the optical interface between the scintillator and the SiPM, which
in simulations is considered ideal, while, in the real case, some light is escaping from this
optical layer, especially in our demonstrator, where this delicate coupling was manually
assembled (either with optical grease or a silicone pad).
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Figure 2. Analysis of the optimal SiPM layout for both cubic and cylindrical NaI scintillators
coupled to square 6 mm × 6 mm SiPMs: FWHM energy resolution at 662 keV is reported (a) by
means of simulations performed with the ANTS2 software [15] and (b) confirmed by experimental
measurements on both square and cylindrical geometries.

Other configurations were then measured and simulated, as summarized in Figure 2
and Table 1: placing 4 SiPMs in the middle of the cubic crystal (purple) offered slightly
better resolution (15.8%), while a significant improvement was achieved by moving to a
cylindrical scintillator. In fact, by using 4 SiPMs in the middle (red), a resolution of 11.6%
is achieved. It can be improved to 9.4%, in line with state-of-the-art devices for similar
applications [7], by mounting 12 SiPMs in the middle in a “T” arrangement (cyan).

Table 1. Results of simulations and measurements of the energy resolution (FWHM at 662 keV) for
different arrangements (Figure 2) of SiPMs (6 mm side) on a 5 cm NaI(Tl) scintillator, corresponding
to different fractions of scintillator area coverage.

Crystal Shape # SiPM Layout Covered Area Simulated Measured

Cubic 36 Full coverage (blue) 100% 8% -
Cubic 20 Ring (orange) 55% 8.6% -
Cubic 12 Corners (yellow) 33% 9.4% -
Cubic 4 Middle (purple) 5.7% 14.5% 15.8%
Cubic 4 Corners (green) 5.7% 12% 16.4%

Cylindrical 4 Middle (red) 7.1% 10.3% 11.6%
Cylindrical 12 Middle (cyan) 21.3% 8.9% 9.4%

In conclusion, based on this study we opted for a cylindrical scintillator of 2′′ diameter
and thickness coupled to an array of 4 SiPM placed in the middle and surrounded by a
reflective layer. Although a 2′′ cylindrical scintillator has 30% less volume than the cubic
equivalent, its shape is more standard and easily machinable, making it less expensive, too.

2.3. Electronics

The block scheme of the electronic circuit is shown in Figure 3. Since only spectroscopy
is performed by this instrument, the currents from all the SiPMs are merged into a single
current input, the virtual ground of a transimpedance amplifier (TIA), to obtain a single
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larger pixel [18]. The TIA is followed by a gain stage, a comparator with a selectable
threshold and a peak stretcher, storing the peak amplitude of each event. A 32-bit micro-
controller of the STM32 family manages the operation of the instrument. Its internal ADC
samples the output of the peak stretcher, triggered by each detected event. One internal
DAC is used to set the detection threshold and a second one to drive a DC-DC converter
generating the high voltage (HV), biasing the SiPM. Finally, the microcontroller handles
the communication with USB (through an FTDI bridge) and radio communication.
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Additional sensors were included in the circuit: a temperature sensor (a PT100 ther-
mistor) to measure the temperature of the SiPM and thus stabilize its gain in closed-loop by
adjusting the DC-DC HV [19], a tri-axial MEMS accelerometer (with SPI interface, data rate
from 0.5 Hz to 1 kHz and selectable full-scale range of ±2 g, ±4 g and ±8 g) to detect the
motion of the unit and a solid-state magnetometer (a Hall-effect CMOS sensor with 10 µs
response time, ±176 mT full-scale range and 7.5 mV/mT sensitivity) to detect the status of
the electromagnet, corresponding to the presence of the lifted metal cluster.

The value of the feedback resistor of the TIA has to be set depending on the number
of SiPM. The SiPM peak current of each pulse, typically in the mA range, is given by the
total collected charge divided by a signal time constant τs given by the convolution of
the scintillator decay time τ and the SiPM microcell recharge time constant (~50 ns). The
charge is given by the number of photoelectrons impinging on the SiPM multiplied by the
collection efficiency, the photo-detection efficiency (PDE) and the gain (~106, depending on
the biasing overvoltage) of the SiPM. For simplicity, a simple RC shaping is applied to the
filter the pulse by means of the TIA time constant. Here, the filter is set at 1.4 µs, consistent
with 5·τs. Furthermore, the stability of the TIA has to be carefully studied, given the large
capacitance of the SiPM (~1 nF per pixel). For a large number of SiPM connected to a single
current input, the stability of negative feedback can become critical, and other approaches,
such as approaches based on weakly positive feedback, can be adopted [20].

After trying different devices, a compact commercial transceiver module was selected
for the radio link. It operates in the free band of 900 MHz with FSK modulation, +9.5 dBm
output power (40 mA max. current consumption), a RF data rate of 153.6 kbit/s and
UART interface at 115,200 bit/s. A range above 1 km in free space of the radio link was
experimentally verified: it is suitable for operation in the scrap yard, even in the presence
of shielding structures.

The circuit is realized in three separate printed circuit boards, visible in Figure 3. The
sensors board (with a green solder mask, it is the largest, at 58 mm × 58 mm) hosts the
SiPMs (on the top layer) and all other sensors and the front-end circuits (on the bottom).
It also includes the connector for the radio module that is plugged in vertically (blue
solder mask), while the control board (red solder mask) hosts the microcontroller, the USB
interface, power regulators and the DC-DC converter. The choice of components and the
layout of the PCBs followed the indications for compatibility with intense varying magnetic
fields developed for SPECT/MRI [4].
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The system is powered by a single +5 V supply, provided by a laptop through the USB
interface or by a battery, which will be located in a rugged box on top of the electromagnet,
together with the antenna. The instrument current consumption is 130 mA during acqui-
sition mode, and it reaches a max. of 180 mA during radio transmission for an average
power consumption well below 1 W.

2.4. Mechanics

When used in the laboratory or as handheld portable spectrometer, a simple 3D-
printed black PLA case is used to close and protect the instrument, providing light-tightness
(Figure 4). The optical coupling between the SiPM and the output surface of the scintillator
is critical in terms of spectroscopic performance. For portable use, an optical grease (BC-630
by Saint Gobain) is commonly used, while for industrialization and installation in harsh
environments such as the electromagnet, a silicone optical pad (EJ-650 by Eljen Technology)
is used. Beyond granting optical coupling, it also acts as a damper of vibrations.
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Since the NaI crystal is prone to cracking and cleaving, degrading energy resolution,
due to mechanical stress, a special enclosure was designed and realized for installation of
the instrument in the bore of the electromagnet. It consists of two custom-designed co-axial
steel cylindrical cases. The internal one (~10 cm diameter) has a similar volume to the
plastic one and keeps the electro-optical assembly tightened and light-proof. The external
one (~20 cm diameter) surrounds the detector, providing mechanical protection, thermal
isolation and mechanical dampening. In fact, a set of shock absorbers made of Teflon
and steel springs connects the internal case with the external one, granting mechanical
decoupling. We have estimated that the highest acceleration suffered by the unit would be
~17 g in the case of collision with a rigid wall of the magnet (of max. 10,000 kg mass) at a
max. speed of 1.3 m/s and assuming a spring compression of 10 mm. This value decreases
significantly to a few g in the realistic case of impact of the magnet with scrap metal
that compressed by more than 30%, dissipating the energy of the collision. Preliminary
laboratory tests with accelerations of a few g were performed, and no damage to the crystal
was observed. In any case, in case severe collisions are expected, a less delicate crystal such
as CsI could be taken into consideration to replace NaI, trading off energy resolution with
mechanical robustness. A bottom steel lid with holes, despite reducing the sensitivity, can
be mounted to protect the spectrometer from damage due to sharp metal rods.

2.5. Embedded Processing and Software

In addition to managing the communication with peripherals and the acquisition
of the sensors signals, the microcontroller performs a major embedded processing task:
building the spectra in real time. Conversion from ADC bins to energy values is performed
by a linear map identified by means of calibration. If the energy of each detected event
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falls within an acceptance window, it is counted and the bin corresponding to its energy
is increased. Despite the ADC has a resolution of 12 bits, spectra are re-binned to 10 bit
(i.e., with ~1.3 keV/bin) by merging bins, to be compatible with the majority of standard
analytical software for gamma monitors. The minimum acquisition time of gamma events
is currently set to 1 s. All auxiliary sensors are also sampled every second. The user can set
a total measurement time and receive the final integrated spectrum or opt to receive partial
spectra every second. The acquisition time of each event (equal to ~10 µs and dominated by
the conversion time of the internal ADC) is taken into account as dead time, in particular
at high rates, to measure the effective active measurement time. In this configuration, a
maximum count rate of 30 kcps can be achieved. This value is suitable for environmental
monitoring. However, in case a larger count rate capability would be needed, the ADC
could be easily replaced with an external one offering a faster conversion time. Two
auxiliary processing steps are the stabilization of the SiPM gain versus temperature and
the correction of the baseline shift for high count rates, described in Section 3.1.2.

As anticipated, the spectrometer can be operated in two modes: when connected
to a PC, spectra are streamed via USB port that provides also power supply. Instead,
when battery powered, it operates as a standalone unit and communicates via radio. A
graphical user interface (GUI) was developed to control the instrument. It allows setting
all acquisition parameters and displaying acquired spectra and the values of auxiliary
sensors. A first version of the software was written in MatlabTM, and it is still used when
operating via USB connection. Then, it was migrated to Python in order to run in Linux on
a Raspberry Pi B+ single-board microcomputer connected to a twin radio transceiver and
coupled with a touchscreen, thus realizing a portable standalone receiving station (visible
in Figure 4) for demonstration purposes.

2.6. Calibration and Self-Diagnostics

Energy calibration of the spectrometer is performed in the laboratory at known tem-
perature and by means of two or three calibration sources such as 131Ba, 137Cs and 60Co in
order to cover a wide energy range from 80 to 1330 keV. Since the dominant contribution
to spectrometer stability is the thermal drift of the gain of the SiPMs, its stabilization is
sufficient to grant reproducibility. A typical warm-up time of a few minutes is required.

Finally, given the safety role of the sensor, it would be important to add some degree
of self-diagnostic capability to the instrument. The ideal solution, which is a standard
option in more sophisticated systems [21], would be to add an LED injecting light pulses
in the scintillator. In this way, the whole chain can be periodically checked, between
measurements. In case of fault, the operator can be immediately alerted and the use of the
instrument interrupted to avoid false negatives. Since the mounting of the LED coupled
with scintillator can be critical from a mechanical point of view (both in terms of robustness
and light-tightness), an alternative approach is to produce electrical pulse from the HV
line, injecting test current pulses through the SiPM capacitance. However, this requires
making the low-pass filters of the HV line switchable and does not account for damage to
the scintillator or its coupling with the SiPMs.

3. Results
3.1. Laboratory Characterization
3.1.1. Energy Resolution

The spectrometer was initially characterized in the laboratory with sealed calibration
sources, as reported in Figure 5. Energy calibration was performed, exposing the unit to
both 133Ba and 137Cs sources. The measured energy resolution at 662 keV is 11% (Figure 5a).
As shown in the inset (Figure 5b), when changing the distance of the source from the
detector (from 0 to 20 cm), the amount of counted events in the photopeak in a fixed
acquisition time (60 s), scales as expected with the square of the distance. Eventually, a
60Co was also used to explore the high-energy region of the spectrum. The two peaks of
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the 60Co lines at 1.17 and 1.33 MeV are clearly distinguishable, with an improvement in
resolution with respect to the previous prototype with a cubic scintillator [16].
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3.1.2. Count Rate

Due to the AC coupling between the TIA input stage and the following gain stage,
for every detected event, the baseline shifts down by an area equal to the pulse area.
At low count rates, the negative shift is negligible, since it is spread along a long time
distance between pulses. Instead, at high rates, this effect can distort the spectrum. Since,
for simplicity, no baseline holder circuit has been included, a correction of this effect in
digital processing domain was introduced. The correction is applied every second: the area
corresponding to the pulses in the histogram is computed and divided by the acquisition
time in order to estimate the average shift. The spectrum is thus shifted to the right of such
estimated amount. As reported in Figure 6 for the 137Cs peak at 662 keV, the correction is
effective in reducing the centroid shift to less than 6 bins (negligible when compared with
~50 bins corresponding to the peak FWHM) for count rates up to 24 kcps. Of course, this
simple embedded algorithm works better in the presence of a dominant photo-peak.

3.1.3. High Temperature Operation

Once the spectrometer was installed in the rugged metallic enclosure, it did not fit
inside standard laboratory thermal chambers. Thus, the external case was wrapped with
a thermal jacket containing high-power resistors and PT1000 thermistors in order to test
the high-temperature behavior of the instrument. In order for the detector to reach ~70 ◦C,
the estimated max. operating temperature, the external case was heated up to above
100 ◦C. The temperature was increased slowly (below 10 ◦C/hour) to avoid damage to
the scintillator, and 137Cs spectra were acquired for 10 min. As visible in Figure 7, from
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109 ◦C to 132 ◦C, the centroid of the photopeak does not move (it shifts of only 2 bins),
demonstrating proper behavior of the stabilization loop. When increasing to 141 ◦C, the
spectrum shows a slightly higher shift (9 bins). This effect, still negligible, is ascribed to a
slight degradation of the SiPM itself, since when measured back at room temperature, it
showed an irreversible slightly altered response. In fact, since, in this last measurement, the
detector temperature reached ~80 ◦C, it was very close to the upper limit (+85 ◦C) of the
recommended operating temperature range. In any case, this upper limit is significantly
higher that the max. operating temperature expected in the magnet bore. Furthermore, if
needed for a particularly hot environment, active cooling of the detector could be added.
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temperature exceeds 100 ◦C and the internal one reaches ~70 ◦C.

3.2. Field Validation
3.2.1. Inertial Test

In order to assess the intensity of the accelerations suffered by the instrument during
maneuvers with scrap metal and to demonstrate its compliance with mechanical shocks,
the unit was battery-powered and firmly attached to a grapple used in the scrap yard; ac-
celerations were wirelessly recorded during realistic manipulations, as reported in Figure 8.
Despite the low sampling rate of 1 Hz, insufficient to properly capture fast dynamics, it
was possible to observe that the hardest maneuvers apply an acceleration reaching ~4 g in
the horizontal plane and ~2 g in the vertical direction. The prototype successfully survived
the stress test. The need for an accelerometer with a full-scale range larger than 4 g was
confirmed. Given the smaller mass of the grapple with respect to the electromagnet, it is
expected that the latter will suffer less accelerations. Measurement of the acceleration can
enable the identification of the position of the sensor (at ground level vs. at the top) and the
motion status (still vs. moving), which are useful to synchronize the measurement with the
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lifting operations, along with the magnetic sensor, and adapt the background subtraction
to the different positions.
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3.2.2. Scrap Metal Detection

The spectrometer was tested in the field, in a real scrap yard. As visible in Figure 9, it
was lifted by a grapple and placed on a cluster of scrap metal of 55 cm thickness, i.e., half
of the max. thickness of the scrap volume (~1 m3) under the electromagnet. From previous
tests [16], we observed that the most challenging types of scrap metal are metal shavings
due to the higher density and, correspondingly, higher screening of radiation. Thus, we
used metal shavings. A low-activity calibration 137Cs source was placed, by means of a
metal pipe, underneath the cluster, and spectra were acquired. In order to have an accurate
reference, a commercial gamma spectrometer Osprey® (by Mirion) mounting the same
2′′ NaI(Tl) scintillator coupled to a PMT and endowed with an embedded MCA (with
better energy resolution but not compatible with magnetic fields) was also used and placed
close to the detector under test. The reference instrument was lacking the protection grid.
As shown in Figure 9, after 60 s of acquisition, both detectors could clearly identify the
radioactive source. Spectra were re-binned to 8 bits for a direct comparison with the Osprey.
In the region of interest (ROI) around the 662 keV photopeak (from bin 90 to 106), the
Osprey counted 1145 events, while the detector under test counted 684 events. Even by
considering a 1 s measurement, the ROI contains more than 10 counts that are sufficient
for detection of sources of weak activity (~100 kBq). This demonstrates the capability of
the proposed instrument to quickly detect the hidden source and trigger the alarm during
the maneuver of the lifted scrap metal cluster. The decrease in counts with respect to the
reference instrument (placed at the same distance and having the same scintillator volume)
is due to the thick protection grid of our prototype (visible in the inset of Figure 9) and
quantified by this comparative measurement into a loss of 40% of events.

3.2.3. Operation in the Magnetic Field

Finally, the compatibility with a large magnetic field was tested in the same yard by
placing the detector under a lifting electromagnet. The same calibration source was placed
facing the detector, and spectra were again acquired for periods of 60 s. The intensity of
the magnetic field was measured to be ~0.1 T with a portable probe (Gaussmeter GM08 by
Hirst Magnetics). Although the used electromagnet is a bit smaller than the ones employed
in the largest scrap yards of steel mills, the intensity of the field in the final installation
position, i.e., in the bore, is expected to be even lower than 0.1 T. As shown in Figure 10,
there is no visible difference between the spectra measured with the magnet OFF and ON.
Four spectra were measured: initially with the magnet OFF (green), then two scans with
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the magnet ON (red and cyan) and a final one again with the magnet turned OFF (blue).
This demonstrates the correct operation of the instrument inside a strong magnetic field.
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3.2.4. Drone Flight

Given the compactness, low power (below 1 W) and low weight (below 1 kg in
the plastic enclosure) of the unit, another test relevant for radioactivity environmental
monitoring was performed. The wireless spectrometer was embarked on a drone, and
the capability of aerial mapping was demonstrated. The detector was mounted by means
of a 3D-printed adapter with the scintillator facing down. In order to lift a payload
of 1 kg, a Tarot Iron Man 1000 Octocopter with eight propellers was employed. The
instrument was powered directly from the drone battery: a standard six-cell pack with a
capacity of 14,000 mAh. Since the battery generates 22 V, a switching DC–DC regulator was
added to reduce the voltage to 5 V. The additional weight and power consumption of the
spectrometer shortened the flight time from 30 min to 25, which is an acceptable value for
land surveys. As visible in Figure 11, the drone was flown over a low-activity calibration
source: it was kept hovering for 30 s in positions on a vertical square grid with pitch of
1 m. The vertical map shows the counts measured in the 137Cs ROI after subtraction of
the background in each spot. The decrease in counts when moving away from the source
follows the quadratic law, confirming the correct acquisition and showing potential for
land mapping.
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Several systems combining drones and gamma spectrometers have been reported [12,22]
and are commercially available for this purpose (by CAEN, Mirion, Kromek etc. . . ), but the
one here proposed combines acceptable spectroscopic performance with very low weight
and low power operation, in line with the state of the art achieved by means of scintillators
offering higher performance such as CeBr3 [23].

4. Conclusions

We have presented a wireless gamma-ray spectrometer based on the combination of
only four solid-state SiPM photodetectors and a NaI(Tl) scintillator. The main feature of
the instrument is its compatibility with magnetic fields of 0.1 T, which makes it suitable for
installation inside a lifting electromagnet, along with thermo-mechanical robustness and
miniaturization of the electronics readout comprising an analog processing front-end and
microcontroller-based embedded processing. A careful set of simulations and experimental
tests allowed for optimizing materials and geometry for the best compromise between
cost and energy resolution. Although the energy resolution (11%) is slightly worse than
the state of the art with these components (~8%) [24], the unit is meant to serve as the
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ultimate safety barrier to alert and stop the manipulation of a small-volume metal cluster,
to be eventually analyzed with a traditional spectrometer for better identification of the
chemical species. Moreover, the same compact electronic platform could offer enhanced
energy resolution by employing more SiPMs and higher-quality scintillators such as those
based on cerium or LaBr3.

The sensor was extensively tested in multiple conditions, including operation at high
temperature, high acceleration and in high magnetic field. Furthermore, thanks to the
portability (<1 kg) and low-power (<1 W) of the core unit, it was also embarked on a drone.

Within the framework of the IoT paradigm, we envision potential improvements in
spatio-temporal mapping of the environment, as is already happening for air and water
quality [25], by the spread of networks of radioactivity monitoring stations based on units
such as the one here presented, either fixed or movable, either ground-based or airborne,
and operated by either humans or autonomous robots [26]. Direct involvement of the
population (through paradigms such as citizen science and gamification) with low-cost
smartphone-based personal detectors has also been already proposed for radioactivity [27].

Moreover, the combination of such detectors with machine learning looks extremely
promising, both at single-detector level, for instance, to improve the quality of the spec-
trum [28] or to endow with directional sensitivity a collimator-less gamma spectrometer
based on the same geometry (a cylindrical LaBr3 scintillator coupled to planar arrays of
SiPM) [29], and at the level of merging the information captured from multiple sensing
sites and fusing radioactivity maps with other heterogeneous and complementary informa-
tion, such as meteorological and acoustic sensors in the case of underwater radioactivity
observations [30].
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