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Artificial intelligence can train the related known drug data into deep learning models for drug design,
while classical algorithms can design drugs through established and predefined procedures. Both deep
learning and classical algorithms have their merits for drug design. Here, the webserver WADDAICA is
built to employ the advantage of deep learning model and classical algorithms for drug design. The
WADDAICA mainly contains two modules. In the first module, WADDAICA provides deep learning models
for scaffold hopping of compounds to modify or design new novel drugs. The deep learning model which
is used in WADDAICA shows a good scoring power based on the PDBbind database. In the second module,
WADDAICA supplies functions for modifying or designing new novel drugs by classical algorithms.
WADDAICA shows better Pearson and Spearman correlations of binding affinity than Autodock Vina that
is considered to have the best scoring power. Besides, WADDAICA supplies a friendly and convenient web
interface for users to submit drug design jobs. We believe that WADDAICA is a useful and effective tool to
help researchers to modify or design novel drugs by deep learning models and classical algorithms.
WADDAICA is free and accessible at https://bqflab.github.io or https://heisenberg.ucam.edu:5000.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning has made rapid progress in image classification
[1], speech recognition [2], natural language processing [3], drug
discovery [4–6], etc. The traditional machine learning methods rely
on manual features extraction, while deep learning allows models
to learn the task-related features extraction automatically [7].
Deep learning is a subset of machine learning techniques that uses
neural networks to solve complex and challenging problems. It
includes a diversity of artificial neural network variants, such as
deep convolutional neural networks (CNNs), deep recurrent neural
networks (RNNs), graph neural networks (GNNs), and so on. The
CNNs approach is one common way to train the deep learning
model for predicting the binding affinity between proteins and
small molecules [8,9]. Deep learning has successfully been applied
to the de novo drug design and ligand binding affinity prediction
that can be further used for virtual drug screening. Ligdream is
one excellent method for de novo drug design [10] which is used
to train a deep learning model that could design novel functional
groups and scaffolds based on the supplied seed molecule by long
short-term memory (LSTM) [11] networks and CNNs. Two well-
known examples of neural networks in the field of drug discovery
are Pafnucy [12] and OnionNet [13]. Both of them perform well in
predicting the binding affinity between proteins and ligands. Paf-
nucy and OnionNet are tailored for structure-based virtual drug
screening by training CNNs models. Pafnucy extracts the chemical
information around ligand atoms within 20 Å side length of cubic
box to fit into a CNN model for predicting the binding affinity
between proteins and ligands. OnionNet takes into account the
element-pair-specific contacts between proteins and ligands, and
divides the contacts into different distance ranges that cover the
local and nonlocal interaction information for training the binding
affinity model.
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Although deep learning has been successfully applied to drug
discovery, it cannot replace the classical algorithms and programs
for drug design completely. Some studies point out that the classi-
cal scoring functions show higher and more stable performance
than the machine learning-based methods at different similarity
levels of training sets [14]. Currently, the classical algorithm of
de novo drug design is easier to grow and search the 3D conforma-
tion of ligands in a 3D protein pocket than deep learning [15]. Deep
learning and classical algorithm have different strengths and they
complement each other well. Our developed program MolAICal
[15,16] is a drug design software tool based on both the deep learn-
ing model and classical algorithm. It uses the deep learning model
to produce drug-like fragments or molecules, and then perform the
de novo drug design or virtual drug screening based on the pro-
duced molecular set. Moreover, MolAICal can cluster and filter
the designed drugs according to the K-means algorithm, Pan-
assay interference compounds (PAINS) [17], Lipinski’s rule of five
[18], synthetic accessibility (SA), and other user-defined rules.
Autodock Vina [19] is another typical example of a popular and
classical molecular docking program that can find the suitable 3D
pose of the ligand in the pocket of protein and carry out virtual
drug screening.

Both deep learning and classical algorithms have their unique
advantages for drug design. However, some deep learning models
and classical programs need special libraries and operating envi-
ronments and do not have a friendly interface for users to design
or modify drugs. A webserver could supply a convenient way for
the researchers to design drugs without any special software and
hardware requirements via the browsers [20–22]. Here, the web-
server named WADDAICA is built for designing or modifying
drugs by deep learning and classical algorithm. WADDAICA uses
the good scoring model that is trained on the PDBbind database
[23,24] by OnionNet [13]. For the scoring function of the classical
algorithm, Autodock Vina is reported to have the best scoring
power by evaluating the ten popular docking programs [25].
WADDAICA employs the Vinardo score of MolAICal [15,16] that
shows better Pearson and Spearman correlations than the score
of Autodock Vina. Our server contains two drug design modules
based on deep learning models and classical algorithms. WAD-
DAICA can easily use independent and combinational functions
to design or modify candidate compounds. We strongly believe
that WADDAICA can be a very helpful tool for researchers to dis-
cover novel drugs.

2. Materials and methods

2.1. Principles and process of server

WADDAICA is built on trained deep learning models [10,13]
and our developed software tool MolAICal [15,16] that is written
for drug design with classical programs and deep learning mod-
els. This server aims to supply a friendly web interface for the
job submission of drug design or modification conveniently.
Fig. 1 shows the overall workflow of the two modules of WAD-
DAICA. In the first module, the deep learning model is trained
based on 385593523 drug-like molecules of ZINC 15 database
[26] by using ligdream source code [10]. The 26 tokens of molec-
ular strings are preserved for training the deep learning model.
The 3D conformations of ligands are generated and optimized
by RDKit and MMFF94 force field [27]. The molecule is rotated
randomly and translated 2 Å after voxelizing into 1 Å cubic grid
of side size 24 Å. The value of every voxel is definitive by atom
type and the distance r between its center and neighboring atoms
(see equation 1).

n(r) = 1 - exp[-(rvdw/r)12] ð1Þ
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where rvdw corresponds to the van der Waals radius of an atom. The
shape variational autoencoder (VAE) encodes the ligand representa-
tion via convolutional neural networks (CNNs). The SMILES strings
are generated by long short-term memory (LSTM) [28] and CNNs.
The deep learning model for binding affinity is trained based on
the PDBbind database by OnionNet [13]. Eight element types are
used to determine the atom contact types between proteins and
ligands. A total of 60 shells are picked up for evaluating short-
range and long-range element-pair interaction. The distance of
the first shell is 1.0 Å and a distance of 0.5 Å is kept between two
neighbor shells. The cut-off of the maximum distance is 30.5 Å
between the farthest boundary and the atoms of the ligand. A total
number of 3840 features is considered into the local and nonlocal
interactions between the ligand and protein. The CNNs are
employed to train the prediction model of binding affinity. The loss
function is shown in equation 2:

loss = a(1 - R) + (1 —a)RMSE ð2Þ

where R is the correlation coefficient, RMSE is the root-mean-
squared error and a is a tunable parameter. In the first model, the
WADDAICA server can generate the appointed number of new
molecules based on the submitted seed molecule, and predict the
binding affinity of generated ligands in the pocket of protein by
deep learning model (see Fig. 1).

In the second module, WADDAICA employs our developed clas-
sical program MolAICal for drug design or modification. The new
drugs are grown on the submitted drug seed by using genetic algo-
rithm (see Fig. 1). The value of maximum populations is set to
2000. 10% of generated ligands are selected for the next evolved
growth. The top 105 molecules of generated molecules are chosen
as the parent molecules. Besides, other additional 45 molecules are
randomly selected from the generated molecules to enhance the
diversity of ligands. Both the operators of crossover and mutation
are set to 0.5. According to the report about Lipinski’s rule of five
values [29], the values of XLOGP, hydrogen acceptors, hydrogen
donors, rotatable bonds, and molecular weight are set to 6.0, 12,
7, 20, and 1000.0, respectively. The Pan-assay interference com-
pounds (PAINS) is used to filter out the false-positive growth com-
pounds. The synthetic accessibility (SA) scores of growth molecules
are stored in the file of statistical results. The result data of the sub-
mitted job is saved in the WADDAICA storage system for one week.

2.2. Software

The web application is constructed based on Flask V1.1.2 by
using Python programming language. Several software tools are
implemented in the WADDAICA web application under the permit-
ted licenses. JSmol (http://www.jmol.org) is used to visualize the
new molecules generated by deep learning model or classical algo-
rithm. Autodock Vina [19] can assist to obtain the complex of pro-
tein and ligand. JSME [30] is employed to edit molecules and
SMILES strings. Open Babel [31] plays a role in molecular format
conversion. Besides, our developed program MolAICal is used to
calculate Lipinski’s rule of five values [18], synthetic accessibility,
and PAINS [17].
3. Results and discussion

3.1. Input

WADDAICA mainly picks up two ways to submit input files on
the job request page. One is a molecular editor interface that can
draw a molecule or input molecular SMILES string directly. The
other is a molecular upload interface that can send the input files
into the server for running. WADDAICA supplies the six selectable

http://www.jmol.org


Fig. 1. The workflow of two modules of WADDAICA.
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functions to design or modify drugs on the job submission page.
Besides, every function has an independent way for drug design
or property calculation. For example, the function of drug design
by AI can produce the new ligands based on the submitted seed
by invoking deep learning model. And the function of drug proper-
ties calculation can independently compute Lipinski’s rule of five
values, synthetic accessibility, and PAINS. The ‘‘Job title” and
‘‘Email” are the optional fields for the users on the job submission
page. In the first module, WADDAICA provides the JSME interface
for the users to draw a molecule or write molecular SMILES strings
as the input data (see Fig. 2A). The deep learning model will run the
job of newmolecular generation in the background when the input
data is sent to the server. In the second module, the input data con-
tains the simple configure file, protein, and seed files with PDB for-
mat (see Fig. 3A). The configure file only contains four simple
parameters that are the box length, the coordinates of the box cen-
ter, the names of protein and seed. WADDAICA can upload these
prepared materials to run the job of drug design in the background.
WADDAICA also supplies a friendly upload interface for other four
functions: ‘‘Binding affinity by AI”, ‘‘Molecular docking”, ‘‘Binding
affinity by CA” and ‘‘Drug properties calculation” (see Fig. 3B, 3C,
3D and 3E). Once the input files are uploaded, the molecular
growth job will be carried out automatically. In addition, WAD-
DAICA supplies the tutorial template at the bottom of the job sub-
mission page. The users can easily submit the new jobs of drug
design or modification by replacing the tutorial template.

When the users click the button of submit and running, the job
submission page will skip to the status page (see Fig. 2B). The sta-
tus page shows the job title, job ID, status, and created time of the
job. The value of status is queued, started, finished, or failed
according to the actual task state. The status page will refresh to
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show the results at intervals until the job is finished. The users
can wait for the final results on the status page or save the offline
URL that can be loaded to check the final results when the status
page is closed.
3.2. Output

When the job of drug design is complete by running a deep
learning model or classical algorithm in the background, the gener-
ated molecular files are compressed into the zip file that can be
downloaded from the results page. Meanwhile, the result page also
shows the 3D structures of generated molecules by using the JSmol
plugin (see Fig. 2C). The users can selectively load the protein
structure into JSmol interface to check the binding pose of the
newly generated ligand in the protein pocket. In the first module,
the drugs are designed or modified by deep learning model. The
zip file on the results page contains the appointed number of pro-
duced 3D molecules in the mol2 format and the file that stores the
SMILES strings of generated molecules. The users can judge the
newly generated ligands according to the experience in pharma-
ceutical chemistry or further evaluate the binding affinity between
generated ligand and protein by deep learning model. The results
page will show the pKx (pKd or pKi) that can be used to assess
the binding affinities of ligands quantitatively. WADDAICA also
shows the results of binding free energy with equation 3:

binding free energy = RT * loge(10�pKx) ð3Þ

where R and T are the gas constant and temperature, respectively. In
addition, the users can check Lipinski’s rule of five, synthetic acces-
sibility, and PAINS of generated ligand by submitting a job into the



Fig. 2. Example input and output results from the pages of WADDAICA. (A) The job submission interface of ‘‘Drug design by AI”. (B) The job information. (C) The visualization
of desgined ligand. The designed ligand in the protein pocket is shown by JSmol molecule viewer (http://www.jmol.org). (D) The result information of ID, name, cluster,
binding affinities, formula, InChIKey, and synthetic accessibility of designed ligands.

Fig. 3. The interfaces of WADDAICA. (A) The interface of ‘‘Drug design by CA”. (B) The interface of ‘‘Binding affinity by AI”. (C) The interface of ‘‘Molecular docking”. (D) The
interface of ‘‘Binding affinity by CA”. (E) The interface of ‘‘Drug properties calculation”.
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function of drug properties calculation in WADDAICA. In the second
module, the drugs could be designed or modified by our developed
program MolAICal with genetic algorithm. The output results are
compressed into a zip file that contains generated 3D molecules
in the mol2 format and result record file. The result record file con-
3576
sists of the items of ID, name, cluster, affinity, formula, inChIKey,
and synthetic accessibility of generated ligands (see Fig. 2D). The
cluster item employs the K-means algorithm to classify the gener-
ated ligands. Affinity is the binding score between generated ligand
and protein. The formula and inChIKey can help the users to retrieve

http://www.jmol.org
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and distinguish generated ligands. The users can select the wanted
ligands according to items of the cluster, affinity, and synthetic
accessibility. In this process, WADDAICA can filter out the PAINS
and ligands that are not in accordance with the setting cut-off of
Lipinski’s rule of five, automatically.

3.3. Validation and case study

The assessment of scoring function based the PDBbind database
can show the state-of-the-art of the deep learning model and the
classical function of binding affinities that are used in the WAD-
DAICA server. In the first module of WADDAICA, the deep learning
model, which is trained by OnionNet [13] based on the PDBbind
database, is employed to evaluate the binding affinity between
the protein and ligand. Table 1 shows the performance comparison
between OnionNet model and other three popular machine learn-
Table 2
Comparison of scoring power of classical score functions.

Scoring function Rp Rs

Vinardo 0.582 0.592
AutoDock (LGA) [25] 0.404 0.450
AutoDock (PSO) [25] 0.466 0.513
AutoDock Vina [25] 0.569 0.584
LeDock [25] 0.463 0.486
rDock [25] �0.021 �0.005
UCSF DOCK [25] 0.276 0.323

Fig. 4. The case of drug design based on class D GPCR Ste2 by deep learning model and
learning model. (B) Binding affinity versus XLOGP for ligands generated by the classical

Table 1
Comparison of scoring power of machine learning models.

Scoring function SD Rp

OnionNet [13] 1.45 0.78
kNN-Score [32] 1.65 0.672
RF-Score-v3 [33] 1.51 0.74
Pafnucy [33] 1.61 0.70

3577
ing models (kNN-Score [32], RF-Score-v3 [33], and Pafnucy [33]).
The OnionNet model shows lower standard deviations (SD) and
better Pearson correlation coefficients (Rp) between the experi-
mental pKx and predicted pKx than other three models. It indicates
that the OnionNet model is a relatively good binding affinity model
that can be further used for virtual drug screening. In the second
module of WADDAICA, the classic scoring function Vinardo [15],
which is trained on basis of the score function of AutoDock Vina,
is employed to calculate the binding affinity between protein and
ligand. Table 2 shows the performance comparison between
Vinardo and the scoring functions of AutoDock (LGA) [25], Auto-
Dock (PSO) [25], AutoDock Vina [25], LeDock [25], rDock [25],
and UCSF DOCK [25] based on the PDBbind database. The Vinardo
has the best Pearson’s correlation coefficient (Rp of 0.582) and
Spearman’s rank correlation coefficient (Rs of 0.592). It indicates
the Vinardo has the best scoring power for predicting the binding
affinity between protein and ligand. The rDock has the negative
values of Rp and Rs that indicate the worse correlation between
the experimental scores and predicted scores. In addition, the UCSF
DOCK has not very good Rp and Rs between the experimental scores
and predicted scores. It indicates our trained Vinardo can be used
to design or modify drugs well by the classical algorithm.

To illustrate the two modules of WADDAICA, the structure of
Saccharomyces cerevisiae pheromone receptor Ste2, which is deter-
mined by cryogenic electron microscopy (cryo-EM) [34], is selected
for drug design by deep learning and classical algorithm. The Sac-
charomyces cerevisiae pheromone receptor Ste2 that belongs to one
member of the class D GPCRs family exists as an essential dimer for
signaling and functional endocytosis [35] in yeast cells. The drugs
targeted to Ste2 can be used to treat intractable fungal diseases.
The cryo-EM structure of Ste2 contains the high-affinity agonist
tridecapeptide pheromone a-factor (WHWLQLKPGQPMY) in the
orthosteric binding site. The residue Y13 in the C terminus of a-
factor has the most contacts to the pocket of Ste2. The mutations
F204C and F204S of Ste2 can cause the decrease of the ligand bind-
ing and signal transduction, and amidation in the C terminus of a-
factor results in a 160-fold decrease of binding affinity in the Ste2
[34]. In this case, the residues Y13 and M12 of a-factor are chosen
classical algorithm. (A) Binding affinity versus XLOGP for ligands generated by deep
algorithm.
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as the seed structure for drug design or modification by deep learn-
ing and classical algorithm. The A chain of Ste2 dimer and a-factor
are selected for this case study. The center coordinates of the bind-
ing box in the pocket of Ste2 are set to 130.560, 120.576, and
128.238 Å, respectively. The lengths of the binding box in the
pocket of Ste2 are set to 30.0, 30.0, and 30.0 Å, respectively.
Fig. 4 shows the binding affinity and XLOGP of ligands that are gen-
erated by the deep learning model and classical algorithm. In the
first module of WADDAICA, when the seed ligand is submitted to
the server, WADDAICA will invoke the deep learning model to gen-
erate the new ligands based on the structure of the seed ligand. The
binding affinity of the submitted seed is �9.46 kcal/mol. It is obvi-
ous that some newly generated ligands have better binding affinity
than the submitted seed ligand. The XLOGP values of generated
ligands look like a normal distribution. The ligands in the range
1.25 ~ 3.5 of XLOGP account for the majority of the total generated
ligands (see Fig. 4A) indicating that the deep learning model can
generate the new potential ligands of class D GPCR Ste2. In the sec-
ond module of WADDAICA, the seed ligand and protein coordinates
are submitted to the server. In the current example, the binding
affinity of the initial seed ligand is �2.5 kcal/mol. After a cycle of
molecular growth by genetic algorithm, it produces some new
ligands that have better binding affinities than the submitted seed
ligand. The ligands in the range �4.74 ~ -4.0 kcal/mol of binding
affinity take up the majority of the total generated ligands (see
Fig. 4B). In addition, the classical algorithm also grows the good
binding ligands with the binding affinity of �5.1 kcal/mol in the
pocket of Ste2. The XLOGP values of generated ligands by the clas-
sical algorithm are more discrete than by the deep learning model
(see Fig. 4A and 4B) what indicates that the classical algorithms
have a different style of drug design with deep learning. The deep
learning models and classical algorithms have their specific advan-
tages for drug design or modification in the WADDAICA server. If
the users want to skip the patent protection and generate new sim-
ilar drugs, they can use the deep learning model of WADDAICA. On
the contrary, if the users want to modify or design new ligands
fragment by fragment based on the submitted seed ligand, the
classical algorithm module of WADDAICA is a good choice.
4. Conclusion

In this paper, the webserver WADDAICA is introduced for drug
design or modification by deep learning and classical algorithm.
The WADDAICA provides a friendly and convenient interface for
users to submit the jobs by drawing or uploading the molecular
files. In its first module, the deep learning models are employed
to modify or design new novel drugs by convolutional neural net-
works. The deep learning model in WADDAICA shows a better
scoring power for predicting the binding affinity of ligands. In
the second module, the classical algorithms are used to modify
or design new ligands in the protein pocket. The comparisons of
scoring power show WADDAICA has better Pearson and Spearman
correlations between the experimental scores and predicted
scores. This fact indicates that WADDAICA can design new ligands
in the protein pocket very well. In general terms, we strongly
believe that this webserver is helpful and useful to researchers
who are interested in drug design and they can take great advan-
tage of it.
5. Availability

The documentation, related data and materials of WADDAICA
can be obtained on https://heisenberg.ucam.edu:5000 or https://
bqflab.github.io.
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